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Fault Tolerance Measures for m-Ary
n-Dimensional Hypercubes Based on

Forbidden Faulty Sets
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Abstract—In this paper, we study fault tolerance measures for m-ary
n-dimensional hypercubes based on the concept of forbidden faulty
sets. In a forbidden faulty set, certain nodes cannot be faulty at the
same time and this model can better reflect fault patterns in a real
system than the existing ones. Specifically, we study the bounds of the
minimum vertex cut set for m-ary n-dimensional hypercubes by
requiring each node to have at least k healthy neighbors. Our result
enhances and generalizes a result by Latifi et al. for binary hypercubes.
Our study also shows that the corresponding result based on the
traditional fault model (where k is zero) tends to underestimate network
resilience of large networks such as m-ary n-dimensional hypercubes.

Index Terms—Fault tolerance, forbidden faulty sets, hypercubes,
minimum vertex cut.
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1 INTRODUCTION

IN designing or selecting a network topology for a paral-
lel/distributed system, one fundamental consideration is fault
tolerance. Specifically, a system is said to be fault tolerant if it can
remain functional in the presence of faults (processors and/or
communication links). A system is functional as long as there is a
nonfaulty communication path between each pair of nonfaulty
nodes; that is, the underlying topology of the system remains con-
nected in the presence of faults.

With its numerous attractive features, the hypercube has been
one of the dominating topological structures for paral-
lel/distributed systems. A binary n-dimensional hypercube (n-cube)
system [7] consists of exactly 2n processors (also called nodes) that
can be addressed distinctively by n-bit binary numbers. Two nodes
are directly connected by a link if and only if their binary ad-
dresses differ in exactly one bit position. The hypercube structure
has been used in many experimental and commercial machines
including NCUBE-2, Intel iPSC, and Connection Machines. An
m-ary n-dimensional hypercube is a direct extension of a binary
n-dimensional hypercube (also called n-cube). It is based on m as
its radix number system; that is, there are m nodes along each di-
mension. An m-ary n-dimensional hypercube is a special case of a
generalized hypercube [1] that has a mixed radix number system.

Traditionally, the edge- and vertex-connectivity have been
mainly used for measures of functionality of the system. For ex-
ample, the minimum number of faulty nodes in an n-cube that
results in the remaining nodes being disconnected is n. However,
the probability that all n faulty nodes are neighbors of the same
node is very small for the following reasons:

1)� Some subsets of system nodes are not potentially faulty; this
situation is especially true in heterogeneous environments,
and

2)� If all the nodes have the same failure probability, the prob-
ability of all n faulty nodes are neighbors of the same node

in an n-cube is 2 2n
n

n
�� �� , which is a very small number even

for a moderate size of networks.

To compensate for the above shortcoming, several generalized
measures of connectedness have been proposed ([2], [4]), such as
toughness and mean connectivity of a graph. Esfahanian [5] intro-
duced the concept of forbidden faulty sets in which components
cannot be faulty at the same time. As a special case of forbidden
faulty sets, Latifi et al. [6] studied a model in which each node in
an n-cube has at least k healthy neighbors where k n£ 2  and n ≥ 3,

and showed that at least (n - k)2k faulty nodes (these nodes form a
vertex cut set) are needed to disconnect the remaining n-cube.

The use of forbidden faulty set is motivated by the fact that the
traditional graph connectivity model cannot correctly reflect net-
work resilience of large systems. The objective of this study is to
determine the bound of the size of minimum vertex cut set that
can realistically represent the fault tolerance of the m-ary n-
dimensional hypercube. Our results show that the traditional
graph connectivity as a fault tolerance metric tends to underesti-
mate network resilience of large networks.

In this paper, we enhance Latifi et al.’s result of minimum ver-
tex cut set for binary hypercubes and generalize the enhanced
result to m-ary n-dimensional hypercubes. More specifically, we
find the cardinality of the minimum vertex cut set for a faulty
m-ary n-dimensional hypercube in which each node has at least
k healthy nodes. Note that the problem of finding the minimum
vertex cut set is suspected to be NP-hard as there is no known
polynomial algorithm to find a minimum vertex cut for a given
graph. Since the m-ary n-dimensional hypercube contains the bi-
nary hypercube as a special case, our results here are one step
further toward finding a large class of regular interconnection
networks in which minimum vertex cut sets can be successfully
determined. To simplify our discussion, we only consider node
faults; therefore, only vertex cut sets are considered. Our results
can be extended to link faults by addressing edge cut sets. Note
that, although our main result here is a generalization and en-
hancement of Latifi et al.’s result, a different and more involved
proving method is introduced in this paper.

In Section 2, basic graph concepts are reviewed together with
the graph model of the m-ary n-dimensional hypercube. Section 3
presents the result on the minimum vertex cut set for a faulty
m-ary n-dimensional hypercube in which each node has at least
k healthy nodes. Section 4 studies the selection of several parame-
ters that determine network resilience of the m-ary n-dimensional
hypercube and shows relationships between these parameters.
Finally, in Section 5, we present our conclusions and future work.

2 NOTATION AND PRELIMINARIES

The interconnection of a set of processors can be adequately repre-
sented by a simple graph G = (V, E), where each vertex (also node)
u Œ V represents a processor, and each edge (also link) (u, v) Œ E
represents a link between the vertices u and v. Two linked proces-
sors can directly access each other and are called neighbors. In the
following, we only review concepts that are used in this paper. For
other graph-related concepts, the reader may refer to a standard
book on graph theory such as [3].

A graph G¢ is a subgraph of G (written G¢ Õ G), if V(G¢) Õ V(G)
and E(G¢) = {(u, v)|(u, v) Œ E(G), u, v Œ V(G¢)}. Suppose that F is a
nonempty subset of V(G), the induced subgraph G - F is a subgraph
of G such that vertex set V(G - F) = V(G) - F and edge set E(G - F)
= {(u, v)|(u, v) Œ E(G), u, v Œ V(G) - F}. The vertex cut of G is a sub-
set F of V(G) such that the induced subgraph is disconnected.

The neighbor set of vertex u is the subset of V(G) in which each
vertex is connected to vertex u, denoted by N(u|G), where u may
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or may not be an element of V(G). N V G N u G
u V

( | ) ( | )¢ =
Œ ¢U  is

called the neighbor set of subset V¢ in G.
The vertex degree d(u|G) of a vertex u in G is the number of

edges of G incident with u. For a simple graph G, d(u|G) =
|N(u|G)|. The minimum-vertex-degree, dmin(G), of G is defined as
the minimum vertex degree in G, i.e., min{d(u|G)}.

DEFINITION 1. A forbidden faulty set in a given graph G, S, is a subset
of V(G) that cannot be faulty simultaneously.

Note that if S is a forbidden faulty set, then any set that con-
tains S as its subset is also a forbidden faulty set. If a subset of V(G)
is not a forbidden set, it is also called a feasible faulty set in G.

DEFINITION 2. Feasible-vertex-connectivity of a graph G is the mini-
mum cardinality |F| such that the graph G - F is a disconnected
graph, where F is a feasible fault set. F is also called a minimum
feasible vertex cut set.

In general, there are many ways to define a forbidden (feasible)
faulty set depending on the topology of the system, application
environment, statistical analysis of fault patterns, and distribution
of fault-free nodes. The following defines a feasible faulty set
based on the number of healthy neighbors of each node.

DEFINITION 3. A feasible faulty set in a given graph G is called
k-neighbor-feasible if each healthy node in G has at least k
healthy neighbors and there is at least one node that has exactly k
healthy neighbors.

Obviously, the regular fault model is a special case of feasible
faulty set, that is, it is 0-neighbor feasible.

The generalized hypercube interconnection [1] is based on a
mixed radix number system (as opposed to binary numbers used
in regular binary hypercubes) and this technique results in a vari-
ety of hypercube structures for a given number of processors,
depending on the desired diameter of the network. An m-
ary n-dimensional hypercube, G(n, m), is a special generalized hyper-
cube with m as its fixed radix number. Each node corresponds

to an n-vector address (an, an-1, L, a1), where 0 £ ai £ m - 1. Node
connections in G(n, m) are defined as follows: Two nodes are
linked by an edge if they differ in exactly one coordinate. Fig. 1
shows a G(3, 3), which is a three-cube with three nodes along each
dimension.

PROPERTY 1. |V(G(n, m))| = mn, d(u|G(n, m)) = n(m - 1), and
dmin(G(n, m)) = n(m - 1).

PROPERTY 2. Suppose that G1(n - 1, m), G2(n - 1, m), L, Gm(n - 1, m)
is a partition of G(n, m) along a dimension, say l, then, for each
vertex u Œ V(Gi(n - 1, m)), 1 £ i £ m, there exists m - 1 and only
m - 1 neighboring nodes which do not belong to Gi(n - 1, m); and
there is only one neighbor of u in each Gj(n - 1, m), i π j.

3 FAULT TOLERANCE OF m-ARY n-DIMENSIONAL
HYPERCUBES

In this section, we determine the feasible-vertex-connectivity of a
given G(n, m), where the feasible faulty set is k-neighbor-feasible. To
obtain this result, we first show in Theorem 1 the relationship be-
tween the minimum-vertex-degree of a given subgraph of G(n, m)
and the size of this subgraph. We use the following notation: The
quotient of n divided by m is În/m˚, where m and n are positive
integers. The remainder of this division is m mod n, which is m -
În/m˚ for m π 0.

THEOREM 1. Let G¢ be a subgraph of G(n, m). If dmin(G¢) = k, then

|V(G¢)| ≥ md (s + 1),        (1)

where d k
m= -1  and s = k mod (m - 1).

PROOF. In (1), we have k = (m - 1)d + s, where 0 £ s < m - 1, and it is
called a standard expression of k. We prove (1) by induction
on k.

Basis. When 0 £ k £ m - 2, i.e., d = 0 and s = k. We have
|V(G¢)| ≥ | {u}| + d(u|G¢) = 1 + dmin(G¢) ≥ 1 + k = 1 + s.
Theorem 1 clearly holds.

Fig. 1. A G(3, 3).
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Inductive step. We assume that Theorem 1 holds for k < p - 1,
where p (≥ m - 1) is a constant. (Because, in Basis, we have
shown that Theorem 1 holds when 0 £ k < m - 1.) We now
show that if G¢ is a subgraph of G and dmin(G¢) = p , then the
following inequality holds:

|V(G¢)| ≥ md¢(s¢ + 1),       (2)

where ¢ = -d p
m 1  and s¢ =  p mod (m - 1).

Let p - 1 = (m - 1)d + s, where 0 £ s < m - 1. It is easy to
verify that (2) can be rewritten as

|V(G¢)| ≥ md(s + 2) (0 £ s < m - 1).                 (3)

To prove (3) using the inductive step, we partition sub-

cubes G and G¢ as follows: Because dmin(G¢) = p > 0, there

must exist two vertices, say u1 and u2 in G¢, which are con-
nected by an edge; based on the definition of G(n, m), their
addresses differ in exactly one dimension. Without loss of
generality, suppose they differ in the lth dimension. We par-
tition the given G(n, m) into m m-ary (n - 1)-dimensional
hypercubes along the selected dimension l and these cubes

are denoted as G1(n - 1, m), G2(n - 1, m), L, Gm(n - 1, m) (see
Fig. 2). Without causing confusion, they can also be denoted

as G1, G2, L, Gm, respectively. Subgraph G¢ itself is also par-
titioned into t (2 £ t £ m) subgraphs along the lth dimension.
Without loss of generality, let ¢ ¢ ¢G G Gt1 2, , ,K  be such sub-
graphs, and ¢ Õ £ £G G i ti i ( )0 . Meanwhile, u V G1 1Œ ¢( ) and

u V G2 2Œ ¢( ) . Fig. 2 shows the partition of G(n, m) and G¢ and

the relationships between Gis and ¢Gi s.

Based on the above partition and Property 2, the node
degree of u in ¢Gi  can be calculated as follows:

d u G N u G N u G N u G

d u G t

i i j
j i

¢ = ¢ = ¢ - ¢

= ¢ - -

π
Â3 8 3 8 3 8 4 9

3 8 1 61 .

Therefore,

d G d u G d u G ti u G i u Gimin min min¢ = ¢ ≥ ¢ - -Œ ¢ Œ ¢2 7 3 8J L 3 8 1 6J L1

= ¢ - - = - -d G t p tmin1 6 1 6 1 61 1     (4)

= - + + - - = - + - +m d s t m d s t1 1 1 1 21 6 1 6 1 6 1 6 .  (5)

With (4), we can determine ¢Gi  for each i = 1, 2, L, t, us-

ing the inductive assumption. Then, |G¢| can be derived by
summarizing all these ¢Gi s. In order to use the inductive as-

sumption to find out ¢Gi , we need to convert (4) to a stan-

dard expression, i.e., by ensuring 0 £ s - t + 2 < m - 1 in (4).
To do so, we consider the following two cases:

1)� If 2 £ t £ s + 2 £ m, then 0 £ s - t + 2 < m - 1, thus,

d G m d s timin ¢ ≥ - + - +2 7 1 6 1 61 2

is a standard expression. Since (m - 1)d + (s - t + 2) < p,
based on the inductive assumption, we have

V G V G m s t

m t s t

i
i

t
d

i

t

d

¢ = ¢ ≥ - + +

= - +
= =
Â Â1 6 2 7 1 6
1 6

1 1

2 1

3 .

To determine the minimum value of |V(G¢)|, we need to
find out the minimum value for function f(t) = t(s - t + 3)
defined on [2, s + 2]. Since f(t) is a parabolic function, the
minimum value is either f(2) or f(s+2). Because f(2) - f(s + 2)
= 2(s + 1) - (s + 2) = s ≥ 0, f(t) has a minimum value f(s + 2)
= s + 2. We conclude that |V(G¢)| ≥ md[t(s - t + 2)] =

md(s + 2). Theorem 1 holds in this case.

2)� If s + 3 £ t £ m, then 0 £ m + s - t + 1 < m - 1. Note that
p ≥ m - 1, we must have d > 0. Therefore, the standard
expression of inequality (4) is

d G m d m s t pimin( ) ( )( ) ( )¢ ≥ - - + + - + <1 1 1 .

With the inductive assumption,

V G m m s ti
d¢ ≥ + - + +-2 7 1 61 1 1 ,

we have

V G V G m m s t

m t m s t

i
i

t
d

i

t

d

¢ = ¢ ≥ + - + +

= + - +
=

-

=
-

Â Â1 6 2 7 1 6
1 6

1

1

1
1

1 1

2 .

To determine the minimum value of |V(G¢)|, we need to
find out the minimum value of function g(t) = t(m + s - t + 2)
defined on [s + 3, m]. Again, the minimum value is either
g(s + 3) or g(m). Because g(s + 3) - g(m) = (s + 3)(m - 1)
- m(s + 2) = m - s - 2 > 0, g(m) = m(s + 2) is the minimum

Fig. 2. A partition of G(n, m) and G¢ along the  l th dimension.
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value. Therefore, |V(G¢)| ≥ md-1g(t) ≥ md-1g(m) = md-1

[m(s + 2)] = md(s + 2). Theorem 1 holds in this case. o

COROLLARY 1. Let G¢ be a subgraph n-cube. If dmin(G¢) = k, then
|V(G¢)| ≥ 2k.

PROOF. Substituting m = 2 in Theorem 1, we have d kk
m= =-1  and

s = k mod (m - 1) = 0. Thus, |V(G¢)| ≥ md(s + 1) = 2k. o

The following Theorem 2 determines the lower bound for the
cardinality of a k-neighbor-feasible faulty vertex cut set, that is, the
lower bound for the feasible-vertex-connectivity of G(n, m) - F.

THEOREM 2. If F is a k-neighbor-feasible faulty vertex cut set of G(n, m)
and k £ (n - 2)(m - 1), then

|F| ≥ md[(n - d - 1)(m - 1)(s + 1) + (m - s - 1)],       (6)

where d k
m= -1 , s= k mod (m - 1).

PROOF. The fact that F is a k-neighbor-feasible faulty cut set of G(n, m)
implies dmin(G(n, m) - F) = k. We prove this theorem by in-
duction on k.

Basis: When k = 0 , d = 0 and s = 0. We only need to show
|F| ≥ m0[(n - 0 - 1)(m - 1)(0 + 1) + (m - 0 - 1)] = n(m - 1).
Based on Property 1 of the m-ary n-dimensional hypercube,
the vertex-connectivity of G(n, m), dmin(G(n, m)) = n(m - 1),
that is, we need to remove at least n(m - 1) vertices to dis-
connected a vertex from G(n, m). Based on the definition of
G(n, m), it needs to remove more vertices to disconnect more
than one vertex. Theorem 2 clearly holds.

Inductive step. Assuming Theorem 2 holds for k £ p - 1,
we now show that if F is a k-neighbor-feasible faulty vertex
cut set, where k = p, then the following inequality holds:

F m n d m s m sd≥ - ¢ - - ¢ + + - ¢ -¢ 1 1 1 11 61 61 6 1 6 ,      (7)

where ¢ = -d p
m 1 , s¢ = p mod (m - 1).

Let p - 1 = (m - 1)d + s, where 0 £ s < m - 1. Equation  (6)
can be rewritten as:

|F| ≥ md[(n - d - 1)(m - 1)(s + 2) + (m - s - 2)].       (8)

Our next step is to randomly select a subgraph G¢ of G(n, m)
and to find out the cardinality of a minimum feasible faulty
vertex cut set F needed to disconnect G¢ from G(n, m) - F.

Based on the definition of k-neighbor-feasible, we have dmin(G¢)

≥ dmin(G(n, m) - F) = p > 0. Thus, there must exist two neigh-

boring vertices, say u1 and u2, in V(G¢), and their addresses
differ in exactly one coordinate, say l. We partition G(n, m)

into m m-ary (n - 1)-dimensional hypercubes G1(n - 1, m),

G2(n - 1, m), L,Gm(n - 1, m) along the lth dimension (see

Fig. 3). Again, they can also be denoted as G1, G2, L, Gm, re-
spectively. Without loss of generality, we assume that, along
the lth dimension, the disconnected subgraph G¢ is parti-
tioned into t subgraphs, ¢ ¢ ¢G G Gt1 2, , ,K , such that ¢ ÃG Gi i , for

1 £ i £ t, and the feasible vertex cut set F is partitioned into m

subsets F1, F2, L, Fm, such that Fi Õ V(Gi), for 1 £ i £ m.
Meanwhile, u V G1 1Œ ¢( ) and u V G2 2Œ ¢( ) .

First, we estimate the cardinality of Fj, t + 1 £ j £ m. Since
G¢ is separated from G, Fj contains at least all the neighbor-
ing vertices of G¢ in Gj. Therefore,

F N G G N G Gj i j
i

t

c j  ¢   ¢
=
4 9 4 9

1
U ,

where c is a randomly selected integer from [1, 2, L, t]. The
above approximation is based on the fact that nodes in set

N G Gi j( | )¢  for different i may share the same neighbor in Gj.

Therefore,

F N G G V Gj c j c≥ ¢ = ¢4 9 2 7 .

Using the above approximation for |Fj|, we have,

F F F j F V Gi
i

t

j t

m

i
i

t

c
j t

m

≥ + = + ¢
= = + = = +
Â Â Â Â

1 1 1 1

2 7 2 7

= + - ¢
=
Â F m t V Gi
j

t

c
1

1 6 2 7 .   (9)

We use the result of Theorem 1 and the inductive as-

sumption of Theorem 2 to determine | |¢Gc  and |Fi|, respec-
tively. Using the result of (4) (in the proof of Theorem 1), we
have

d G m d s tcmin ¢ ≥ - + - +2 7 1 6 1 61 2 .         (10)

We consider the following two cases:

1)� If 2 £ t < s + 1 £ m, then 0 £ s - t + 2 < m - 1, thus,

d G m d s tcmin ¢ ≥ - + - +2 7 1 6 1 61 2

is a standard expression of (9). Based on Theorem 1,

V G m s tc
d¢ ≥ - +2 7 1 63 . (11)

The same result of (9) applies to other ¢Gi s, 1 £ i £ t, i.e.,
d G m d s timin( ) ( ) ( )¢ ≥ - + - +1 2 . Because the selection of

G¢ in G (and, hence, ¢Gi  in Gi) is random, each node in Gi

has at least (m - 1)d + (s - t + 2) healthy nodes. Based on

Definition 3, Fi is at least an [(m - 1)d + (s - t + 2)]-

neighbor-feasible faulty vertex cut set in graph Gi. Since
(m - 1)d + (s - t + 2) < p, using the inductive assumption
of Theorem 2, we have

|Fi| ≥ md[(n - d - 2)(m - 1)(s - t + 3) + (m - s + t - 3)].   (12)

Applying (10) and (11) to inequality (8), we have

F m n d m s t m s t

m t m s t

m t n d m s t m s t

d

i

t

d

d

≥ - - - - + + - + -

+ - - +

= - - - - + + - + -

=
Â 2 1 3 3

3

2 1 3 3

1

1 61 61 6 1 6

1 6 1 64 9
1 61 61 6 1 6

+ - - +m t s t1 61 63 . (13)

To determine the minimum value of |F|, we define a
function f(t) = t[(n - d - 2)(m - 1)(s - t + 3) + (m - s + t
- 3)] + (m - t)(s - t + 3) on [2, s + 2]. Based on the fact that
k = p £ (m - 1)(n - 2), we have n - 2 ≥ p/(m - 1) =
[(m - 1)d + s + 1]/(m - 1)} > d, that is, (n - d - 2) > 0. We
consider the following two subcases:

a)� If (n - d - 2)(m - 1) > 2, f(t) is a parabolic function, thus
either f(2) or f(s + 2) is the minimum value of f(t). It is
easy to verify that f(2) = 2[(n - d - 2)(m - 1)(s + 1) +
(m - s - 1)] + (m - 2)(s + 1) and f(s + 2) = (s + 2)
[(n - d - 2)(m - 1) + (m - 1)] + (m - s - 2) and, hence, f(2) -
f(s + 2) = [(n - d - 2)(m - 1) - 2]s - s ≥ 0. We conclude that
f(s + 2) is the minimum value of f(t) in [2, s + 2], therefore,
f(t) ≥ f(s + 2) = (n - d - 1)(m - 1)(s + 2) + (m - s - 2).
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b)� If (n - d - 2)(m - 1) = 2 or 1, then there are only four
possible selections of (m, s, t): (2, 0, 2), (3, 0, 2), (3, 1, 3),
(3, 1, 2). Each of them either meets the condition t = s + 2
or has the corresponding f(t) value the same as f(s+2).
Therefore, f(t) = f(s + 2) = (n - d - 1)(m - 1)(s + 2) +
(m - s - 2).

Combining results of the above two subcases, we have
f(t) ≥ f(s + 2) = (n - d - 1)(m - 1)(s + 2) + (m - s - 2) when 2
£ t £ s + 2. Therefore, we induce that
|F| ≥ mdf(t) ≥ md[(n - d - 1)(m - 1)(s + 2) + (m - s - 2)].

Hence, Theorem 2 holds when 2 £ t £ s + 2.
2)� If s + 3 £ t £ m, then 0 £ m - t + s + 1 < m - 1; thus,

d G m d m t scmin( ) ( )( ) ( )¢ ≥ - - + - + +1 1 1  is a standard ex-
pression of (9). Based on Theorem 1,

V G m m t s m m t sc
d d¢ ≥ - + + + = - + +- -2 7 1 6 1 61 11 1 2 .   (14)

Using the same argument for Case 1, Fi is at least an
[(m - 1)(d - 1) + m - t + s + 1]-feasible-neighbor faulty
vertex cut set in graph Gi(n - 1, m), where 1 £ i £ t. Based
on the inductive assumption of Theorem 2, we have,

               
F m n d m m t s

m m t s

i
d≥ - - - - - - + + +

+ - - + + -

-1 1 1 1 1 1 1

1 1

1 62 71 61 6
1 62 7

= - - - - + + + - --m n d m m t s t sd 1 1 1 2 21 61 61 6 1 6 . (15)

Applying (13) and (14) to inequality (8), we have

F F m t V G

m t n d m m t s t s

m t m t s

i c
i

t

d

≥ + - ¢

≥ - - - - + + + - -

+ - - + +

=

-

Â 4 9 1 6 2 7

1 61 61 6 1 6
1 61 6

1

1 1 1 2 2

2 .

To determine the minimum value of |F|, we define a
function g(t) = t[(n - d - 1)(m - 1)(m - t + s + 2) + (t - s
- 2)] + (m - t)(m - t + s + 2) on [s + 3, m]. Based on the
facts that (n - d - 2) > 0 and s + 3 £ t £ m, i.e., m ≥ 3, we
have (n - d - 1)(m - 1) > 2. Therefore, the function of f(t)
is a parabolic function, and the minimum value is either
f(s + 3) or f(m). It can be verified that g(s + 3) = (s + 3)[(n
- d - 1)(m - 1)(m - 1) + 1] + (m - s - 3)(m - 1) and g(m) =
m[(n - d - 1)(m - 1)(s + 2) + (m - s - 2)] + 0 and, hence,
g(s + 3) - g(m) = (n - d - 1)(n - 1)(m - s - 3) - 2(m - s - 3)

> m - s - 3 ≥ 0. Therefore, g(t) ≥ g(m), and we have |F| ≥
md-1g(t) ≥ md-1g(m) = md[(s + 2)(n - d - 1)(m - 1) + (m - s - 2)],

where s + 3 £ t £ m. Theorem 2 holds. o

COROLLARY 2. If F is an arbitrary k-neighbor-feasible faulty vertex cut
set of an n-cube, where 0 £ k £ n - 2, then |F| ≥ (n - k)2k.

PROOF. Substituting m = 2 in Theorem 2, we have d kk
m= =-1

and s = k mod (m - 1) = 0. The constraint on k, k £ (n - 2)(m - 2),
is reduced to k £ n - 2. Thus,

F m n d m s m s

n k n k

d

k k

≥ - - - + + - -

= - - - + + - - = -

1 1 1 1

2 1 2 1 0 1 2 0 1 2

1 61 61 6 1 6
1 61 61 6 1 6 .

o

The above corollary replies that n ≥ 2 because 0 £ k £ n - 2. Also,
Corollary 2 is an enhancement of the main result from Latifi et al.
[6]. Recall that the result in [6] states as follows: If F is an arbitrary
k-neighbor-feasible vertex cut set of an n-cube, where 0 2£ £k n

and n ≥ 3, then |F| £ (n - k)2k. First of all, this result cannot be
used for two-cubes. Our result show that it is possible for n = 2
and k = 0. For example, we can remove (n - k)2k = (4 - 2)22 = 2
nodes, say 01 and 10, to disconnect the remaining nodes 00 and 11.
Also, the condition 0 2£ £k n  is too restrictive. For example,

when n = 5, the maximum k is two based on the result in [6]. Using
our result, it is possible to select k = 3 (the condition k £ n - 2 still
holds). We can remove (n - k)2k = (5 - 3)23 = 16 nodes to disconnect
a five-cube and each of the remaining vertices has a vertex degree of
at least three. This can be done by removing three-dimensional sub-
cubes ***01 and ***10 to disconnect three-dimensional subcube ***00
and ***11, where * is either 0 or 1. Therefore, our result here is not
only a generalization but also an enhancement of the result in [6].

4 DISCUSSION

In general, the degree of fault tolerance of a parallel/distributed
system is determined by a combination of parameters, such as
vertex degree, bisection width, minimum vertex cut set, etc. In
addition, the failure probability of each component is also an im-
portant factor. In this section, we study the effects of k, n, and m on
the size of minimum k-neighbor-feasible vertex cut of various con-
figurations of G(n, m), by considering the the following three cases:

Fig. 3. The partition of G¢, F, and G(n, m) along the l th dimension.
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1)� The number of vertices N = mn is fixed, in our case, we select
N = 232,

2)� The number of dimensions n is fixed, but the number of
vertices m in each dimension varies, and

3)� The number of vertices m in each dimension is fixed, but the
number of dimensions n varies.

Fig. 4 shows results which compare different selections of m
and n in G(n, m) under the same number of nodes N = 232. Fig. 5
shows results which compare different m-ary n-dimensional hy-
percubes under a fixed number of dimensions, but with the differ-
ent number of nodes on each dimension. Fig. 6 shows results
which compare different m-ary n-dimensional hypercubes under a
fixed number of nodes on each dimension, but with the different
number of dimensions. In all these figures, we use a regular scale
for k (feasible-vertex-connectivity) and a logarithmic scale (ln) for
|F| (the size of minimum faulty vertex cut set). For each case, the
size of minimum vertex cut set increases monotonically as k in-
creases, that is, when k = 0, the corresponding |F| is the smallest.

In Fig. 4, for a G(n, m) with a small dimension (n), its |F| is
smaller than the one with a larger dimension when k is small.
However, this situation reverses for large k. Specifically, for any
two |F| curves, there is one and only one cross point between these
two curves. That is, for any two configurations in Fig. 4, G(n, m) and
G(n¢, m¢), with the same number of nodes and n < n¢, we can al-
ways find a value c such that, when k < c, |F| of G(n, m) is smaller
than the one for G(n¢, m¢), and the situation reverses when k > c.

When the number of nodes along each dimension (m) is a fixed
value in G(n, m) (see Fig. 5), the larger n is the larger the corre-
sponding value of |F| becomes. This fact can be easily observed
from the expression for F in Theorem 2. However, when the num-
ber of dimensions (n) is a fixed value in G(n, m) (see Fig. 6), a large
m may or may not result in a large |F|. This is because a large m
value may or may not generate a large d value, defined as
d k

m= -1  in F.

5 CONCLUSION

In this paper, we have determined the conditional connectivity for
the m-ary n-dimensional hypercube, G(n, m), by requiring each
node to have at least k healthy neighbors. By this, we have ex-
tended and enhanced a result by Latifi et al. for the binary hyper-
cube. Although we have obtained the results for the conditional
connectivity in the m-ary n-dimensional hypercube, we still need
to analyze quantitatively the effect of n and m in G(n, m), where the
total number of nodes mn is fixed. In addition, the successful appli-
cation of our results depends on a reasonably good estimation of k
in the k-vertex-connectivity condition. Another interesting work is to
develop a model to define a forbidden faulty set based on applica-
tion environment, network component reliability, network topol-
ogy, and statistics related to fault patterns.
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