
Combinatorial Multi-Armed Bandit Based Unknown
Worker Recruitment in Heterogeneous Crowdsensing

Guoju Gao†, Jie Wu‡, Mingjun Xiao†∗, and Guoliang Chen†
†School of Computer Science and Technology / Suzhou Institute for Advanced Study,

University of Science and Technology of China, Hefei, P. R. China
‡Department of Computer and Information Sciences, Temple University

Email: {gaoguoju@mail.ustc.edu.cn, jiewu@temple.edu, xiaomj@ustc.edu.cn, glchen@ustc.edu.cn}

Abstract—Mobile crowdsensing, through which a requester can
coordinate a crowd of workers to complete some sensing tasks,
has attracted significant attention recently. In this paper, we
focus on the unknown worker recruitment problem in mobile
crowdsensing, where workers’ sensing qualities are unknown a
priori. We consider the scenario of recruiting workers to complete
some continuous sensing tasks. The whole process is divided
into multiple rounds. In each round, every task may be covered
by more than one recruited workers, but its completion quality
only depends on these workers’ maximum sensing quality. Each
recruited worker will incur a cost, and each task is attached a
weight to indicate its importance. Our objective is to determine
a recruiting strategy to maximize the total weighted completion
quality under a limited budget. We model such an unknown
worker recruitment process as a novel combinatorial multi-armed
bandit problem, and propose an extended UCB based worker
recruitment algorithm. Moreover, we extend the problem to the
case where the workers’ costs are also unknown and design
the corresponding algorithm. We analyze the regrets of the two
proposed algorithms and demonstrate their performance through
extensive simulations on real-world traces.

Index Terms—Mobile crowdsensing, multi-armed bandits, on-
line learning, worker recruitment.

I. INTRODUCTION

Mobile CrowdSensing (MCS) is a newly-emerging paradig-
m where a crowd of mobile users can be recruited to coopera-
tively complete some sensing tasks by using their carried smart
phones [1]–[9]. Owing to users’ mobility and the diversity
of sensors embedded in their smart phones, MCS can deal
with various sensing tasks distributed in a large-scale area.
Consequently, it has stimulated many applications that a single
user cannot cope with, such as traffic information collection,
noise pollution collection, water pollution monitoring, and
urban WiFi characterization, etc.

A typical MCS system includes a platform residing on a
cloud. Through the platform, service requesters can publicize
their sensing tasks and recruit mobile users (a.k.a., workers)
to complete these tasks. Generally, due to the diverse smart
phones and mobile behaviors, workers might result in different
sensing qualities, even for the same task. Thus, recruiting
workers to achieve higher completion qualities or lower costs
is one of the most important problems in MCS. Much effort
has been devoted to designing worker recruitment or task allo-
cation algorithms in recent years [4], [7], [10]–[15]. However,
most of existing work assumes that workers’ sensing qualities
are known in advance, which is not true in practice. So far,
only a few researches have investigated the scenario where
workers’ sensing qualities are unknown a priori, i.e., the so-
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Fig. 1. Illustration of the heterogeneous crowdsensing scenario.

called unknown worker recruitment problem. For example,
[16] studies how to maximize the task completion ratio while
considering unknown workers’ reliability and dynamic arrivals
of tasks; [17] develops a modified Thompson Sampling worker
selection algorithm to recruit some unknown workers. Never-
theless, these researches mainly involve homogeneous MCS
models in which each task can be completed by all workers,
although their sensing qualities might be different.

In this paper, we focus on the unknown worker recruitment
problems in heterogeneous MCS systems. Consider such a
scenario where a requester wants to recruit workers to collect
the traffic data (e.g., traffic photos or videos) at some urban
intersections for a period of time. The whole data collection is
divided into multiple rounds. In each round, it consists of many
location-related sensing tasks, each of which corresponds to
a traffic intersection, as shown in Fig. 1. Here, each task is
attached with a weight to indicate its importance. Each worker
can complete (a.k.a., cover) one or more tasks. The tasks that
each worker can deal with might be different, i.e., the sets
of tasks covered by different workers are heterogeneous. All
workers will tell the platform the tasks they want to perform
and the costs they expect to charge. Each worker can provide
multiple options, composed of different task combinations and
costs, but at most one option will be selected. Moreover,
each worker has a sensing quality, following an unknown
distribution. Our objective is to design a worker recruitment
strategy that can maximize the total task completion quality
under a given budget.

In the above unknown worker recruitment problem of het-
erogeneous MCS systems, the main challenge lies in that the
platform does not know workers’ sensing qualities in advance,
so it needs to learn their quality values by tentatively recruiting
workers to complete some tasks and then selects the best
group of workers according to the learned results. Generally,
the two processes are called exploration and exploitation [18],



[19], respectively. We need to balance the two processes so as
to maximize the total task completion quality under a given
budget. To address this challenge, we model the unknown
worker recruitment process as a novel Combinatorial Multi-
Armed Bandit (CMAB) problem, where each worker is seen as
an arm, its sensing quality is seen as the corresponding reward,
and recruiting workers is equivalent to pulling arms. Moreover,
we let a fixed number of arms (i.e., K) be pulled in each round.
Our CMAB model has two novel characteristics, different from
all the existing CMAB models. First, each arm has multiple
options, each of which corresponds to a set of covered tasks
and a cost. The platform needs to not only select arms but
also determine the option for each arm. Second, it contains
a budget-limited maximum weighted coverage problem (i.e.,
maximizing the total task completion quality, which involves a
weighted sum function on some maximum sensing qualities),
making it very challenging.

As we know, Upper Confidence Bound (UCB) is a widely-
used arm-pulling strategy, designed for the traditional multi-
armed bandit problem [18], [20]. It always selects the arm
that has the largest value on the estimated reward and the
upper bound of confidence to be pulled. To solve our CMAB
problem, we extend the UCB strategy by adding two extra
designs. First, when estimating the reward and computing the
confidence for each arm, we consider that workers’ sensing
qualities might be learned multiple times in one round, due
to the reason that each worker has multiple options and
covers multiple tasks. Second, we adopt the greedy strate-
gy to solve the budget-limited maximum weighted coverage
problem, when determining which arms should be pulled.
Next, according to the extended UCB arm-pulling strategy, we
design an unknown worker recruitment algorithm. In addition,
we extend our problem to the scenario where workers’ costs
are also unknown and devise another algorithm.

Our major contributions are summarized as follows:

• We introduce the unknown worker recruitment problem
for heterogeneous MCS systems and turn it into a nov-
el K-arm CMAB problem. Unlike existing researches,
this CMAB model contains a budget-limited maximum
weighted coverage problem and each arm has multiple
candidate options.

• We propose an extended UCB based arm-pulling strategy
to solve our CMAB problem and design the correspond-
ing unknown worker recruitment online algorithm. More-
over, we derive the worst regret bound of the algorithm:
O(NLK3 lnB), where B, N , and L are the budget, the
number of workers, and the number of options of each
worker, respectively.

• We also study an extended case where both the sensing
qualities and the costs of workers are unknown, and
devise another algorithm with a provable regret guarantee
O(NLK3 ln(NMB)), where M is the number of tasks.

• We conduct extensive simulations on real-world traces to
evaluate the significant performance of our algorithms.

All proofs of theorems and lemmas can be found in Appendix.
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Fig. 2. Illustration of the main procedures in the mobile crowdsensing.

II. SYSTEM MODEL & PROBLEM

A. System Overview
Consider an MCS system, composed of a platform and a

crowd of workers. A requester wants to collect some traffic
data (e.g., photos, videos, etc.) for a period of time via the
MCS system, but constrained by a budget. The whole data
collection consists of some location-related sensing tasks and
is also divided into multiple rounds, each of which lasts a
certain time interval. Each task here is attached with a weight
to indicate its importance. First, the requester publicizes these
tasks to all workers via the platform. Then, each worker will
tell the platform which sensing tasks it is willing to perform.
Moreover, the worker can provide multiple options, each of
which includes a subset of tasks that it can deal with and
also attaches a cost that it wants to charge. Next, the platform
will recruit some workers to perform the tasks round by round
according to some strategy, until the budget is exhausted. Fig.
2 illustrates the main procedures.

For generality, we assume that the MCS system is heteroge-
neous, where each task can be completed by multiple workers
and each worker can also cover multiple tasks in each round.
Moreover, each worker has a sensing quality when performing
tasks. The quality value can be evaluated only by the platform
after the worker completes some tasks and submits the sensed
results. If a task is completed by more than one workers, we
will only select the best sensing data and let the completion
quality of this task be the maximum sensing quality of these
workers. It should be pointed out that we mainly focus on
the unknown worker recruitment problem in this paper, and
thus we assume that the whole system is secure and truthful
by leaving the privacy-preserving and incentive issues to be
solved in future works. We assume that workers’ sensing
qualities follow some unknown distributions. The platform
can learn and estimate these distributions after the workers
complete some tasks. A profile is used to record the learned
quality for each worker.

B. Model
We let t denote the index of round, and let N =

{1, · · · , i, · · · , N} and M = {1, · · · , j, · · · ,M} denote N
workers and M sensing tasks in the system, respectively. We
use B to denote the requester’s budget. Since each task has a
different level of importance for the requester, we use wj to
denote the weight of the j-th task, and let

∑
j∈M wj=1.

In our MCS system, each worker i ∈ N would submit L
(≥1) candidate options to the platform. We use pli = ⟨Ml

i, c
l
i⟩

to denote the l-th (1≤ l≤L) option submitted by the worker i,



TABLE I
DESCRIPTION OF COMMONLY-USED NOTATIONS.

Variable Description
N , M the sets of workers and sensing tasks, respectively.
i, j, t the indexes for workers, tasks, and rounds.
K the number of recruited workers in each round.
εi the cost parameter of i and cli=εif(|Ml

i|).
pli the l-th option submitted by the worker i.
P the sets of all options.
Pt the set of selected options in round t.
L the number of options that a worker submits.
B the budget given by the requester.
qti,j the quality value of i conducting j in round t.
qi(t) the average quality of i until the t-th round.
q̂i(t) the UCB-based quality value of worker i.
qi the mean of the distribution {qti,j |t≥1, j∈Mi}.
ni(t) the number of i being learned until round t.
nl
i(t) the number of pli being selected until round t.

E[·] the expected function.

where Ml
i⊆M means the subset of tasks he can perform and

cli denotes the corresponding cost. Note that for each worker,
at most one option can be selected in each round. Moreover,
we suppose c1i ≤ c2i ≤ · · · ≤ cLi for ∀i ∈ N . In reality, the
corresponding cost cli is highly related to the number of tasks,
i.e., the value of |Ml

i|. We consider that the cost is proportional
to the function of the number of tasks for simplicity. That
is, we let cli = εi · f(|Ml

i|) where f(·) as a monotonically
increasing function (i.e., performing more tasks must result in
more cost) is given in our model. The values of εi (called
cost parameter) for different workers are heterogeneous. For
example, a worker carrying the smart phone with the advanced
configurations (e.g., high-resolution camera, 5G network, etc.)
generally has a large cost parameter. Moreover, εi is assumed
to be known a priori here. In this paper, we will also consider
an extended case where εi is unknown. Note that the value of
cli is normalized to (0, 1]. We let Pi = {pli|1≤ l≤L} denote
the set of options submitted by worker i for simplicity, and
further use P=∪i∈NPi to denote the set of all options.

On the other hand, we use a normalized nonnegative random
variable qti,j ∈(0, 1] to denote the sensing quality of the worker
i completing the task j∈Ml

i in the t-th round. In fact, for a
particular worker (e.g., i), the values of {qti,j |j∈Ml

i, ∀t≥1}
follow an unknown independent and identically distribution
with an unknown (unique) expectation qi. This is because the
sensing quality is mainly determined by the camera in the
worker’s smart phone, the skill, angle, habit of taking photos
or videos, etc. If the l-th option submitted by the worker i
(i.e., pli) is selected in round t, i must perform all tasks in
Ml

i, and the quality values {qti,j |j ∈ Ml
i} will be revealed.

This indicates that the expected quality (i.e., qi) would be
learned |Ml

i| times by the platform, which differs from the
traditional CMAB model [21], [22].

C. Problem
For the above heterogeneous MCS system, we focus on

recruiting K workers in each round so that the weighted sum
of the completion qualities (called total weighted completion
quality) of all the tasks over all rounds can be maximized

under a given budget. We let Pt ⊂ P denote the selected
options in round t, in which pli∈Pt means that the l-th option
of worker i will be selected in round t. Since at most one
option for a worker can be selected in each round, we have∑L

l=1 I{pli ∈ Pt} ≤ 1 for ∀i ∈ N , where I{true} = 1 and
I{false}=0. Moreover, we define the final completion quality
of a task according to Pt in round t, denoted by uj(Pt),

uj(Pt) =

{
0; j /∈ (∪pli∈PtMl

i),

max{qti,j | pli ∈ Pt}; j ∈ (∪pli∈PtMl
i).

(1)

We further use u(Pt) to denote the total achieved weighted
completion quality of all tasks based on Pt in round t, i.e.,

u(Pt)=
∑

j∈M(wj · uj(Pt)). (2)

Our objective is to determine {P1, · · · ,Pt, · · · } in each
round, such that the total expected weighted completion qual-
ity of all tasks is maximized under the budget constraint. We
formulate our optimization problem as follows:

Maximize : E
[∑

t≥1 u(Pt)
]

(3)

Subject to :
∑

t≥1

∑
pl
i∈Pt cli ≤ B (4)

|Pt| = K for ∀t > 1 (5)∑L
l=1 I{pli∈Pt} ≤ 1 (6)

Eqs. (4) and (5) mean the budget and quantity constraint, while
Eq. (6) indicates that at most one option of each worker can
be selected in each round. Additionally, we summarize the
commonly used notations throughout the paper in Table I.

III. ALGORITHM DESIGN

A. Basic Solution

To address our unknown worker recruitment issue, we
model it as a budgeted-limited K-arm CMAB problem, where
each worker is seen as an arm, sensing quality is seen as
the corresponding reward, and recruiting workers is treated as
pulling arms. In this model, K workers are recruited in each
round and each recruited worker’s sensing quality would be
learned multiple times in a round. We first extend the Upper
Confidence Bound (UCB) to denote the learned quality values
(called UCB-based quality). Then, we propose a UCB-based
quality function by taking the maximum weighted coverage
problem into consideration. Based on this, we adopt a greedy
strategy to recruit K unknown workers in each round, that
is, we always select the worker with the maximum ratio
of the marginal UCB-based quality function value and the
recruitment cost. We introduce our detailed solution as follows.

When an option of a worker is selected in round t (e.g.,
pli ∈ Pt), the worker i must perform all sensing tasks in Ml

i.
In other words, the number of times of i being learned by the
platform in round t is actually |Ml

i|. Based on this, we first
introduce nl

i(t) and ni(t) for i ∈ N , 1≤ l ≤ L to record the
number of times that pli is selected and the number of times
that i is learned. That is,

nl
i(t) =

{
nl
i(t− 1) + 1; pli ∈ Pt,

nl
i(t− 1); pli /∈ Pt.

(7)

ni(t) =
∑L

l=1(n
l
i(t) · |Ml

i|) for ∀i ∈ N . (8)



Next, we introduce the notation qi(t) to record the average
quality value (learned) for i until the t-th round. After Pt is
determined, the value of qi(t) will be updated as follows:

qi(t)=


qi(t−1)ni(t−1)+

∑
j∈Ml

i
qti,j

ni(t−1) + |Ml
i|

; pli∈Pt, 1≤ l≤L,

qi(t−1); pli /∈Pt, 1≤ l≤L.

(9)

In order to balance the relationship between exploitation
and exploration, we extend the traditional UCB to propose the
concept of UCB-based sensing quality. Concretely speaking,
we use q̂i(t) to denote the UCB-based quality value, i.e.,

q̂i(t)=qi(t)+Qt,i; Qt,i=

√
(K+1) ln(

∑
i′∈N ni′(t))

ni(t)
. (10)

In this paper, the values of nl
i(t), ni(t), qi(t) and q̂i(t) make

up the worker profiles in the platform. Next, we introduce the
UCB-based quality function which considers the maximum
weighted coverage problem in our MCS system. When a task
is covered by multiple workers, we let the maximum sensing
quality value of these workers denote the final result of this
task in a round. More specifically, we let u[q̂i(t−1)](Pt) denote
the UCB-based quality function for the solution Pt according
to the values of {q̂i(t−1)|i ∈ N}, that is,
u[q̂i(t−1)](Pt)=

∑
j∈M

wj ·max{q̂i(t−1)·I{j∈Ml
i, p

l
i∈Pt}}.(11)

Based on this, we introduce the greedy recruitment strategy
as follows. In the initialization period, the platform will select
the first option of each worker (with the minimum cost) to
explore the quality values, that is, P1 = {p1i |i ∈ N}. Then,
nl
i(t), ni(t) and qi(t) will be initialized. In any round t > 1,

the set Pt is first initialized to be empty. Then, when |Pt|<K,
we find the element in P\Pt which can increase the UCB-
based quality function u[q̂i(t−1)](Pt) most quickly with unit
cost. That is to say, we let the ratio of the marginal value of
the function u[q̂i(t−1)](Pt) and cost be the selection criterion,
which can be described as follows:

pli = argmax
pl′
i′∈(P\Pt)

u[q̂i(t−1)](Pt ∪ {pl′i′})−u[q̂i(t−1)](Pt)

cl
′
i′

. (12)

Note that at most one option of a worker can be selected
in each round. Thus, if pli ∈ Pt, pl

′

i for 1 ≤ l′ ≤ L, l′ ̸= l
will not be considered in this round. After K workers are
recruited in round t (i.e., |Pt| = K), each worker i (here
pli ∈ Pt) is required to perform all tasks in Ml

i. Then, the
specific completion quality (i.e., {qti,j |j ∈ Ml

i}) is obtained
by the platform. Based on this information, the platform will
update the worker profiles, i.e., the values of nl

i(t), ni(t),
qi(t) and q̂i(t). At the same time, the total achieved weighted
quality, i.e., the value of uB=u(P1)+· · ·+u(Pt), is updated.
Based on the remaining budget, the platform decides whether
to continue the recruitment process.
B. Detailed Algorithm

According to the above solution, we propose an Unknown
Worker Recruitment (UWR) algorithm, as shown in Alg. 1.
In steps 1-2, the platform will select the first options of all
workers with the minimum cost to initialize several param-
eters, such as ni(t) and qi(t). In steps 3-8, the platform

Algorithm 1 The UWR Algorithm
Require:N ,M,P={pli|i∈N , 1≤ l≤L}, {wj |j∈M}, B, K
Ensure: Pt⊆P for ∀t≥1, uB and τ(B).

1: Initialization: t=1, recruit all workers, i.e., P1={p1i |i∈
N}, and obtain the quality q1i,j for p1i ∈P1.

2: Let uB=u(P1), Bt=B −
∑

p1
i∈P1 c1i , ni(t)= |M1

i | and
qi(t)=(

∑
j∈M1

i
qti,j)/|M1

i | for ∀i∈N ;
3: while 1 do
4: t ⇐ t+ 1, Pt = ϕ;
5: while |Pt| < K do
6: Let Pt′ = {pl′i | for ∀pli ∈ Pt};

7: Get pli= argmax
pl′
i′∈(P\Pt′ )

u[q̂i(t−1)](Pt∪{pl′
i′})−u[q̂i(t−1)](Pt)

cl
′
i′

;

8: Add pli into Pt, i.e., Pt = Pt + {pli};
9: if

∑
pl
i∈Pt cli ≥ Bt−1 then

10: return Terminate and output uB and τ(B)= t;
11: Obtain the qualities qti,j for ∀pli∈Pt;
12: Update the worker profiles: nl

i(t), ni(t), qi(t) and q̂i(t);
13: Bt = Bt−1 −

∑
pl
i∈Pt cli, and uB=uB+u(Pt);

selects K workers according to the UCB-based qualities and
the proposed selection criterion, i.e., Eq. (12). To meet the
constraint that at most one option of a worker can be selected
in a round, we let Pt′ denote the set of not satisfying options,
in step 6. Then, the option with the largest ratio of the marginal
UCB-based quality function value and cost is selected from
the set P\Pt′ , in step 7. In steps 9-10, the platform decides
whether to terminate the algorithm based on the remaining
budget. If the remaining budget is enough, the recruited
workers in this round will perform the corresponding tasks,
and send the sensing results to the platform in step 11. The
platform updates the worker profiles in step 12. The remaining
budget and total achieved weighted quality are updated in step
13. Moreover, the computation complexity of the algorithm is
dominated by step 7, which is denoted by O(NMLK).

C. Performance Analysis
Assume that the platform knows the quality distributions of

all workers, i.e., qi for ∀i ∈ N . In such a case, the worker
recruitment problem is actually a special 0-1 knapsack prob-
lem in terms of all rounds, which is NP-hard [23]. There is no
polynomial-time optimal algorithm for this problem. However,
by recruiting the workers with high ratios of marginal weighted
quality value and cost in each round, the platform can output
an approximately optimal solution, which is denoted by P⋆⊂
P . Note that P⋆ satisfies u[qi](P⋆)≥ α · maxPt⊂P u[qi](Pt)
where 0<α≤1. Here, u[qi](Pt) is defined as follows:

u[qi](Pt)=
∑

j∈M wj ·max{qi ·I{j∈Ml
i, p

l
i∈Pt}},

According to this, directly comparing our unknown worker
recruitment results with the optimal solution, denoted by
P∗ ⊂ P , is not fair. Therefore, we introduce the concept of
α-approximation regret [21], [24] of an algorithm A under
the budget B, that is,

RA
α (B) = α ·

∑
t≥1 u[qi](P∗)− E

[∑
t≥1 u(Pt)

]



Algorithm 2 The EUWR Algorithm
Require: N , M, P={pli=⟨Mi⟩}, {wj |j∈M}, B, K, f(·)
Ensure: Pt⊆P for ∀t≥1, uB and τ(B).

1: Initialization: t=1, let P1 = {p1i |i∈N} and obtain the
quality q1i,j and cost parameter ε1i for p1i ∈P1.

2: Let uB=u(P1), Bt=B−
∑

p1
i∈P1 ε1i f(|M1

i |), ni(t)=1,
qi(t)=(

∑
j∈M1

i
qti,j)/|M1

i | and εi(t)=ε1i for ∀i∈N ;
3: while 1 do
4: t ⇐ t+ 1, Pt = ϕ;
5: while |Pt| < K do
6: Let Pt′ = {pl′i | for ∀pli ∈ Pt};
7: pli= argmax

pl′
i′∈(P\Pt′ )

u[r̂ l
i (t−1)](Pt∪{pl′i′})−u[r̂ l

i (t−1)](Pt);

8: Add pli into Pt, i.e., Pt = Pt + {pli};
9: Each recruited worker i where pli∈Pt obtains εti;

10: if
∑

pl
i∈Pt εtif(|Ml

i|) ≥ Bt−1 then
11: return Terminate and output uB and τ(B)= t;
12: Perform tasks and obtain the qualities qti,j for ∀pli∈Pt;
13: Update nl

i(t), ni(t), mi(t), qi(t), εi(t), and r̂ l
i (t);

14: Bt = Bt−1−
∑

pl
i∈Pt εtif(|Ml

i|), and uB=uB+u(Pt);

≤
∑

t≥1 u[qi](P⋆)− E
[∑

t≥1 u(Pt)
]
. (13)

According to the selection criterion and the existing work
[23], [25], we have α≥1/2 in our algorithm. Note that in this
paper we always let ∗ and ⋆ denote the corresponding identi-
fications of the optimal and α-optimal workers, respectively.
Then, we define the smallest/largest possible difference of the
quality values among non-α-optimal workers P ′ ̸=P⋆, and the
minimum/maximum recruitment cost values, i.e.,
∆min=u[qi](P⋆)−max{P ′̸=P⋆}u[qi](P ′), 0<cmin=min{cli},
∆max=u[qi](P⋆)−min{P ′̸=P⋆}u[qi](P ′), cmax=max{cli}≤1.

Then, we introduce Cl
i(t) as the counters after the initializa-

tion period, which is updated as follows. In each round, one of
the following cases must happen: 1) the α-optimal set of work-
ers is selected; 2) a non-α-optimal set of workers is recruited.
In the former, Cl

i(t) will not change; in the latter, we denote
the non-α-optimal set of workers as Pt. Then, there must exist
one option pli∈Pt such that pli=argminpl′

i′∈Pt Cl′

i′ (t−1), and
we let Cl

i(t) =Cl
i(t−1)+1. Here, if there are multiple such

options, we arbitrarily choose one. Since exactly one element
in Cl

i(t) is increased by 1 when a non-α-optimal set of workers
is selected, the total number of non-α-optimal sets of workers
is equal to the sum of the values in {Cl

i(t)|i∈N , 1≤ l≤L}.
We first introduce a lemma to analyze the bound of the
expected counter E[Cl

i(τ(B))] as follows.
Lemma 1: We have E[Cl

i(τ(B))]≤φ1ln τ(B)+φ2 for any
pli∈P , where φ1 and φ2 are two constants given below. More
specifically, we have

E[Cl
i(τ(B))]≤ 4K2(K+1)

(∆mincmin)2
ln(NMτ(B))+1+Kπ2

3 . (14)

Based on this, we get that the total number of non-α-
optimal sets is at most O(NLK3 ln τ(B)). Additionally, since
the recruitment cost in each round is uncertain, the stopping

round is indeterminate. We let τ(B) denote the stopping round
of Alg. 1 under the budget B constraint. Then, we introduce
another lemma to prove the bound on τ(B).

Lemma 2: The stopping round of our algorithm τ(B) under
the budget B is bounded as follows (here c⋆ =

∑
pl
i∈P⋆ cli)

B

c⋆
−φ3−1−φ1φ3

φ2
ln(

2B

c⋆
+ φ4) ≤ τ(B) ≤ 2B

c⋆
+ φ4. (15)

Based on Lemmas 1 and 2, we have the following theorem.
Theorem 1: The worst α-approximate regret of Alg. 1,

denoted by RA1
α (B), is bounded as O(NLK3 lnB), that is,

RA1
α (B)≤(NL∆maxφ1+ u⋆φ1φ3/φ2)(ln(

2B
c⋆ +φ4))+φ5,

where



u⋆=u[qi](P
⋆), c⋆=

∑
pli∈P⋆

cli

φ1=
4(K+1)K2

(∆mincmin)2
, φ2=ln(NM)φ1+1+

Kπ2

3

φ3=
NLφ2

c⋆
, φ4=

2NL

Kcmin
(φ1 ln(

2NLφ1

Kcmin
)−φ1+φ2)

φ5=NL∆max + u⋆(1/c⋆ + φ3 + 1)

IV. EXTENSION
A. Extended Problem

We consider an extended case where both workers’ sensing
qualities and costs are unknown a priori. Note that the cost
of pli is determined by cli = εif(|Ml

i|) where f(·) is given
in our MCS system. The unknown cost here means that the
cost parameter εi is unknown. In each round, when an option
of a worker is selected, the worker would estimate the cost
parameter according to the current state including battery,
network, environment factors, etc. We use εti to denote the
cost parameter in round t. Here, we let 0 < εmin ≤ εti ≤ 1.
Note that the values of {ε1i , · · · , εti} follow an independent
and identically distribution with the unknown expectation
εi. After receiving the cost parameter εti in round t, the
platform calculates the recruitment cost for ∀pli ∈ Pt based
on the formula cli = εtif(|Ml

i|). Here, all values of cli
will be normalized into (0, 1]. When the remaining budget
cannot cover the total cost of Pt in round t, the recruitment
algorithm will terminate; else, the recruited workers perform
the corresponding tasks and return the sensing quality to the
platform. The platform then updates the parameters in worker
profiles. In the extended problem, the platform needs to learn
the quality qi and parameter εi simultaneously, and meanwhile
maximizes the total weighted qualities of all tasks under a
given budget. So it is more challenging to design a suitable
recruitment strategy.
B. Basic Solution

Like before, we still let nl
i(t) denote the number of pli being

selected. Differently, when pli is selected in a round, the param-
eter εi is actually learned by only one time. Thus, we define
another notation to record the total number of cost parameter
εi being learned, denoted by mi(t), i.e., mi(t)=

∑L
l=1 n

l
i(t).

Then, the average cost parameter up to round t, denoted by
εi(t), is calculated as follows:

εi(t) =


εi(t−1) ·mi(t−1) + εti

mi(t−1) + 1
; for ∀1≤ l≤L, pli∈Pt,

εi(t−1); for ∀1≤ l≤L, pli /∈ Pt.

(16)
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Fig. 4. Alg. 1: quality vs. budget

Similar to the UCB-based expression q̂i(t)=qi(t)+Qt,i, we
also define another UCB-based cost value, which is denoted
by Ct,i=

√
(K+1) ln t/mi(t).

Before determining Pt, we can use εi(t− 1)f(|Ml
i|) to

denote the recruitment cost of pli, and the values of εi(t−
1)f(|Ml

i|) are finally normalized to (0, 1]. That is, we have
0 < cmin ≤ εi(t−1)f(|Ml

i|) ≤ 1. Then, we design another
selection criterion, denoted by r̂i(t), which takes the obtained
quality and cost values into consideration simultaneously.
More specifically, we define

r̂ l
i (t) = f l

i ·
qi(t−1)

εi(t−1)
+ fmax · εmin ·Qt,i + Ct,i

ε2min

, (17)

where f l
i = |Ml

i|/f(|Ml
i|) and fmax = maxMl

i
f l
i .

Next, the platform focuses on determining Pt in round t
by referring to the value of r̂ l

i (t). More specifically, in the
initialization period, the platform will select the first options
of all workers to explore the quality and cost values, that is,
P1={p1i |i∈N}. Then, qi(t) and εi(t) will be initialized. In
any round t > 1, the set Pt is first initialized to be empty.
When |Pt| < K, we find the element in P\Pt which can
increase the function u[r̂ l

i (t−1)](Pt) most quickly, that is,

pli = argmax
pl′
i′∈(P\Pt)

u[r̂ l
i (t−1)](Pt ∪ {pl

′

i′})−u[r̂ l
i (t−1)](Pt). (18)

Here, u[r̂ l
i (t−1)](Pt) means the total UCB-based ratios of

quality and cost for Pt, i.e.,
u[r̂ l

i (t−1)](Pt)=
∑

j∈M
wj ·max{r̂ l

i (t−1)·I{j∈Ml
i, p

l
i∈Pt}}.(19)

Based on the basic solution, we propose an Extended Un-
known Worker Recruitment (EUWR) algorithm, as shown in
Alg. 2. The main procedures are similar to that of Alg. 1. The
key difference is that the selection criterion q̂i(t−1) is replaced
by r̂i(t−1) in the extended algorithm. Also, each recruited
worker in round t would first estimate his cost parameter εti
to determine his recruitment cost in step 9. Note that steps
6-7 cooperate to remove the constraint that at most one option
of a worker can be selected in each round. In addition, the
computational overhead of Alg. 2 is still O(NMLK).

C. Performance Analysis
Before analyzing the regret guarantee of Alg. 2, we define

the smallest/largest possible difference of the ratio values
among non-α-optimal set of workers P ′ ̸=P⋆, that is,

∆rmin=u[rli]
(P⋆)−max{P ′̸=P⋆} u[rli]

(P ′), (20)

∆rmax=u[rli]
(P⋆)−min{P′,P ′̸=P⋆} u[rli]

(P ′). (21)

where rli = |Ml
i|qi/(εif(|Ml

i|)). The calculation of u[rli]
(Pt)

is similar to Eq. (19) in which r̂ l
i (t−1) is replaced by rli.

Then, we have the following theorem.

60% 50% 33% 25% 20% 16%

8.0k

16.0k

24.0k

32.0k

 

T
o

ta
l 

w
e
ig

h
te

d
 q

u
a
li

ty

K (percentage of total workers)

 Alg.1

 alpha-optimal

 epsilon-first (0.05)

 epsilon-first (0.1)

 Random

(a) Total quality vs. K

60% 50% 33% 25% 20% 16%

300

600

900

1200

 

 

T
o

ta
l 

ro
u

n
d

s

K (percentage of total workers)

 Alg.1

 alpha-optimal

 epsilon-first (0.05)

 epsilon-first (0.1)

 Random

(b) Total rounds vs. K
Fig. 5. Evaluation of Alg. 1 on the parameter K (Gaussian Distribution).

Theorem 2: The worst α-approximate regret of Alg. 2,
denoted by RA2

α (B), is bounded as O(NLK3 ln(NMB)). In
particular, we give the specific expression:
RA2

α (B)≤(NLφ6)(
u⋆

c⋆ +∆rmax) ln(NM( 2Bc⋆ +2φ7))+φ8,

where


φ6=(K+1)

(2Kfmax(εmin + 1)

∆rminε2min

)2

φ7=
NL

Kcmin
(φ6 ln(

2N2MLφ6

Kcmin
)−φ6+1+

2Kπ2

3
)

φ8=
u⋆(1+c⋆+NL(1+ 2Kπ2

3
))

c⋆
+NL∆rmax(1+

2Kπ2

3
)

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms with extensive simulations. We conduct the simu-
lations on a computer with Inter(R) Core(TM) i7-8700 CPU
@3.20GHz and 32GB RAM under a Windows platform.
A. Evaluation Methodology

Simulation Settings: We adopt the widely-used trace [26] in
our simulations. The trace consists of the GPS coordinates of
approximately 320 taxi cabs collected over 30 days in Rome,
Italy. The trace on a day is shown in Fig. 3. We first select
M locations from the trace as the task locations, in which
M is produced from [100, 600]. Then, we choose N vehicles
from the trace as workers, where N is selected from [50, 100].
Here, we exclude those vehicles that visit the selected locations
with low frequency in our simulations. The default values are
M=300 and N=50. Next, we determine the subset of tasks
that a worker can perform, and we let the number of tasks in
a subset (i.e., |Ml

i|) be randomly selected from [5, 15].
Now, we focus on determining two parameters: the expected

quality qi and the expected cost parameter εi. First, we
generate the sensing area for each task. For each task, we
use a geographic region with radius 200m within its location
to denote the sensing area, and the workers within this region
can perform this task. Based on this, we use the frequency
value of a worker i visiting these areas to denote the expected
mean qi, in which qi is normalized into (0, 1]. Then, we
generate εi randomly from (0, 1). We directly use the function
f(x)=x to determine the cost of each subset, and εif(|Ml

i|)
is normalized to (0, 1]. Moreover, we let the values of wj

be uniform and let K =N/3 in default. In order to estimate
the performance of our algorithms adequately, we adopt both
Gaussian and Uniform Distributions to generate the quality
and cost parameters.

Compared Algorithms: Since our optimization problem
involving the budget-limited maximum weighted coverage
problem is a novel CMAB problem, there are no existing
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Fig. 6. Quality evaluation of Alg. 1 on M and N (Uniform Distribution).

bandit algorithms that can be directly applied in our model. For
comparison, we borrow the basic strategy in the existing ϵ-first
bandit algorithm [27] to design a compared algorithm. That is,
we randomly selected K workers in each round under the first
ϵ · B budget. In the remaining (1− ϵ) · B budget, we always
recruit the K workers who perform best under the previous
ϵ · B budget. We evaluate the ϵ-first algorithm by choosing
ϵ = 0.05 and ϵ = 0.1. Moreover, we implement the Random
algorithm which selects K workers in each round randomly.
Additionally, we implement the α-optimal algorithm in which
all parameters are known in advance.

B. Evaluation Results
First, we display the evaluation results of Alg. 1. To evaluate

the effects of budget B, we let B change from 500 to 1000. We
see that our algorithm performs much better than the compared
algorithms, as shown in Fig. 4. The total weighted quality
achieved by Alg. 2 under this setting is at least 75% higher
than that of the compared algorithms. Also, we evaluate the
performance on the size of K, as shown in Fig. 5. The results
indicate that Alg. 1 still outperforms compared algorithms in
terms of the achieved total quality and rounds. The smaller K
is, the higher total quality can be achieved. However, this will
also result in higher recruitment rounds (i.e., more running
time). Moreover, we evaluate the performance of Alg. 1 by
changing the numbers of tasks and workers, as shown in Fig.
6. Here, in order to demonstrate the applicability of Alg. 1, we
use the Uniform Distribution to generate quality values in each
round. We observe that our algorithm can obtain more than
90% larger weighted quality than the compared algorithms,
and is even going to catch up with the α-optimal algorithm
which knows all parameters in advance. These observations
exactly validate our theoretical analysis results.

Second, we demonstrate the evaluation results of Alg. 2. As
shown in Fig. 7, we first investigate the relationship between
the achieved quality and budget. Since the gap among all
algorithms is not obvious, we change B in the range [500, 104].
We get that the total weighted quality achieved by Alg. 2 is at
least 81% of that of the α-optimal algorithm. The difference
of achieved quality between Alg. 2 and compared algorithms
increases when the budget rises. This means Alg. 2 is efficient
because the platform has more confidence in the estimation of
the unknown parameters. We then evaluate the performance of
Alg. 2 by changing the size of the selected workers (i.e., K),
as shown in Fig. 8. Here, we let B=104 in default. We see
that the advantage of Alg. 2 over the compared algorithms is
not as overwhelming as that of Alg. 1, due to two unknown
parameters existing in the extended problem. Although the
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Fig. 7. Evaluation of Alg. 2: quality vs. budget (Gaussian Distribution)

total rounds of the compared algorithms may be higher than
that of Alg. 2, the total achieved quality is below that of Alg.
2. In addition, we also evaluate Alg. 2 in terms of M and N
under the condition of Uniform Distribution, as shown in Fig.
9. The total quality achieved by Alg. 2 is 21% larger than that
of the compared algorithms on average. These observations
still remain consistent with our theoretical analysis.

VI. RELATED WORK
In this paper, we study the combinatorial multi-armed bandit

based budget-limited unknown worker recruitment for the
heterogeneous MCS. So far, there have been lots of researches
on the worker recruitment problem in MCS, such as [4], [10],
[11], [28]–[30]. However, most of the existing work assumes
that the sensing qualities or costs of workers are known in
advance, and then they focus on the quality maximization or
cost minimization problems under various constraints.

In fact, only a few researches [16], [17], [24], [31]–[34]
consider the unknown sensing qualities or costs in MCS sys-
tems. For instance, [33] studies to maximize the total sensing
revenue for the budgeted robust MCS; [24] investigates how to
select the most informative contributors with unknown costs
for budgeted MCS. However, the work [17], [24], [33] either
considers the MCS system only contains one task or assumes
the sets of tasks for all workers are identical, while other
work [16], [32] focuses on the one-to-one matching problem
between workers and tasks. Actually, all of them are based
on the homogeneous MCS model. Different from the existing
work, we study the unknown worker recruitment problem
for the heterogeneous MCS system. Especially, it involves a
budget-limited maximum weighted coverage problem.

We model our problem as a novel combinatorial multi-
armed bandit problem. The existing algorithms for multi-
armed bandits [18], [20], [35], [36] cannot be applied in our
problem. The most related works are [22], [37], in which
they study the top K bandit selection problem. [22] proposes
an algorithm which can achieve a good regret bound and
only requires linear storage and polynomial computation. [37]
designs a UCB-based algorithm with a O(NK4 logB) regret
bound. Nevertheless, neither of them involves the budget-
limited maximum weighted coverage problem and considers
that each arm (i.e., a worker) has multiple candidate options.

VII. CONCLUSION

In this paper, we study how to recruit K unknown workers
in each round so that the total weighted completion quality of
tasks can be maximized under the budget constraint. We model
this problem as a novel combinatorial multi-armed bandit
problem. It involves a budget-limited maximum weighted cov-
erage problem and each arm has multiple candidate options.
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We propose an unknown worker recruitment algorithm with
a good regret bound. Moreover, we study another case where
both workers’ sensing quality and cost are unknown. A new
recruitment algorithm with a provable performance guarantee
is designed. Extensive simulations on real-world traces are
conducted to show the performance of our algorithms.
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APPENDIX

Proof of Lemma 1: Let I li(t) denote the indicator that Cl
i(t)

is incremented at round t. Then, we have

Cl
i(τ)=

τ∑
t=2

I{I li(t)=1}=λ+
τ∑

t=2
I{I li(t)=1, Cl

i(t)≥λ}

≤λ+
τ∑

t=1
I{u[q̂i(t)/cli]

(Pt+1)≥u[q̂i(t)/cli]
(P⋆), Cl

i(t)≥λ}

=λ+
τ∑

t=1
I{

∑
pl
i∈Pt+1

ξli(t+1) q̂i(t)
cli

≥
∑

pl
i∈P⋆

ξli(⋆)
q̂i(t)

cli
, Cl

i(t)≥λ},(22)

where ξli(t+1) means the product of the effective number of
sensing tasks that worker pli ∈ Pt+1 can contribute and the
total weight of these effective tasks, that is,

ξli(t+ 1)=
∑

j∈Ml
i

I
{
pli=argmax

pl′
i′∈Pt+1

{q̂i′,j(t+1)}
}
· wj .

Obviously, we have ξli(t+1)≤
∑

j∈Ml
i
wj ≤ 1.

Then, we continue Eq. (22) and get

Cl
i(τ)≤λ+

τ∑
t=1

I
{

max
λ≤ns(1)≤···≤ns(K)≤t

K∑
i=1

ξli(t+1)

cli
· q̂s(i)(t)

≥ min
1≤ns⋆(1)≤···≤ns⋆(K)≤t

K∑
i=1

ξli(⋆)

cl
i⋆

· q̂s⋆(i)(t)
}

≤ λ+
τ∑

t=1

t∑
ns(1)=λ

· · ·
t∑

ns(K)=λ

t∑
ns⋆(1)=1

· · ·
t∑

ns⋆(K)=1

I
{ K∑

i=1

ξli(t+1)

cli
· q̂s(i)(t) ≥

K∑
i=1

ξli(⋆)

cl
i⋆

· q̂s⋆(i)(t)
}
, (23)

where s(i) and s⋆(i) mean the i-th element in Pt+1 and P⋆,
respectively. Here, q̂s⋆(i)(t) = qs⋆(i)(t) +Qt,s⋆(i).

100 200 300 400 500 600

25.00k

50.00k

75.00k

100.00k

T
o

ta
l 

w
e
ig

h
te

d
 q

u
a
li

ty

Number of tasks

 Alg.2

 alpha-optimal

 epsilon-first (0.05)

 epsilon-first (0.1)

 Random

(a) Total quality vs. M

50 60 70 80 90 100

40k

50k

60k

125.00k

T
o

ta
l 

w
e
ig

h
te

d
 q

u
a
li

ty

Number of workers

 Alg.2

 alpha-optimal

 epsilon-first (0.05)

 epsilon-first (0.1)

 Random

(b) Total quality vs. N
Fig. 9. Quality evaluation of Alg. 2 on M and N (Uniform Distribution).

Next, we prove the probability of the following event:
K∑
i=1

ξli(t+1)

cli
(qs(i)(t)+Qt,s(i))≥

K∑
i=1

ξli(⋆)

cl
i⋆

(qs⋆(i)(t)+Qt,s⋆(i)),

which means that at least one of the following must hold:∑K
i=1

ξli(⋆)

cl
i⋆

qs⋆(i)(t) ≤
∑K

i=1
ξli(⋆)

cl
i⋆

(qs⋆(i) −Qt,s⋆(i)); (24)∑K
i=1

ξli(t+1)

cli
qs(i)(t) ≥

∑K
i=1

ξli(t+1)

cli
(qs(i) +Qt,s(i)); (25)∑K

i=1
ξli(⋆)

cl
i⋆

qs⋆(i) <
∑K

i=1
ξli(t+1)

cli
(qs(i) + 2Qt,s(i)). (26)

Now, we prove the upper bound for Eq. (24), and get

P
{∑K

i=1
ξli(⋆)

cl
i⋆

qs⋆(i)(t)≤
∑K

i=1
ξli(⋆)

cl
i⋆

(qs⋆(i)−Qt,s⋆(i))
}

≤
∑K

i=1 P
{
qs⋆(i)(t)≤qs⋆(i)−Qt,s⋆(i)

}
. (27)

After applying the Chernoff-Hoeffding bound introduced in
the existing work [20], we have

P
{
qs⋆(i)(t)≤qs⋆(i)−Qt,s⋆(i)

}
≤ e−2ns⋆(i)(t)((K+1) ln(

∑
i′∈N ns⋆(i′)(t))/ns⋆(i)(t))

≤ e−2(K+1) ln(N |M|mint)≤ t−2(K+1),
We continue Eq. (27) and get the upper bound, which is

P{Eq. (27)} ≤ K · t−2(K+1).

Similarly, we can derive the upper bound for Eq. (25), which
is the same as that of the first case. Moreover, if both Eq. (24)
and Eq. (25) are false, we can easily infer that Eq. (26) is true.
Now, we pick λ such that Eq. (26) becomes impossible.

K∑
i=1

ξli(⋆)

cl
i⋆

qs⋆(i)−
K∑
i=1

ξli(t+1)

cli
qs(i)−2

K∑
i=1

ξli(t+1)

cli
Qt,s(i)

≥ ∆Pt+1−K
∑

j∈M wj

cmin

√
4(K+1) ln(

∑
i′∈N ns(i′)(t))

ns(i)(t)

≥ ∆Pt+1− K
cmin

√
4(K+1) ln(NMτ(B))

λ ≥ 0. (28)

Therefore, Eq. (28) always holds, when λ satisfies:

λ≥ 4(K+1)K2

(∆mincmin)2
ln(NMτ(B)).

Then, we continue Eq. (23) and further have

Cl
i(τ)≤⌈ 4(K+1)K2

(∆mincmin)2
ln(NMτ(B))⌉+

∑τ
t=1 2Kt−2

≤ 4(K+1)K2

(∆mincmin)2
ln(NMτ(B))+1+Kπ2

3 . (29)

Proof of Lemma 2: Due to the inequality lnϕ < ϕ−1 for
∀ϕ>0, we first have the following expression:

ln τ(B) ≤ Kcmin

2NLφ1
τ(B) + ln(

2NLφ1

Kcmin
)− 1,

where Kcmin indicates the minimum cost in each round.
Next, we derive the stopping round of the α-optimal algo-

rithm: τ⋆(B)=⌊ B
c⋆ ⌋, in which c⋆=

∑
pl
i∈P⋆ cli. Then, we have



B/c⋆ − 1 ≤ τ⋆(B)≤B/c⋆.
In order to derive the upper bound on τ(B), we have

τ(B)≤ τ⋆(B)+τ
(∑

pl
i /∈P⋆ nl

i(τ(B))cmax

)
≤τ⋆(B)+NL/(Kcmin)E[Cl

i(τ(B))]. (30)
Before proving the lower bound on τ(B), we first let 0≤

B⋆≤B denote the budget spent on the α-optimal options P⋆,
while B− = B−B⋆ means the budget spent on the non-α-
optimal options. Then, we have

τ(B)=τ(B⋆+B−)≥ τ(B⋆)≥ τ⋆(B⋆)

≥τ⋆(B−
∑

pl
i /∈P⋆ nl

i(τ(B))cmax)≥ B−NLE[Cl
i(τ(B))]

c⋆ −1.(31)
According to Eq. (30) and Eq. (30), we further get

τ(B)≤τ⋆(B)+ NL
Kcmin

(
φ1(

Kcmin

2NLφ1
τ(B)+ln( 2NLφ1

Kcmin
)−1)+φ2

)
≤ B

c⋆ +
τ(B)
2 + NL

Kcmin
(φ1 ln(

2NLφ1

Kcmin
)−φ1+φ2)

≤ 2B
c⋆ + 2NL

Kcmin
(φ1 ln(

2NLφ1

Kcmin
)−φ1+φ2)=

2B
c⋆ +φ4.

By substituting the above results into Eq. 31, we get the
lower bound on τ(B) as follows.

τ(B)≥B/c⋆−NLφ2/c
⋆−1−NLφ1 ln(τ(B))/c⋆

≥B/c⋆−NLφ2/c
⋆−1−NLφ1 ln(2B/c⋆ + φ4)/c

⋆

=B/c⋆ − φ3 − 1− ln(2B/c⋆ + φ4)φ1φ3/φ2

Proof of Theorem 1: According to Lemmas 1 and 2, we get
that the α-approximate regret of our algorithm satisfies

RA1
α (B) ≤

∑τ⋆(B)
t=1 u[qi](P⋆)− E[

∑τ(B)
t=1 u[qi](Pt)]

≤ (B+1)u⋆

c⋆ − τ(B)u⋆+τ(B)u⋆−E[
∑τ(B)

t=1 u[qi](Pt)]

≤ u⋆(B+1
c⋆ −τ(B))+

∑
i∈N

∑L
l=1 C

l
i(τ(B))∆max

≤ u⋆(B+1
c⋆ −( B

c⋆ − φ3 − 1− φ1φ3

φ2
ln( 2Bc⋆ + φ4))

+NL∆max(φ1 ln(
2B
c⋆ + φ4)+φ2)

= (NL∆maxφ1+ u⋆φ1φ3/φ2)(ln(
2B
c⋆ +φ4))+φ5

= O(NLK3 lnB).

Proof of Theorem 2: The proof is similar to that of Theorem
1. When the quality and cost distributions are known in
advance, we can get the α-optimal solution P⋆ by selecting
the workers with high ratios of marginal weighted quality and
cost in each round. We also let Cl

i(t), τ(B) and I li(t) denote
the counters, stopping round, and the indicator. In order to
prove that Cl

i(t) is bounded, we get

Cl
i(τ)≤λ+

τ∑
t=1

I{u[r̂ l
i (t)](Pt+1)≥u[r̂ l

i (t)](P⋆), Cl
i(t)≥λ}

≤ λ+
τ∑

t=1

t∑
ns(1)=λ

· · ·
t∑

ns(K)=λ

t∑
ns⋆(1)=1

· · ·
t∑

ns⋆(K)=1

I
{∑K

i=1 ξ
l
i(t+1) · r̂ l

s(i)(t) ≥
∑K

i=1 ξ
l
i(⋆) · r̂ l

s⋆(i)(t)
}
. (32)

where ξli(t+1)≤
∑

j∈Ml
i
wj ≤1 and ξli(⋆)≤1 have the same

meanings as before. Here, we use rli to denote the ratio of
quality and cost in which all parameters are known, i.e., rli=
f l
iqi/εi where f l

i = |Ml
i|/f(|Ml

i|). Also, the notation r l
i (t)=

f l
iqi(t−1)/εi(t−1) means the average ratio of quality and

cost for pli up to round t. After letting θt,i=fmax(εminQt,i+
Ct,i)/ε

2
min, we get that at least one of the three cases, which

are similar to Eq. (24), Eq. (25) and Eq. (26), must hold. Now,
we focus on the probability of the following case:

P
{
r l
s⋆(i)(t)≤rls⋆(i)−θt,s⋆(i)

}
= P

{
f l
s⋆(i) ·

qs⋆(i)(t)

εs⋆(i)(t)
≤f l

s⋆(i) ·
qs⋆(i)

εs⋆(i)
−θt,s⋆(i)

}
. (33)

Actually, the event in Eq. (33) holds only when at least one
of the following events must be true:

qs⋆(i)(t) ≤ qs⋆(i) −Qt,s⋆(i); (34)
εs⋆(i)(t) ≥ εs⋆(i) + Ct,s⋆(i). (35)

We can prove this claim by the counter-evidence. That is,
if both Eq. (34) and Eq. (35) are false, we have

f l
s⋆(i) ·

(
qs⋆(i)

εs⋆(i)
− qs⋆(i)(t)

εs⋆(i)(t)

)
= f l

s⋆(i) ·
(qs⋆(i)−qs⋆(i)(t))εs⋆(i)−qs⋆(i)·(εs⋆(i)−εs⋆(i)(t))

εs⋆(i)·εs⋆(i)(t)

< f l
s⋆(i) · (

Qt,s⋆(i)

εs⋆(i)(t)
+

qs⋆(i)Ct,s⋆(i)

εs⋆(i)εs⋆(i)(t)
)

≤ fmax · εminQt,s⋆(i)+Ct,s⋆(i)

ε2min
= θt,s⋆(i).

According to the previous proof, we know P{Eq. (34)} ≤
t−2(K+1) and P{Eq. (35)}≤ t−2(K+1). We continue Eq. (33)
and have P{Eq. (33)}≤2t−2(K+1). Next, we analyze∑K

i=1 ξ
l
i(⋆)r

l
s⋆(i) <

∑K
i=1 ξ

l
i(t+1)(rls(i) + 2θt,s(i)).

We choose λ to make the above inequality false, i.e.,
K∑
i=1

ξli(⋆)r
l
s⋆(i)−

K∑
i=1

ξli(t+1)rls(i)−2
K∑
i=1

ξli(t+1)θt,s(i)

≥ ∆r−2Kfmax

εmin

√
(K+1) ln(NMτ(B))

λ|M|min
+

√
(K+1) ln τ(B)

λ

ε2min

≥ ∆r−2Kfmax
(εmin+1)

√
(K+1) ln(NMτ(B))

λ

ε2min
≥ 0.

Thus, we choose

λ ≥ (K+1) ln(NMτ(B))
(

2Kfmax(εmin+1)
∆rminε2min

)2

,

such that Eq. (36) is impossible. Let’s continue Eq. (32):

Cl
i(τ)≤(K+1) ln(NMτ(B))

(
2Kfmax(εmin+1)

∆rminε2min

)2

+1 +
∑τ

t=1 t
2K2K(2t−2(K+1))

≤(K+1) ln(NMτ(B))
(

2Kfmax(εmin+1)
∆rminε2min

)2

+1+ 2Kπ2

3

=φ6 ln τ(B) + φ6 ln(NM) +1+2Kπ2/3.

Similarly, we have ln τ(B) ≤ Kcminτ(B)/(2NLφ6) +
ln(2NLφ6/(Kcmin)−1. Then, we get the bound of τ(B),

τ(B)≤τ⋆(B)+ NL
Kcmin

E[Cl
i(τ(B))]

≤B/c⋆+τ(B)/2+φ7≤2B/c⋆+2φ7,

and get the lower bound as follows,
τ(B)≥(B−NLE[Cl

i(τ(B))])/c⋆ − 1

≥ B
c⋆ − 1− NL(1+ 2Kπ2

3 )

c⋆ − NLφ6 ln(NM( 2B
c⋆

+2φ7))

c⋆ .

Finally, we prove the expected regret of Alg. 2 as follows:

RA2
α (B) ≤

∑τ⋆(B)
t=1 u[rli]

(P⋆)− E[
∑τ(B)

t=1 u[rli]
(Pt)]

≤u⋆(B+1
c⋆ −τ(B))+

∑
i∈N

∑L
l=1C

l
i(τ(B))∆rmax

≤(NLφ6)(
u⋆

c⋆ +∆rmax) ln(NM( 2Bc⋆ +2φ7))+φ8

= O(NLK3 ln(NMB)).
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