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Abstract—Mobile crowdsensing, through which a requester
can recruit a group of crowd workers via a platform and
coordinate them to perform some sensing tasks, has attracted
lots of attention recently. However, most of the existing mobile
crowdsensing systems assume that the qualities of workers are
known in advance. Based on this assumption, they study the task
assignment and worker recruitment problems. Unfortunately, the
qualities of workers are generally unknown in reality, so the
platform must find the tradeoff between exploring and exploiting
the qualities by using reinforcement learning. At the same time,
all sensing tasks are required to be covered in each round
(covering constraint), and the requester usually has a limited
budget (budget constraint). In this paper, we study how to recruit
unknown workers under the budget and covering constraints
so that the total expected achieved qualities can be maximized.
To this end, we model the problem as a combination of a
maximum weight matching problem and a special multi-armed
bandit problem. We first consider that the recruitment costs of
workers are homogeneous and propose a recruitment algorithm
with a performance guarantee. Then, we study the heterogenous
case and devise a heuristic algorithm. Finally, we demonstrate the
performances of our algorithms through extensive simulations.

Index Terms—Mobile crowdsensing, multi-armed bandits,
maximum weight matching, budget and covering constraints.

I. INTRODUCTION

Recent years have witnessed the increasing proliferation and
popularity of smartphones in day-to-day life. These smart-
phones with powerful sensing, computation, communication
and storage abilities can be considered as powerful mobile
sensors. In order to fully utilize the resources of these smart-
phones, a new paradigm called mobile crowdwsensing [12, 17]
has attracted lots of attention. In mobile crowdsensing, a
requester can coordinate a group of mobile users carrying
smartphones to perform some large-scale sensing tasks that
one single user cannot deal with. Due to the unparalleled
advantages, lots of crowdsensing-based applications such as
traffic information collection, noise pollution collection, water
pollution monitoring, urban WiFi characterization, and so on,
have been fully developed [4, 8, 20, 22].

A typical mobile crowdsensing system mainly consists of
three parties: a platform, requesters and crowd workers. After
generating some sensing tasks, a requester would submit these
tasks and his budget to the platform. Here, these sensing
tasks will be performed in multiple rounds while the total
recruitment cost cannot exceed the given budget (i.e., budget

constraint). In each round, all tasks are required to be complet-
ed (i.e., covering constraint). For example, the requester wants
to collect the traffic state in some intersections of an urban
city every 10 minutes from 7:00 a.m. to 9:00 p.m., so that he
can draw the real-time traffic map of this city. On the other
hand, there are lots of registered crowd workers distributed
in the city. Each worker can perform each task with different
qualities and costs. A natural question is how to recruit suitable
workers in each round so that the total achieved qualities can
be maximized under the budget and covering constraints.

Most existing works [10, 20] assume that the qualities of
each worker performing each task are known in advance,
and then they mainly study the quality maximization or cost
minimization problems under various constraints. To solve
this type of optimization problems, they generally model the
worker recruitment problem as a special set cover problem
with various constraints. However, in real life, the qualities
of workers conducting tasks are unknown in prior. In this
situation, how to recruit suitable workers in each round to
perform these tasks is quite challenging. To this end, we adopt
the famous reinforcement learning technique, i.e., multi-armed
bandits [3, 23], during the worker recruitment process.

In fact, only a few literatures [12, 17, 21] on mobile crowd-
sensing involve multi-armed bandit algorithms. Thereinto, [12]
proposes a context-aware hierarchical online learning algo-
rithm for performance maximization in mobile crowdsensing,
where a worker’s performance includes its acceptance rate and
quality; [17] studies how to maximize the task completion
in the face of uncertainty, while task arrivals are dynamic
and worker reliability is unknown; [21] investigates how to
select most informative contributors with unknown costs for
budgeted crowdsensing, and then model the problem as a
budgeted multi-armed bandit problem based on stochastic
assumptions. However, the existing work [12, 17, 21] either
neglects the budget constraint or considers that the crowdsens-
ing only includes one sensing task. Different from the existing
researches, we consider that mobile crowdsensing has multiple
tasks and all tasks must be covered in each round. We study
how to recruit suitable workers with unknown qualities in each
round so that the total achieved qualities can be maximized,
under the budget and covering constraints.

We summarize three main challenges as follows. First, it is
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Fig. 1. Illustration of the main procedures in the mobile crowdsensing.

very hard to find the tradeoff between exploring and exploiting
the qualities of workers during the recruitment process. Espe-
cially, our problem with the budget and covering constraints,
which is actually a special combinational multi-armed bandit
problem, differs from the general multi-armed bandit problem.
Second, due to the covering constraint, our unknown worker
recruitment problem can be modeled as a combination of
the maximum weight matching problem and the multi-armed
bandit problem. This makes it more complicated to apply the
bandit algorithm in our problem directly. Third, in the mapped
maximum weight matching problem, each edge (i.e., worker-
task pair) involves not only the quality values but also the
recruitment cost values. This also makes our problem different
from the trivial maximum weight matching problem.

In this paper, we introduce and extend the Upper Confidence
Bound (UCB) adopted in multi-armed bandit algorithms to
estimate the qualities of workers. We first study a simple case
where the recruitment costs of workers are homogeneous. For
this scenario, the total number of rounds operated is deter-
mined, which means the budget constraint is removed. After
combining the multi-armed bandits with maximum weight
bipartite matching, we apply the maximum weight matching
algorithm to maximize the total UCB-based qualities in each
round. For the heterogeneous case where the costs of workers
are different, we also model our problem as a combination of
multi-armed bandits and maximum weight matching. Since
the total recruitment costs in each round are unfixed and
the workers here involve quality and cost simultaneously, the
selection criterion in the heterogeneous case becomes the ratio
of UCB-based quality and cost. More specifically, our major
contributions are summarized as follows:

• We consider a more realistic mobile crowdsensing sce-
nario in which the platform has no knowledge about the
qualities of workers in advance, and then propose an
unknown worker recruitment problem with the budget
and covering constraints.

• We first study the homogeneous case where the re-
cruitment costs of workers are uniform. By combining
multi-armed bandits with maximum weight matching, we
propose an efficient worker recruitment algorithm. We
also analyze the worst regret guarantee in this case.

• We then investigate the heterogeneous case in which
the workers involve the quality and cost simultaneously.
Here, we apply and extend the maximum weight match-

ing algorithm by using the new selection criterion in
terms of the combination of UCB-based quality and cost.

• We conduct extensive simulations to evaluate the signif-
icant performances of the proposed algorithms.

The remainder of the paper is organized as follows. We
first describe the crowdsensing system model and introduce
the optimization problem in Section II. Then, we design two
worker recruitment algorithms for homogeneous and hetero-
geneous cases in Section III and Section IV, respectively.
In Section V, we evaluate the performances of the proposed
algorithms. After reviewing the related work in Section VI,
we conclude the paper in Section VII.

II. SYSTEM MODEL & PROBLEM

A. System Overview
Consider a typical crowdsensing system which consists of

a platform, lots of registered requesters and crowd workers,
and time is divided into a series of time slots (called “round”)
in the system. A requester first generates some crowdsensing
tasks, e.g., noise pollution information collection, traffic state
collection, etc, and then submits these tasks to the platform.
These sensing tasks are continuous (e.g., collecting traffic state
of a city from 7:00 a.m. to 9:00 p.m.) and location-related
(e.g., Points of Interest). This means that the platform needs to
continuously recruit workers to conduct the tasks for a period
of time, and the recruited workers must go to specific locations
to perform them. In fact, each worker must consume a certain
cost (time, effort, etc.) when conducting sensing tasks. Hence,
a worker can only perform one sensing task in each round. At
the same time, in order to obtain the overall sensing effect for a
requester, all sensing tasks must be conducted simultaneously
in each round. In reality, covering all sensing tasks in each
round is necessary. For instance, in order to construct the real-
time traffic map of a city, the local government always wants to
collect traffic condition in multiple locations simultaneously in
each round. Moreover, a requester usually has a limited budget
to complete the sensing task.

After receiving the sensing tasks and the limited budget
from a requester, the platform publishes the tasks to all
registered workers. Then, each worker estimates all location-
related sensing tasks, and replies to the platform with the tasks
he can complete, as well as his corresponding recruitment cost.
Note that here the qualities of each worker performing each
sensing task are unknown. Thus, the platform needs to learn
the quality values and at the same time maximize the total
achieved qualities in all rounds. The main procedures of the
crowdsensing system are shown in Fig.1.

In this paper, we concentrate on the unknown worker
recruitment problem with budget and covering constraints for
mobile crowdsensing, where the term of “unknown” means
that the platform has no knowledge about the ability (i.e.,
quality) of a worker performing a crowdsensing task. Actually,
the unknown worker recruitment problem with the budget
and covering constraints falls into the dilemma between “ex-
ploitation” and “exploration”. On the one hand, the platform
always wants to select the best set of workers to conduct



TABLE I
DESCRIPTION OF MAJOR NOTATIONS.

Variable Description
N , M the sets of workers and sensing tasks, respectively.
N , M the numbers of workers and tasks, respectively.
i, j, t the indexes for workers, tasks, and rounds (slots).
ci,j the cost of the worker i conducting the task j.
B the limited budget given by the requester.
xi,j,t the observed quality of i conducting j in round t.
qi,j the mean of the distribution {xi,j,t|t ≥ 1}.
πi,j,t πi,j,t∈{0, 1} means the recruitment decision.
(i, j) the worker-task pair.
Φ the recruitment strategy in all rounds.
Φt, Ct the recruitment strategy and total cost in round t.
E[·] the expected function.
xi,j(t) the average quality value until the t-th round.
ni,j(t) total times of i performing j until the round t.
x̂i,j(t) the UCB-based quality in homogeneous case.
x̃i,j(t) the UCB-based quality in heterogeneous case.

the tasks according to the estimated qualities so far (i.e.,
exploitation). Here, the quality values will be revealed after
workers complete the related tasks. On the other hand, in
order to seek the optimal set of workers in each round, the
platform will also recruit workers to conduct different tasks
so that it can discover the qualities totally (i.e., exploration).
Additionally, the constraints of covering all tasks in each round
make the worker recruitment problem more challenging.

In the crowdsensing system, we use t to denote the in-
dex of round, and we consider N workers and M sensing
tasks in the system, denoted as N = {1, · · · , i, · · · , N} and
M = {1, · · · , j, · · · ,M}, respectively. Furthermore, we let
ci,j denote the cost of the worker i∈N conducting the task
j ∈M. At the same time, the requester has a limited budget
to complete these sensing tasks (i.e., recruit workers), which
is denoted as B. We assume that B is enough so that it can
at least cover the initializing cost, i.e., B>

∑
i∈N

∑
j∈M ci,j .

In addition, we use a normalized nonnegative random
variable xi,j,t ∈ [0, 1] to denote the quality of the worker
i completing the task j in the t-th round. Actually, for
∀i ∈ N and ∀j ∈ M, {xi,j,1, xi,j,2, · · · , xi,j,t, · · · } follows
an unknown independent and identically distribution with
an unknown expectation qi,j . Also, xi,j,t and xi′,j′,t′ are
independent for ∀i, i′ ∈ N , ∀j, j′ ∈ M and ∀t, t′ ≥ 1. Here,
if the worker i is not recruited to conduct the task j in
round t, we have xi,j,t = 0. Else, the quality values xi,j,t

will be revealed. Actually, how to estimate the qualities of
each worker accurately and meanwhile to maximize the total
achieved qualities of all sensing tasks under the limited budget
is challenging. Especially, all sensing tasks are required to be
covered in each round, making our problem more complicated.

B. Problem
In the crowdsensing system, each sensing task must be

assigned to one and only one worker and meanwhile, each
worker can only perform no more than one task in each round.
Thus, we assume that the number of workers is larger than that
of tasks, i.e., N≥M . If N<M , we can expand the alternative

worker set N by inviting more mobile users to participate in
the crowdsensing system. When a task j ∈M is assigned to
a worker i ∈ N , we say that the task is “covered”, and we
use the worker-task pair (i, j) to describe the relationship. In
this paper, we focus on finding the optimal worker-task pairs
in each round, so that all sensing tasks can be “covered” and
the total qualities of all tasks can be maximized under a given
budget. This problem is quite challenging because the qualities
of workers are not known to the platform. Thus, the platform
must find the tradeoff between the exploration (i.e., searching
the optimal assignment in each round) and exploitation (i.e.,
utilizing the best results so far). Even though the qualities of
workers are known, the recruitment problem is still difficult.
This is because the worker recruitment problem involves the
maximum bipartite matching problems in which the edges (i.e.,
worker-task pair) include two factors: cost and quality.

For the simplicity of following descriptions, we use Φ =
{πi,j,t|i∈N , j∈M, t≥1} to denote the recruitment strategy,
in which πi,j,t=1 means that the worker i will be recruited to
perform the task j in the t-th round, and otherwise πi,j,t=0.
When πi,j,t=1, the worker i must perform the task j in the
round t, and then gets a reward ci,j . Only after the task j is
conducted, the corresponding quality in this round (i.e., xi,j,t)
can be observed by the system. Here, we use Φt to denote the
solution in the t-th round. In fact, Φt is a maximum quality
bipartite matching with cost. Due to the limited budget of a
requester, the recruitment process is finite, and we use T to
denote the total rounds. Based on this, we have Φ=∪T

t=1Φt.
Also, we let Ct =

∑
i∈N

∑
j∈M ci,j · πi,j,t denote the total

recruitment cost in the t-th round.
The objective of platform is to maximize the total expected

obtained qualities under the budget and covering constraints.
More specifically, the problem is formalized as follows:

Maximize : E
[ T∑
t=1

∑
i∈N

∑
j∈M

πi,j,t · xi,j,t

]
(1)

Subject to :
T∑

t=1
Ct=

T∑
t=1

∑
i∈N

∑
j∈M

πi,j,t · ci,j ≤ B (2)
∑
i∈N

∑
j∈M

πi,j,t = M for ∀t ≥ 1 (3)
∑
i∈N

πi,j,t = 1,
∑

j∈M
πi,j,t ≤ 1 for ∀t≥1 (4)

πi,j,t ∈ {0, 1} for ∀i ∈ N , j ∈ M, t ≥ 1 (5)

Here, Eq. (2) and Eq. (3) mean the budget constraint and
the covering constraint, respectively, while Eq. (4) indicates
that in each round each task can only be assigned to exactly
one worker, and each worker can conduct at most one task.
Furthermore, we suppose that there exists at least one feasible
solution for the optimization problem in each round. That
is, all sensing tasks can be covered in each round. This
is reasonable because we can expand the alternative worker
set N by inviting more mobile users to participate in the
crowdsensing system, until the solutions to the optimization
problem appear. Additionally, we summarize the commonly
used notations throughout the paper in Table I.



III. HOMOGENOUS COST

We first study the homogeneous case where the recruitment
cost of each worker conducting each task is uniform. In
fact, the unknown worker recruitment problem here is still
challenging because the budget and covering constraints make
the worker selection nontrivial. We first introduce the basic
solution and then present the detailed algorithm. Finally, we
analyze the performance guarantee of the proposed algorithm.

A. Basic Solution
Since one worker can only perform at most one task and

one task must be assigned to one worker (covering constraint)
in each round, the worker recruitment can be seen as a special
maximum weight bipartite matching problem in which the
qualities of workers can be considered as the weights of
edges. Note that the qualities of workers here are not known
a priori. Moreover, due to the homogeneous recruitment cost,
i.e., ci,j = c for ∀i ∈ N and ∀j ∈ M, we get that the total
recruitment cost in each round is fixed, i.e., c×M . Based
on this, the total rounds of the user recruitment problem is
constrained by ⌊ B

c×M ⌋ (budget constraint).
Then, the focus of the worker recruitment problem is how

to explore the qualities of workers accurately and at the same
time to maximize the total expected achieved qualities in
⌊ B
c×M ⌋ rounds. In order to learn the qualities of workers

effectively, we adopt the famous online reinforcement learning
technique (i.e., multi-armed bandits [16, 19]) in this paper.
However, our problem including the budget and covering
constraints differs from the general (combinatorial) multi-
armed bandits. Thus, the techniques of (combinatorial) multi-
armed bandits [3, 5] cannot be applied in our problem directly.
To this end, we will propose an effective worker recruitment
algorithm in the homogeneous case, where we adopt the Upper
Confidence Bound (UCB) to evaluate the qualities of workers.

More specifically, we model the unknown worker recruit-
ment problem as a combination of the maximum weight bi-
partite matching problem and the special combinatorial multi-
armed bandits problem. Here, the stopping round is determined
in the homogeneous case, i.e., ⌊ B

c×M ⌋. According to this,
we just study how to solve the unknown worker recruitment
problem with covering constraint in each round. Since the
number of tasks is less than that of workers, i.e., M ≤ N ,
the recruitment algorithm (i.e., a special maximum weight
matching algorithm) must output M worker-task pairs in each
round. Since our problem is actually a special maximum
weight bipartite matching problem, we use G={N∪M, E , X̂ }
to denote the bipartite graph where N and M mean the sets
of left and right vertices, respectively, E indicates the set of
edges (i.e., worker-task pairs) in the bipartite graph, and X̂
represents the weights of the corresponding edges. Here, the
weights of edges are defined as the UCB-based qualities of
workers performing tasks, which will be presented in the next
paragraph. For simplicity of following descriptions, we first
let Φt={(i, j)|πi,j,t=1} denote the set of the selected edges,
where Φt⊆E . In this paper, the terms (i, j)∈Φt and πi,j,t=1
have the same meanings.

Algorithm 1 Recruitment Algorithm with Homogeneous Cost
Require: N , M, B, and ci,j=c for ∀i∈N , ∀j∈M
Ensure: Φt = {(i, j)|πi,j,t = 1, ∀i∈N , ∀j∈M} for ∀t≥1.

1: Initialization: T = ⌊ B
cM ⌋, t=0, Q(t)=0, ni,j(t)=0 and

xi,j(t)=0 for ∀i∈N and ∀j∈M;
2: Platform builds the bipartite graph G = {N ∪M, E , X̂ },

where x̂i,j(t)=xi,j+
√

(M+1) ln t
ni,j(t)

∈ X̂ is initialized to 0;
3: while t ≤ T do
4: if ni,j(t) = 0 for ∀(i, j) ∈ E then
5: // The platform explores the qualities of workers;
6: t ⇐ t+ 1;
7: Obtain the matching Φt including (i, j) based on G

in terms of weight value x̂i,j(t)∈ X̂ ;
8: Output the qualities xi,j,t for ∀(i, j)∈Φt;
9: Update the two matrixes (ni,j(t))N×M = 0 and

(xi,j(t))N×M =0 according to Eqs. (6) and (7);
10: Q(t) = Q(t−1) +

∑
(i,j)∈Φt

xi,j,t;
11: end if
12: t ⇐ t+ 1;
13: Conduct the maximum weight matching algorithm [7,

9] in terms of the weight x̂i,j(t), and output Φt;
14: Obtain the qualities xi,j,t for ∀(i, j)∈Φt;
15: Update the two matrixes (ni,j(t))N×M = 0 and

(xi,j(t))N×M =0 according to Eqs. (6) and (7);
16: Q(t) = Q(t−1) +

∑
(i,j)∈Φt

xi,j,t;
17: end while
18: Output: Φt for t ∈ [1, T ], and Q(T );

Here, we first introduce two N×M matrixes to record the
average quality values (denoted as (xi,j(t))N×M ) and the total
times (denoted as (ni,j(t))N×M ) of each worker performing
each task until the t-rounds, respectively. After the matching
(denoted as Φt) is determined in round t, the two matrixes
will be updated as follows.

xi,j(t) =

⎧
⎨

⎩

xi,j(t−1) · ni,j(t−1)+xi,j,t

ni,j(t−1)+1
; (i, j) ∈ Φt,

xi,j(t− 1); (i, j) /∈ Φt.
(6)

ni,j(t) =

{
ni,j(t− 1) + 1; (i, j) ∈ Φt,

ni,j(t− 1); (i, j) /∈ Φt.
(7)

In order to obtain the matching result (i.e., Φt) which has
the maximum expected total qualities in each round, we first
introduce the expression of the UCB-based quality value. That
is, we use x̂i,j(t) to denote the UCB-based quality value
according to the average quality value xi,j(t), that is,

x̂i,j(t) = xi,j(t) +

√
(M + 1) ln t

ni,j(t)
. (8)

In the modeled bipartite graph G, we let the UCB-based
quality values denote the weights of edges. Based on this,
the set of weights X̂ is determined. Then, we can adopt the
maximum weight matching algorithms [7, 9] to output the
selected worker-task pairs Φt according to the bipartite G =



{N ∪M, E , X̂ }. Similar to the solution in the multi-armed
bandit problem, we first explore the qualities of each worker-
task pair in the initial stage. After that, we estimate the UCB-
based quality of each worker-task pair. Then, we focus on
selecting suitable worker-task pairs in each round. Note that
whether in the exploration stage or in the exploitation stage,
the covering constraint must be met in each round.

When determining the selected worker-task pairs Φt in
round t, the workers will perform the corresponding sensing
tasks. Then, the quality values of workers conducting the
corresponding tasks can be observed by the platform (i.e.,
xi,j,t for (i, j)∈Φt). After that, the two N×M matrixes, i.e.,
(xi,j(t))N×M and (ni,j(t))N×M , will be updated according
to Eqs. (6) and (7), respectively.

B. Detailed Algorithm
Based on the above solution, we present the detailed algo-

rithm as shown in Alg. 1. More specifically, we first initialize
the values t, T , Q(t), ni,j(t), xi,j(t) in Step 1. The platform
builds the bipartite graph G and the weights are initialized to 0
in Step 2. In Steps 4-10, the platform explores the qualities of
workers, that is, it conducts the matchings in multiple rounds
so that all worker-task pairs will be included at least one
times. The round index t, the total achieved qualities Q(t), the
two matrixes (ni,j(t))N×M and (xi,j(t))N×M will be updated
accordingly. After that, the platform focuses on the worker
recruitment problem by using the explored qualities in Steps
12-17. Here, the maximum weight matching algorithms are
adopted to select the worker-task pairs in each round. After
Φt is determined, the values of xi,j,t for ∀(i, j) ∈ Φt can
be observed, and then Q(t), (ni,j(t))N×M and (xi,j(t))N×M

will be updated accordingly. After the budget is exhausted,
i.e., t= ⌊ B

cM ⌋, the algorithm terminates and outputs the total
achieved qualities and the recruitment results in each round.

Moreover, we analyze the computation complexity of Alg. 1
here. First, the algorithm contains T =⌊ B

cM ⌋ rounds. Second,
in each round, the computation complexity is dominated by
the maximum weight matching algorithm in Steps 7 and 13,
which is denoted as O(N2M2). By combining this, we get
that the overall computation overhead is O(⌊ B

cM ⌋N2M2).

C. Performance Analysis
In this section, we analyze the performance guarantee of

Alg. 1. For the bipartite graph G = {N ∪M, E , X̂ }, we
let Π denote the set of all matchings. Here, ∀Φ ∈ Π is an
M×M matching and (i, j), a worker-task pair, is an element
of a matching Φ. Among all matchings, we first identify
the optimal matching, denoted as Φ∗. Based on the expected
means of quality distribution and the covering budget, we have

Φ∗ = argmaxΦ∈Π(
∑

(i,j)∈Φ qi,j). (9)

Note that in this paper we always let ∗ denote the corre-
sponding identification of the optimal matching. For simplicity,
we define ∆k as the total quality difference between the
optimal matching Φ∗ and one matching Φk∈Π, i.e.,

∆k =
∑

(i,j)∈Φ∗ qi,j −
∑

(i,j)∈Φk
qi,j . (10)

At the same time, we have ∆min = argminΦk∈Π ∆k and
∆max = argmaxΦk∈Π ∆k. Here, we also let k denote the
corresponding identification of a non-optimal matching.

Then, we analyze the regret of our proposed algorithm,
denoted as R(B) in which B is the limited budget. Here,
the regret means the difference of total achieved qualities
between the optimal matching and the obtained matching of
our algorithm in each round, that is,

R(B)=⌊ B
cM ⌋

∑
(i,j)∈Φ∗ qi,j−E[

∑⌊ B
cM ⌋

t=1

∑
(i,j)∈Φt

xi,j,t].(11)

We show that the proposed algorithm can achieve a
O(ln(B)) worst-case regret on average. More specifically, we
have the following theorem:

Theorem 1: The regret of the proposed algorithm is at most

R(B) ≤ ϕ1 ln(
B

cM
) + ϕ2, (12)

where

⎧
⎪⎪⎨

⎪⎪⎩

ϕ1=
4∆maxM

3(M + 1)N
∆2

min

ϕ2=MN∆max

(
1+

Mπ2

3
− 2M

( B
cM+1 )

2

)are two constants.

Before proving the worst-case regret bound, we first in-
troduce the concept of Chernoff-Hoeffding inequality in the
following lemma.

Lemma 1: Chernoff-Hoeffding bound [1]. Suppose
X1, X2, · · · , Xn are independent random variables whose
values lie in [0, 1] and whose expected value is µ, i.e.,
E[Xz|X1, · · · , Xz−1]=µ for ∀z∈ [1, n]. Let X= 1

n

∑n
z=1 Xz .

The Chernoff-Hoeffding inequality gives an exponential bound
on the probability that the value of X deviates from its mean
µ. That is:

P
{
X≥µ+θ

}
≤e−2nθ2

, and P
{
X≤µ−θ

}
≤e−2nθ2

. (13)

We here let θni,j(t),t=
√
(M+1) ln t/ni,j(t) for simplicity.

Also, we introduce Ti,j(t) as a counter after the initialization
period, which is updated as follows. In each round (e.g.,
t) after the initialization period, one of the following cases
must happen: 1) the optimal matching is played; 2) a non-
optimal matching is selected. In the former, Ti,j(t) will not
change; in the latter, we denote the non-optimal matching
as Φk. Then, there must exist one edge (i, j) ∈ Φk such
that (i, j) = argmin(i′,j′)∈Φk

ni′,j′(t). Based on this, the
corresponding value of Ti,j(t) is increased by 1. Here, if
there are multiple such edges, we arbitrarily choose one. Since
exactly one element in (Ti,j(t))N×M is increased by 1 when
a non-optimal matching is selected, the total number of non-
optimal matching is equal to the summation of the values in
(Ti,j(t))N×M . According to this, we get

∑
Φk ̸=Φ∗ Tk(t) =

∑
i∈N

∑
j∈M Ti,j(t), (14)

and further have
∑

Φk ̸=Φ∗ E[Tk(t)] =
∑

i∈N
∑

j∈M E[Ti,j(t)]. (15)

At the same time, we have Ti,j(t)≤ni,j(t) for ∀i∈N and
∀j∈M. Moreover, we let Ii,j(t) denote the indicator function



in round t where Ii,j(t)=1 means that Ti,j(t) is increased by
1, and let l denote an arbitrary positive integer. Then, we have

Ti,j(t)=
T∑

t=x+1

{
Ii,j(t)

}
≤ l+

T∑
t=x+1

{
Ii,j(t), Ti,j(t−1)≥ l

}
, (16)

where T = ⌊ B
cM ⌋ and x means the number of initialization

period. We further get x =
∑

i∈N
∑

j∈M ni,j(t) in which
all elements in (ni,j(t))N×M just change to a non-zero state.
When Ii,j(t)=1, a non-optimal matching, denoted as Φt ̸=Φ∗,
has been selected in round t. Next, we get

Ti,j(t)≤ l+
∑T

t=x+1

{∑
(i,j)∈Φ∗ x̂i,j(t−1)

≤
∑

(i,j)∈Φt
x̂i,j(t−1), Ti,j(t−1)≥ l

}
, (17)

≤ l+
T∑

t=x

{ ∑
(i,j)∈Φ∗

x̂i,j(t)≤
∑

(i,j)∈Φt+1

x̂i,j(t), Ti,j(t)≥ l
}
, (18)

in which x̂i,j(t) = xi,j(t)+θni,j(t),t. Then, we have

Ti,j(t)≤ l+
T∑

t=x

{
min

0<n∗
i1,j1

,··· ,n∗
iM ,jM

≤t

∑
(i,j)∈Φ∗

x̂i,j(n∗
i,j)

≤ max
l≤n

Φt+1
i1,j1

,··· ,nΦt+1
iM ,jM

≤t

∑
(i,j)∈Φt+1

x̂i,j(n
Φt+1

i,j )
}

(19)

≤ l +
T∑

t=1

t∑
n∗
i1,j1

=1
· · ·

t∑
n∗
iM ,jM

=1

t∑

n
Φt+1
i1,j1

=l

· · ·
t∑

n
Φt+1
iM ,jM

=l
{ ∑

(i,j)∈Φ∗
x̂i,j(n∗

i,j)≤
∑

(i,j)∈Φt+1

x̂i,j(n
Φt+1

i,j )
}
, (20)

where n∗
i1,j1 and nΦt+1

i1,j1
mean the first element in the optimal

matching Φ∗ and the matching Φt+1, respectively.
Next, according to the proof in [1, 5, 16], we conclude that

at least one of three cases must be true. The detailed expression
is similar to [1, 16], so we will not present it here. After
applying the Chernoff-Hoeffding bound stated in Lemma 1,
we find that the upper bound of the probability for one subcase
of the inequalities is less than t−2(M+1). Thus, the ultimate
upper bound for the inequalities is at most Mt−2(M+1). Note
that for l≥⌈ 4(M+1) ln(t)

(∆k(t)/M)2 ⌉, we get that one of the three cases
is false. Based on this, we have

Ti,j(t) ≤ ⌈ 4(M+1) ln t
(∆k(t)/M)2 ⌉+

T∑
t=1

t∑
n∗
i1,j1

=1
· · ·

t∑
n∗
iM ,jM

=1

t∑

n
Φt+1
i1,j1

=l

· · ·
t∑

n
Φt+1
iM ,jM

=l

(2Mt−2(M+1)) (21)

≤ ⌈ 4M2(M+1) ln t
∆2

min
⌉+M

T∑
t=1

(
2t−2

)
(22)

≤ 4M2(M+1) ln t
∆2

min
+ 1 +M π2

3 − 2M
( B
cM +1)2

(23)

Then, we can derive the regret bound as follows.

R(B) =
∑

Φk ̸=Φ

(
∆kE[Tk(⌊ B

cM ⌋)]
)

(24)

≤ ∆max
∑

Φk ̸=Φ E[Tk(⌊ B
cM ⌋)] (25)

≤ ∆max
∑

i∈N
∑

j∈M E[Ti,j(⌊ B
cM ⌋)] (26)

≤∆max

(
4M3N(M+1) ln B

cM

∆2
min

+MN(1+M π2

3 − 2M
( B
cM +1)2

)
)

(27)

Algorithm 2 Recruitment Algorithm with Heterogeneous Cost
Require: N , M, B, α, and ci,j for ∀i∈N , ∀j∈M
Ensure: Φt = {(i, j)|πi,j,t=1, ∀i∈N , ∀j∈M} for ∀t≥1.

1: Initialization: t = 0, Bt = B, Q(t) = 0, ni,j(t) = 0 and
xi,j(t)=0 for ∀i∈N , ∀j∈M;

2: Platform builds the bipartite graph G={N∪M, E , X̃ , C},
where x̃i,j(t)=xi,j(t)+

√
α ln t
ni,j(t)

∈ X̃ is initialized to 0;
3: Platform obtains the matching with minimum cost (i.e.,

Φmin), so that Cmin=
∑

(i,j)∈Φmin
ci,j≤Ck for ∀Φk∈Π;

4: while Bt ≥ Cmin do
5: if ni,j(t) = 0 for ∀(i, j) ∈ E then
6: t ⇐ t+ 1;
7: Obtain the matching (i.e., Φt) including (i, j) based

on G in terms of the weight x̃i,j(t)∈ X̃ ;
8: Observe the qualities xi,j,t for ∀(i, j)∈Φt;
9: Update the two matrixes (ni,j(t))N×M = 0 and

(xi,j(t))N×M =0 according to Eqs. (6) and (7);
10: Q(t) = Q(t−1) +

∑
(i,j)∈Φt

xi,j,t;
11: Bt = Bt−1 −

∑
(i,j)∈Φt

ci,j ;
12: end if
13: t ⇐ t+ 1;
14: Conduct the maximum weight matching algorithm [7,

9] in terms of the criterion x̃i,j(t)
ci,j

, and output Φt;
15: Obtain the qualities xi,j,t for ∀(i, j)∈Φt;
16: Update the two matrixes (ni,j(t))N×M = 0 and

(xi,j(t))N×M =0 according to Eqs. (6) and (7);
17: Q(t) = Q(t−1) +

∑
(i,j)∈Φt

xi,j,t;
18: Bt = Bt−1 −

∑
(i,j)∈Φt

ci,j ;
19: end while
20: Output: Φt for t ≥ 1, and Q(t);

The theorem holds. !

IV. HETEROGENOUS COST

In this section, we consider the general case where the
recruitment costs of workers are heterogeneous. To address
this issue, we first introduce our basic idea and then present
the algorithm in detail.

A. Basic Solution

For the homogeneous case, we model the worker recruit-
ment problem as a combination of the combinatorial multi-
armed bandit problem and the maximum weight bipartite
matching problem. In the heterogeneous case, we also use
the special maximum weight bipartite matching problem to
model our problem. The difference is that the edges in the
bipartite graph contain not only the weight (i.e., the unknown
quality) but also the cost. We let G={N∪M, E , X̃ , C} denote
the special bipartite graph, in which N (the set of user) and
M (the set of tasks) mean the set of vertices on two sides
of the bipartite graph, E = {(i, j)|i ∈ N , j ∈ M} is the set
of edges, X̃ = {x̃i,j(t)|(i, j) ∈ E} indicates the set of edge
weights, i.e., the special UCB-based quality values that will be
expressed in the following, and C={ci,j |(i, j)∈E} represents



the recruitment cost. Actually, even if the edge weights are
known in advance, the special maximum weight matching
problem is quite complicated, because it involves weight and
cost simultaneously.

To solve this problem, we refer to the solution of the
homogeneous case. More specifically, we let (xi,j(t))N×M

and (ni,j(t))N×M denote the average qualities of workers and
the selected number until the t-th round, respectively. Then,
we use x̃i,j(t)=xi,j(t)+

√
α ln t
ni,j(t)

to denote the special UCB-
based quality values where α is the empirical parameter. We
will discover the effects of the parameter α in the simulations.
Similar to the solution to the homogeneous case, we also
apply the maximum weight matching algorithm [7, 9] in the
heterogeneous case. The difference lies in that the selection
criteria is changed from x̂i,j(t) to x̃i,j(t)

ci,j
. That is, the edge

weight in the maximum weight matching problem becomes
x̃i,j(t)
ci,j

. The heterogeneous case is more challenging than the
homogeneous case because the total recruitment cost in each
round is different. This means that the total rounds are not
determined. Also, we use Φt={(i, j)|πi,j,t = 1} to denote the
solution outputted in round t. After the recruitment result (i.e.,
Φt) in each round is determined, the update of (xi,j(t))N×M

and (ni,j(t))N×M will follow Eq. (6) and Eq. (7), respectively.
Based on the presented solution, we propose a new unknown
worker recruitment algorithm for the heterogeneous case.

B. Detailed Algorithm
We introduce the detailed worker recruitment algorithm for

the heterogeneous case (i.e., Alg. 2). In Step 1, the algorith-
m initializes the values t, Bt, Q(t) and the two matrixes
(ni,j(t))N×M (xi,j(t))N×M . In Step 2, the platform builds
the bipartite graph G in which the edges involve the weights
X̂ and cost C simultaneously. The weights are denoted by the
special UCB-based quality values. That is, for x̃i,j(t) ∈ X̃ ,
we have x̃i,j(t) = xi,j(t) +

√
α ln t
ni,j(t)

. Here, the values of

X̃ are updated in each round, and they are initialized to 0.
Then, the platform first computes the matching (i.e., Φmin)
which has the minimum recruitment cost, in Step 3. When
the remaining budget Bt is less than Cmin=

∑
(i,j)∈Φmin

ci,j ,
the recruitment process will terminate, in Step 4. In Steps 5-
12, the platform focuses on exploring the qualities of workers.
More specifically, when the number of some edges is 0, the
matching Φt including these edges will be outputted in this
round. After observing the values of qualities in this round, i.e.,
xi,j,t for (i, j)∈Φt, the corresponding values in the matrixes
(ni,j(t))N×M and (xi,j(t))N×M will be updated according to
Eqs. (6) and (7), in Steps 8-9. Then, the total achieved qualities
Q(t) and the remaining budget Bt will be updated in Steps
10-11.

In Steps 13-18, the algorithm mainly exploits the obtained
qualities so that the total qualities can be maximized under the
remaining budget constraint. More specifically, the platform
will conduct the maximum weight matching algorithm [7, 9]
according to the criterion x̃i,j(t)

ci,j
=

xi,j(t)+
√

α ln t)/ni,j(t)

ci,j
in

Step 14. After getting the recruitment result Φt in this round,

TABLE II
SIMULATION SETTINGS.

Parameter name default range
the number of tasks/workers, N=M 20 10− 50
the budget, B 10000 500− 100000
the recruitment cost, ci,j 1 0− 5
the parameter, α 1 0.5− 10
the qualities of workers, xi,j,t Gaussian 0− 1
the mean of Gaussian, qi,j uniform 0− 1

the recruited workers will go to perform the corresponding
tasks. Thus, the platform can observe the relevant qualities
xi,j,t for (i, j)∈Φt in Step 15. Same as the procedure of the
exploration, the matrixes (ni,j(t))N×M and (xi,j(t))N×M will
be updated in Step 16. After that, the function value of Q(t)
and Bt will also be updated in Steps 17-18. At last, when the
remaining budget is exhausted, i.e., Bt<Cmin, the algorithm
will terminate and output the recruitment results Φt for t≥1
and the achieved total qualities Q(t) in Step 20.

In addition, we analyze the computation complexity of Alg.
2. Since the budget B is limited, the worker recruitment
process is finite. That is, the maximum recruitment round
is B

Cmin
where Φmin indicates the matching which has the

minimum cost. In each round (i.e., Bt ≥ Cmin), the com-
putational overhead is dominated by the maximum weight
matching algorithm in Steps 7 and 14, which is O(N2M2).
Therefore, the unknown recruitment algorithm will result in
O( B

Cmin
N2M2) computation complexity.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performances of the pro-
posed algorithms with extensive simulations. We conduct the
simulations on a computer with Inter(R) Core(TM) i7-8700
CPU @3.20GHz and 32GB RAM under a Windows platform.
Moreover, all simulations are implemented in Matlab.

A. Evaluation Methodology
Simulation Settings: Since the number of workers (i.e., N ) is

required to be not less than that of sensing tasks (i.e., M ), we
let N=M for simplicity. Moreover, the value of N is selected
from {10, 20, 30, 40, 50}. Then, we set the parameters of each
worker-task pair (i, j) for i∈N and j∈M. We let the quality
of each worker-task pair (i.e., xi,j,t) be randomly sampled
from a Gaussian distribution. Here, the Gaussian distribution
is truncated to the interval (0, 1]. Moreover, the expected
mean qi,j and the variance of the Gaussian distribution are
randomly sampled from the uniform distribution (0, 1). Note
that the expected mean qi,j needs to be recorded to calculate
the optimal recruitment solutions in the homogeneous case.
Furthermore, we let the recruitment cost of each worker
conducting each task (i.e., ci,j) be randomly sampled from the
uniform distribution on (0, 5). In the homogeneous case, the
values of all recruitment cost are set as 1, i.e., ci,j=1 for i∈N
and j∈M. Also, we select the requester’s budget B from the
range [500, 105]. The parameter α is selected from the set
{0.5, 1, 2, 5, 10}. The default and range for some parameters
are displayed in Table II.

Compared Algorithms: In order to compare our proposed
worker recruitment algorithms with others, we design a few
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compared algorithms. Since our proposed algorithms are suit-
able for the homogeneous and heterogeneous cases, respec-
tively, we divide the compared algorithms into two parts. First,
for the homogeneous scenario where ci,j =1, we first design
an optimal algorithm, called opt, in which the expected mean
qi,j is assumed to be known in advance. Thus, opt always
outputs the worker-task pairs whose total expected mean qi,j is
maximum based on the maximum weight matching algorithm
in each round. In addition, we also devise a greedy algorithm
which always selects the worker-task pairs with the maximum
UCB-based qualities (i.e., x̂i,j(t)) in turn, until the covering
constraint is satisfied. Second, for the heterogeneous scenario,
since the worker-task pair involves not only the qualities but
also the recruitment costs, the opt algorithm designed above
cannot be applied here. We evaluate the performances of Alg.
2 by controlling the parameter α.

On the other hand, we track three performance metrics in
the evaluations: the accumulative qualities, the average regret
and the consumed time. The accumulative qualities mean the
total achieved qualities (i.e., Q(t) in the algorithm) when the
budget is exhausted. The average regret is the value of the
total regret divided by the value log(B) where B means the
budget. Here, since there exists no optimal solution in the
heterogeneous case, the metric of average regret can only be
adopted in the homogeneous case.

0 2 4 6 8 10
Budget 104

4

5

6

7

8

9

To
ta

l a
ch

ie
ve

d 
qu

al
iti

es
 (l

og
(Q

))

Alg. 2 (alpha = 0.5)
Alg. 2 (alpha = 1)
Alg. 2 (alpha = 2)
Alg. 2 (alpha = 5)
Alg. 2 (alpha = 10)

(a) Total quality vs. Budget

10 20 30 40 50
Number of tasks

0

200

400

600

800

1000

To
ta

l a
ch

ie
ve

d 
qu

al
iti

es

Alg. 2 (alpha = 0.5)
Alg. 2 (alpha = 1)
Alg. 2 (alpha = 2)
Alg. 2 (alpha = 5)
Alg. 2 (alpha = 10)

(b) Total quality vs. Num. of Tasks
Fig. 4. Performance on total achieved qualities (heterogenous case).

B. Evaluation Results
First, we display the evaluation results in the homoge-

neous settings. We evaluate the performances of accumulative
qualities in the homogeneous case (i.e., Alg. 1), and show
the simulation results in Fig. 2. We see that our algorithm
outperforms the greedy algorithm at any time. When the
budget increases, the total achieved qualities in all algorithms
will increase accordingly, as shown in Fig. 2(a). Also, we
validate the performances by changing the number of sensing
tasks, and further get that our algorithm is more effective than
greedy. When the number of tasks increases and the budget is
fixed (104 here), the total qualities overall show a downward
trend in Fig. 2(b). This is because that the exploration phase
will cost a lot when the number of tasks increases.

Furthermore, we evaluate the metric of average regret in
the homogeneous case and present the results in Fig. 3(a).
Since this metric is based on the comparison between the
optimal algorithm and other algorithms, the performance of
opt is not shown here. We then find that our algorithm has
less average regret than the greedy algorithm, and when the
budget rises, the average regret of all algorithms will increase.
Additionally, we present the performances of Alg. 1 in terms
of computation overhead, as shown in Fig. 3(b). The maximum
weight matching algorithm included in our algorithm leads to
the relatively high computation overhead. These observations
exactly validate our theoretical analysis results.

Second, we demonstrate the simulation results in the het-
erogeneous settings. When the budget and the number of tasks
change, we show the simulation results in Fig. 4. We evaluate
our algorithm by controlling the parameter α in the UCB-
based quality (i.e., x̃i,j(t)=xi,j(t)+

√
α ln t
ni,j(t)

). We get that the
total achieved qualities have slight discrepancy in terms of α.
In addition, we also present the total rounds and the consumed
time in the heterogeneous case in Fig. 5. The total rounds of
our algorithm under different values of α are almost the same.
Here, the consumed time of Alg. 1 is less than that of Alg. 2.
This is because the average cost in the heterogenous setting is
larger than 1 in the homogeneous setting. These observations
still remain consistent with our theoretical analysis results.

VI. RELATED WORK

In this paper, we study the unknown worker recruitment
problem with budget and covering constraints for mobile
crowdsensing. So far, there have been lots of researches on
the worker recruitment problem in crowdsensing, such as
[6, 10, 11, 18, 20, 21]. However, most of the existing works
assume that the qualities of workers are known in advance, and
then focus on the quality maximization or cost minimization
problems under various constraints. To solve this type of
optimization problems, they generally model the worker re-
cruitment problem as a special set cover problem with various
constraints. Unfortunately, the qualities of workers conducting
tasks are generally unknown in real life. Thus, how to solve
this unknown worker recruitment problem is more practical.

In fact, only a few researches [12, 13, 17, 21] consider that
the qualities of workers are unknown in mobile crowdsensing.
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However, they either neglect the budget/covering constraints or
consider that the crowdsensing only includes one sensing task.
Different from the existing works, we consider that crowdsens-
ing has multiple tasks and all tasks must be covered in each
round. We study how to recruit suitable workers with unknown
qualities in each round so that the total achieved qualities
can be maximized, under the budget and covering constraints.
We model our problem as a combination of maximum weight
matching and multi-armed bandits. The algorithms for multi-
armed bandit [1, 2, 14–16, 19, 23] cannot be applied in our
problem directly due to the budget and covering constraints.

Actually, the most related works are [3, 5], in which the
concept of combinatorial multi-armed bandit is proposed. The
authors in [3] design an algorithm that achieves O(log n)
distribution-dependent regret where n is the number of rounds
played, based on an offline (α,β)-approximation oracle. The
authors in [5] propose an algorithm, which can achieve regret
that grows logarithmically with time and polynomially in the
number of unknown variables. This algorithm in [5] only
requires linear storage and polynomial computation. Never-
theless, both of them ignore the budget constraints.

VII. CONCLUSION
In this paper, we study the unknown worker recruitment

problem under budget and covering constraints for mobile
crowdsensing. We first consider a homogeneous case where
the recruitment costs of workers are uniform. By modeling
our homogeneous problem as a combination of a multi-armed
bandit and a special maximum weight matching, we propose
an efficient worker recruitment algorithm which can achieve
O(ln( B

cM )) regret where B, c and M mean the budget,
uniform cost, and the number of tasks. Second, we focus
on the heterogeneous case in which the recruitment costs of
worker are different. We also use a special maximum weight
matching problem to describe our heterogenous problem. By
replacing the UCB-based qualities in the homogeneous case
with the ratio of the special UCB-based qualities and the
cost, we devise a new worker recruitment algorithm. At last,
extensive simulations are conducted to verify the significant
performances of the proposed algorithms.

ACKNOWLEDGMENTS
This research was supported by the National Natural Sci-

ence Foundation of China (NSFC) (Grant No. 61872330,
61572457, 61379132, U1709217, 61303206, 61572342,
61502261), NSF grants CNS 1824440, CNS 1828363, CNS
1757533, CNS 1618398, CNS 1651947, CNS 1564128, the

NSF of Jiangsu Province in China (Grant No. BK20191194,
BK20131174, BK2009150), and Anhui Initiative in Quantum
Information Technologies (Grant No. AHY150300). Addition-
ally, the support provided by China Scholarship Council (CSC)
during a visit of ‘Guoju Gao’ to Temple University (Grant CSC
No. 201806340014) is acknowledged.

REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the

multiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002.
[2] K. Cai, X. Liu, Y.-Z. J. Chen, and J. C. Lui. An online learning approach

to network application optimization with guarantee. In IEEE INFOCOM,
2018.

[3] W. Chen, Y. Wang, Y. Yuan, and Q. Wang. Combinatorial multi-armed
bandit and its extension to probabilistically triggered arms. The Journal
of Machine Learning Research, 17(1):1746–1778, 2016.

[4] Y. Duan and J. Wu. Optimizing the crowdsourcing-based bike station
rebalancing scheme. In IEEE ICDCS, 2019.

[5] Y. Gai, B. Krishnamachari, and R. Jain. Combinatorial network
optimization with unknown variables: Multi-armed bandits with linear
rewards and individual observations. IEEE/ACM Transactions on Net-
working, 20(5):1466–1478, 2012.

[6] G. Gao, M. Xiao, J. Wu, L. Huang, and C. Hu. Truthful incentive
mechanism for nondeterministic crowdsensing with vehicles. IEEE
Transactions on Mobile Computing, 17(12):2982–2997, 2018.

[7] G. Gao, M. Xiao, and Z. Zhao. Optimal multi-taxi dispatch for mobile
taxi-hailing systems. In IEEE ICPP, 2016.

[8] K. Han, C. Zhang, and J. Luo. Taming the uncertainty: Budget limited
robust crowdsensing through online learning. IEEE Transactions on
Networking, 24(3):1462–1475, 2016.

[9] J. E. Hopcroft and R. M. Karp. An nˆ5/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal on computing, 2(4):225–
231, 1973.

[10] M. Karaliopoulos, O. Telelis, and I. Koutsopoulos. User recruitment for
mobile crowdsensing over opportunistic networks. In IEEE INFOCOM,
2015.

[11] W. Li, F. Li, K. Sharif, and Y. Wang. When user interest meets data
quality: A novel user filter scheme for mobile crowd sensing. In IEEE
ICPADS, 2017.

[12] S. K. née Müller, C. Tekin, M. van der Schaar, and A. Klein.
Context-aware hierarchical online learning for performance maximiza-
tion in mobile crowdsourcing. IEEE/ACM Transactions on Networking,
26(3):1334–1347, 2018.

[13] A. Singla and A. Krause. Truthful incentives in crowdsourcing tasks
using regret minimization mechanisms. In ACM WWW, 2013.

[14] S. Tang, Y. Zhou, K. Han, Z. Zhang, J. Yuan, and W. Wu. Networked
stochastic multi-armed bandits with combinatorial strategies. In IEEE
ICDCS, 2017.

[15] L. Tran-Thanh, A. Chapman, E. M. de Cote, A. Rogers, and N. R.
Jennings. Epsilon–first policies for budget–limited multi-armed bandits.
In AAAI, 2010.

[16] L. Tran-Thanh, A. Chapman, A. Rogers, and N. R. Jennings. Knapsack
based optimal policies for budget-limited multi-armed bandits. In AAAI,
2012.

[17] U. ul Hassan and E. Curry. Efficient task assignment for spatial
crowdsourcing: A combinatorial fractional optimization approach with
semi-bandit learning. Expert Systems with Applications, 58:36–56, 2016.

[18] E. Wang, Y. Yang, J. Wu, W. Liu, and X. Wang. An efficient prediction-
based user recruitment for mobile crowdsensing. IEEE Transactions on
Mobile Computing, 17(1):16–28, 2017.

[19] Y. Xia, T. Qin, W. Ma, N. Yu, and T.-Y. Liu. Budgeted multi-armed
bandits with multiple plays. In IJCAI, 2016.

[20] M. Xiao, J. Wu, S. Zhang, and J. Yu. Secret-sharing-based secure user
recruitment protocol for mobile crowdsensing. In IEEE INFOCOM,
2017.

[21] S. Yang, F. Wu, S. Tang, T. Luo, X. Gao, L. Kong, and G. Chen. Se-
lecting most informative contributors with unknown costs for budgeted
crowdsensing. In IEEE/ACM IWQoS, 2016.

[22] X. Zhang, Z. Yang, W. Sun, Y. Liu, S. Tang, K. Xing, and X. Mao.
Incentives for mobile crowd sensing: A survey. IEEE Communications
Surveys & Tutorials, 18(1):54–67, 2015.

[23] D. P. Zhou and C. J. Tomlin. Budget-constrained multi-armed bandits
with multiple plays. In AAAI, 2018.


