

Combinatorial Multi-Armed Bandit Based User Recruitment in Mobile Crowdsensing

Hengzhi Wang, Yongjian Yang, En Wang*, Wenbin Liu, Yuanbo Xu, Jie Wu

- MCS Scenario

二、Problem Formulation

三、**Strategy**

四、Simulation

Formulation

Strategy

Recently, a popular sensing paradigm, mobile crowdsensing (MCS) has attracted much attention of researchers. MCS recruits mobile users to coordinately perform a complex sensing task based on their equipped devices.

User recruitment is an important researching part of Crowdsensing.

Formulation

Strategy

Scenario. I

Objective ability

Scenario

 The user's probability or frequency of covering the task locations

Subjective collaboration likelihood

 The collaboration likelihood with others when performing a cooperative task Problem. I

Formulation

Strategy

Simulation

Scenario. II (Multi-round Scenario)

Exploitation

✓ Recruiting previously wellbehaved user groups

Exploration

✓ Exploring other unknown user groups

EE dilemma & The multi-round user recruitment problem

Formulation

$$\tilde{V} = V \cup \{u_s, u_t\}, \\ \tilde{E} = \{(i, j) | (i, j) \in E\} \cup \{(u_s, u_i) | u_i \in V\} \cup \{(u_i, u_t) | u_i \in V\}, \\ w_{si} = W, \quad u_i \in V, \\ w_{it} = W - w_i, \quad u_i \in V. \end{cases} \xrightarrow{(u_1, u_1) | u_i \in V}, \\ (u_2, u_3) = (u_3, u_1) = (u_3, u_2, u_3) = (u_3, u_3) = (u_$$

The problem of finding the minimum cut of the graph

$$\sum_{u_i, u_j \in V', i \neq j} w_{ij} = \frac{1}{2} \cdot \left(\sum_{u_i \in V'} w_i - w(c(V', V \setminus V'))\right)$$

Algorithm 1: Minimum Cut **Input:** Graph G = (V, E)**Output:** cut $c(S', V \setminus S'), S'$ 1 $w_0 \leftarrow +\infty$; 2 for each $u_i \in \{u \in V | u \neq u_s, u \neq u_t\}$ do $S \leftarrow \{u_i\};$ 3 while $|S| \neq N+1$ do 4 Search the vertex *a* such that 5 $w(S,a) = \max\{w(S,b) | b \in V \setminus S, b \neq u_t\};$ $S \leftarrow S \cup \{a\};$ 6 if $w(c(S, V \setminus S)) \leq w_0$ then 7 $w_0 \leftarrow w(c(S, V \setminus S));$ 8 $S' \leftarrow S;$ 9 10 return cut $c(S', V \setminus S')$, S'

Maximize $\frac{1}{2} \cdot \left(\sum_{u_i \in V'} w_i - w(c(V', V \setminus V'))\right)$ \Leftrightarrow Minimize $w(c(V', V \setminus V')) - \sum_{u_i \in V'} w_i$ Subject to |V'| = N.

Problem. II -> Strategy. II

The user recruitment strategy in the multi-round scenario

Combinatorial Multi-armed bandit problem (CMAB)

The single-round user recruitment strategy

Update based on the feedback

Problem. II -> Strategy. II

The user recruitment strategy in the multi-round scenario

Combinatorial Multi-armed bandit problem (CMAB)

Update Strategy

Update on objective ability:

$$\rho_i^{t+1} = \frac{\sum_{r=1}^{k(t)} \rho_{i,r}}{k(t)},$$

Update Strategy

Update on collaboration likelihood:

$$\hbar(\boldsymbol{\alpha}^{t}, \boldsymbol{\rho}^{t}) = Q^{t}(S^{t}) = \sum_{u_{i} \in S^{t}} \bar{\alpha}_{i}^{t} \cdot \rho_{i}^{t},$$
$$J(\boldsymbol{\alpha}^{m}) = \frac{1}{2m} \sum_{t=0}^{m} (\hbar(\boldsymbol{\alpha}^{m}, \boldsymbol{\rho}_{o}^{t}) - Q_{o}^{t})^{2},$$

Problem. II -> Strategy. II

The user recruitment strategy in the multi-round scenario

Combinatorial Multi-armed bandit problem (CMAB)

(b) Gowalla

(c) Foursquare

These three datasets contain both the user's location and social information

Users' objective abilities (frequencies of passing through the sensing

(a) Brightkite

Formulation

Strategy

Simulation

▲ Loss evaluation in multiple rounds

Thanks for listening!

