

Unknown Worker Recruitment with Budget and Covering Constraints for Mobile Crowdsensing

Guoju Gao¹, Jie Wu², Zhaoyang Yan³, Mingjun Xiao¹, and Guoliang Chen¹ ¹University of Science and Technology of China ²Temple University, ³Shandong University

Background

- Mobile Crowdsensing
 - Crowd workers are coordinated to perform some sensing tasks over urban environments through their smartphones.

- Typical Applications
 - Collecting traffic information
 - Monitoring noise level
 - Measuring climate, etc

Related Work

Task Assignment

Objectives: maximizing coverage, maximizing qualities, etc.

- Constraints: fairness, deadline, acceptance ratio, budget, etc.
- \circ Models: offline \rightarrow online, competition-based, probabilistic, etc.
- Worker Recruitment (our focus)
 - Deterministic: users' qualities are known in advance.
 - Non-deterministic: unknown qualities in prior (learning)
 - Limited budget
 - Covering constraint
- Data Aggregation
 - Incentive mechanism, privacy-aware, etc.

Crowdsensing Model

- N crowd workers: {1,...,i,...,N}
- M sensing tasks: {1,...,j,...,M}
- Sensing cost: c_{i,j} & budget: B
- Sensing qualities $x_{i,j,t}$:

an unknown independent and identically distribution with an unknown expectation $q_{i,j}$

- $x_{i,j,t} = 0$ means worker i does not perform task j in round t
- $x_{i,j,t}$ is revealed only after i completed task j in round t
- One worker only can perform one task in each round

Optimization Problem

Objective: maximize the total expected qualities under the budget and covering (i.e., all tasks must be covered in each round) constraints by adopting reinforcement learning

Formalization:

 $M \epsilon$

$$\begin{split} Maximize : & \mathbb{E}\Big[\sum_{t=1}^{\sum}\sum_{i\in\mathcal{N}}\sum_{j\in\mathcal{M}}\pi_{i,j,t}\cdot x_{i,j,t}\Big] \\ Subject to : & \sum_{t=1}^{T}C_t = \sum_{t=1}^{T}\sum_{i\in\mathcal{N}}\sum_{j\in\mathcal{M}}\pi_{i,j,t}\cdot c_{i,j} \leq B \\ & \sum_{i\in\mathcal{N}}\sum_{j\in\mathcal{M}}\pi_{i,j,t} = M \text{ for } \forall t \geq 1 \\ & \sum_{i\in\mathcal{N}}\pi_{i,j,t} = 1, \sum_{j\in\mathcal{M}}\pi_{i,j,t} \leq 1 \text{ for } \forall t \geq 1 \\ & \text{ one-to-one constraint} \\ & \pi_{i,j,t} \in \{0,1\} \text{ for } \forall i \in \mathcal{N}, \ j \in \mathcal{M}, \ t \geq 1 \end{split}$$

Basic Concepts

- Multi-armed bandits (reinforcement learning):
 - Exploitation (select the best arm so far)
 - Exploration (try others to discover the potentially best arm)
 - Upper confidence bound (UCB) strategy
- Bipartite matching:
 - Maximum weighted bipartite matching
 - Kuhn-Munkres algorithm (i.e., Hungary algorithm)
- * A combination of the multi-armed bandits and maximum weighted bipartite matching (Our method: UCB strategy + Hungary algorithm)

Homogeneous Cost

- Homogeneous cost: $c_{i,j} = c$ for $\forall i \in N$ and $\forall j \in M$.
- Overview:
 - The cost in each round is determined, i.e., $c \times M$
 - The stopping round is certain, i.e., $\lfloor B/(c \times M) \rfloor$
 - Initial phases: test the qualities of each worker-task pair
 - o Later phases: how to select M worker-task pairs in each round ?
 - UCB-based index (quality) for each work-task pair
 - conducting maximum bipartite matching algorithm

Homogeneous Cost

- UCB-based index (quality) $\widehat{x}_{i,j}(t) = \overline{x}_{i,j}(t) + \sqrt{\frac{(M+1)\ln t}{n_{i,j}(t)}}.$
- $n_{i,j}(t)$: the number of worker i performs task j until round t
- $\overline{x}_{i,j}(t)$: the average sampling quality $\overline{x}_{i,j}(t) = \begin{cases} \frac{\overline{x}_{i,j}(t-1) \cdot n_{i,j}(t-1) + x_{i,j,t}}{n_{i,j}(t-1) + 1}; & (i,j) \in \Phi_t, \\ \overline{x}_{i,j}(t-1); & (i,j) \notin \Phi_t. \end{cases}$
- Maximum bipartite matching: $\hat{x}_{i,j}(t)$ is the weights of edges
- Update the values of selected number and average quality.

Homogeneous Cost

8:

9:

10:

12:

13:

Detailed Algorithm:

Algorithm 1 Recruitment Algorithm with Homogeneous Cost **Require:** $\mathcal{N}, \mathcal{M}, B$, and $c_{i,j} = c$ for $\forall i \in \mathcal{N}, \forall j \in \mathcal{M}$ **Ensure:** $\Phi_t = \{(i, j) | \pi_{i,j,t} = 1, \forall i \in \mathcal{N}, \forall j \in \mathcal{M}\}$ for $\forall t \ge 1$. 1: Initialization: $T = \lfloor \frac{B}{cM} \rfloor$, t = 0, Q(t) = 0, $n_{i,j}(t) = 0$ and 11: $\overline{x}_{i,j}(t) = 0$ for $\forall i \in \mathcal{N}$ and $\forall j \in \mathcal{M}$;

2: Platform builds the bipartite graph $\mathcal{G} = \{\mathcal{N} \cup \mathcal{M}, \mathcal{E}, \widehat{\mathcal{X}}\},\$ where $\widehat{x}_{i,j}(t) = \overline{x}_{i,j} + \sqrt{\frac{(M+1)\ln t}{n_{i,j}(t)}} \in \widehat{\mathcal{X}}$ is initialized to 0;

3: while
$$t \leq T$$
 do

- if $n_{i,i}(t) = 0$ for $\forall (i, j) \in \mathcal{E}$ then 4:
- // The platform explores the qualities of workers; 5: $t \Leftarrow t + 1$: 6:
- Obtain the matching Φ_t including (i, j) based on \mathcal{G} 7: in terms of weight value $\widehat{x}_{i,j}(t) \in \widehat{\mathcal{X}}$;

Output the qualities $x_{i,i,t}$ for $\forall (i,j) \in \Phi_t$; Update the two matrixes $(n_{i,j}(t))_{N \times M} = 0$ and $(\overline{x}_{i,i}(t))_{N \times M} = 0$ according to Eqs. (6) and (7); $Q(t) = Q(t-1) + \sum_{(i,j) \in \Phi_t} x_{i,j,t};$ end if

 $t \Leftarrow t + 1$;

Conduct the maximum weight matching algorithm [7, 9] in terms of the weight $\hat{x}_{i,i}(t)$, and output Φ_t ;

- Obtain the qualities $x_{i,j,t}$ for $\forall (i,j) \in \Phi_t$; 14:
- Update the two matrixes $(n_{i,i}(t))_{N \times M} = 0$ and 15: $(\overline{x}_{i,j}(t))_{N \times M} = 0$ according to Eqs. (6) and (7);

16:
$$Q(t) = Q(t-1) + \sum_{(i,j) \in \Phi_t} x_{i,j,t};$$

17: end while

18: **Output**: Φ_t for $t \in [1, T]$, and Q(T);

Performance Bound

Theorem: the regret R(B) satisfies (φ_1, φ_2 are constants) $R(B) \le \varphi_1 \ln(\frac{B}{cM}) + \varphi_2$

Definition of regret:

the difference of total achieved qualities between the optimal matching and the matching of our algorithm in each round

Applying Chernoff-Hoeffding bound theorem ^[1]

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002.

Heterogeneous Cost

- Heterogeneous cost: the values of $c_{i,j}$ are different.
- The total cost in each round and stopping rounds are uncertain.
- Difference:
 - The edges in the bipartite graph contain not only the weight (i.e., the unknown quality) but also the cost
 - A modified UCB-based quality: $\widetilde{x}_{i,j}(t) = \overline{x}_{i,j}(t) + \sqrt{\frac{\alpha \ln t}{n_{i,j}(t)}}$
 - α is a constant (will be evaluated in the simulations)
 - The selection criterion changes from $\widehat{x}_{i,j}(t)$ (homogeneous case) to $\underline{\widetilde{x}_{i,j}(t)}_{c_{i,j}}$ (heterogeneous case)

Heterogeneous Cost

Detailed Algorithm:

(similar to the procedures of the homogeneous case)

Algorithm 2 Recruitment Algorithm with Heterogeneous Cost **Require:** \mathcal{N} , \mathcal{M} , B, α , and $c_{i,j}$ for $\forall i \in \mathcal{N}$, $\forall j \in \mathcal{M}$

Ensure: $\Phi_t = \{(i, j) | \pi_{i, j, t} = 1, \forall i \in \mathcal{N}, \forall j \in \mathcal{M}\}$ for $\forall t \ge 1$.

- 1: Initialization: t = 0, $B_t = B$, Q(t) = 0, $n_{i,j}(t) = 0$ and $\overline{x}_{i,j}(t) = 0$ for $\forall i \in \mathcal{N}, \forall j \in \mathcal{M};$
- 2: Platform builds the bipartite graph $\mathcal{G} = \{ \mathcal{N} \cup \mathcal{M}, \mathcal{E}, \tilde{\mathcal{X}}, \mathcal{C} \}$, where $\tilde{x}_{i,j}(t) = \overline{x}_{i,j}(t) + \sqrt{\frac{\alpha \ln t}{n_{i,j}(t)}} \in \tilde{\mathcal{X}}$ is initialized to 0;
- 3: Platform obtains the matching with minimum cost (i.e., Φ_{min}), so that C_{min} = ∑<sub>(i,j)∈Φ_{min} c_{i,j} ≤ C_k for ∀Φ_k∈Π;
 4: while B_t ≥ C_{min} do
 </sub>
- 5: **if** $n_{i,j}(t) = 0$ for $\forall (i,j) \in \mathcal{E}$ then
- $6: t \leftarrow t+1;$
- 7: Obtain the matching (i.e., Φ_t) including (i, j) based on \mathcal{G} in terms of the weight $\tilde{x}_{i,j}(t) \in \tilde{\mathcal{X}}$;
- 8: Observe the qualities $x_{i,j,t}$ for $\forall (i,j) \in \Phi_t$;

- 9: Update the two matrixes $(n_{i,j}(t))_{N \times M} = 0$ and $(\overline{x}_{i,j}(t))_{N \times M} = 0$ according to Eqs. (6) and (7);
- 10: $Q(t) = Q(t-1) + \sum_{(i,j) \in \Phi_t} x_{i,j,t};$

11:
$$B_t = B_{t-1} - \sum_{(i,j) \in \Phi_t} c_{i,j};$$

12: end if

13:
$$t \leftarrow t + 1;$$

- 14: Conduct the maximum weight matching algorithm [7, 9] in terms of the criterion $\frac{x_{i,j}(t)}{c_{i,j}}$, and output Φ_t ;
- 15: Obtain the qualities $x_{i,j,t}$ for $\forall (i,j) \in \Phi_t$;
- 16: Update the two matrixes $(n_{i,j}(t))_{N \times M} = 0$ and $(\overline{x}_{i,j}(t))_{N \times M} = 0$ according to Eqs. (6) and (7);

17:
$$Q(t) = Q(t-1) + \sum_{(i,j)\in\Phi_t} x_{i,j,t};$$

8:
$$B_t = B_{t-1} - \sum_{(i,j) \in \Phi_t} c_{i,j}$$

19: end while

20: **Output**: Φ_t for $t \ge 1$, and Q(t);

Experiment

- Simulation settings
 - $\circ x_{i,j,t}$ is randomly sampled from a Gaussian distribution
 - \circ Gaussian distribution is truncated to the interval (0,1]
 - The mean $q_{i,j}$ and variance of Gaussian distribution:
 - uniform distribution (0,1)
 - Cost $c_{i,j}$:
 - $c_{i,j} = 1$ in the homogeneous case
 - uniform distribution (0,5) in the heterogeneous case

Parameter name	default	range
the number of tasks/workers, $N = M$	20	10 - 50
the budget, B	10000	500 - 100000
the recruitment cost, $c_{i,j}$	1	0 - 5
the parameter, α	1	0.5 - 10
the qualities of workers, $x_{i,j,t}$	Gaussian	0 - 1
the mean of Gaussian, $q_{i,j}$	uniform	0 - 1

Experiment

- Compared algorithms:
 - The optimal algorithm (just for homogeneous case):
 - the expected mean $q_{i,j}$ is assumed to be known in advance
 - always output the maximum matching based on $q_{i,j}$
 - The greedy algorithm (applied for both cases):
 - select the worker-task pairs locally based on $\widehat{x}_{i,j}(t)$

Metrics:

- The accumulative qualities
- The average regret (the total regret divided by log(B))
- The consumed time

Experiment Results

Homogeneous case

- Our algorithm outperforms the greedy algorithm;
- The total achieved qualities are proportional to the budget;

Experiment Results

Homogeneous case

- The average regret will increase with the increase in budget;
- The matching algorithm included in our algorithm leads to the relatively high computation overhead.

Experiment Results

Heterogeneous case

- The total achieved qualities are inversely proportional to the number of tasks;
- The consumed time is proportional to the budget and the number of tasks;

Summary

- Unknown worker recruitment problem is more practical
 - especially with budget and covering constraints
- The combination of learning and matching is difficult
 - extending the upper confidence bound in multi-armed bandits
 - applying the maximum weighted bipartite matching
- Experiments
 - homogeneous performance with budget and the number of tasks
 - $\circ\,$ heterogeneous performance with the values of budget, the number of tasks, and the parameter $\alpha\,$

Thank you Q & A

