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for Heterogeneous Mobile CrowdSensing
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Abstract—Mobile CrowdSensing is a new paradigm in which requesters launch tasks to the mobile users who provide the sensing
services. The tasks, in practice, are usually heterogeneous (have diverse spatial-temporal requirements), which make it hard to select
an efficient subset of users to perform the tasks. In this paper, we present a point of interest (PoI) based mobility prediction model to
obtain the probabilities that tasks would be completed by users. Based on it, we propose a greedy offline algorithm to select a set of
users under a participant number constraint. Furthermore, we extend the user selection problem to a more realistic online setting
where users come in real time and we decide to select or not immediately. We formulate the problem as a submodular k-secretaries
problem and propose an online algorithm. Finally, we design a distributed user selection framework Crowd UserS and implement an
Android prototype system as proof of the concept. Extensive simulations have been conducted on three real-life mobile traces and the
results prove the efficiency of our proposed framework.

Index Terms—Mobile CrowdSensing, User Selection, Mobility Prediction, Submodular k-Secretaries Problem.
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1 INTRODUCTION

MOBILE CrowdSensing (MCS) [2], a novel sensing
mechanism that has been presented in recent years, it

serves the vital purpose of exploiting the ubiquitous mobile
devices carried by users in order to provide complex com-
putation and sensing services. Unlike traditional sensing
methods which rely on the static sensors or specialized mon-
itoring stations (even need the dedicated staffs), in MCS, any
human can perform the sensing tasks at various times and
places, with the help of their mobile devices represented
by smartphones. Nowadays, many urban tasks, such as
environment and traffic monitoring, could be addressed
perfectly by using MCS [3].

MCS would provide great convenience services, when
it has the effective users. Obviously, user selection is the
foundation of MCS and there has been so much research
on it [4–13]. In these works, researchers mainly focused
on the user selection over opportunistic networking [4, 7],
and the similar scenes like piggyback [10], vehicle-based
[8], and self-organized MCS [5] also had been proposed.
Recently, the realistic settings on the sensing tasks, including
deadlines [6], multi-task [11] and heterogeneous sensing
tasks [12], have been further studied. In this paper, we focus
on the sensing tasks which are heterogeneous in terms of
spatial-temporal dimensions in MCS, called Heterogeneous
MCS (H-MCS). Specifically, the spatial-temporal-sensitive
tasks can have different spacial and temporal requirements
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Fig. 1: An example of H-MCS: The requester wants to know
the queuing situation at 12:00. The users who will arrive at
any other time are of no help.

and various sensing periods, and users need to perform the
sensing tasks within the required times and locations. An
example (Fig. 1) illustrates the generality of H-MCS: The
MCS server wants to know the queuing situation at 12:00 in
the restaurant. Thus, it needs to recruit the users who will
reach the restaurant at 12:00. While the users who arrive at
any other time are of no help. Therefore, a higher request is
made for the user selection of H-MCS.

To solve this problem, we mainly face two challenges:
how to measure which user is better and how to select a
suitable user set. For the first challenge, we consider that the
users who would satisfy the spatial-temporal requirements
are the better ones, that is, we recruit the users who can
reach the locations at required times. However, previous
studies do not consider the temporal and spatial require-
ments adequately (e.g., [4–9]). Some studies present the
user selection algorithms based on the known and prede-
termined user mobility (e.g., [4, 9]), and some researches
have tried to use the predicted or probabilistic trajectories[4–
6, 11, 12]. However, these predicted or probabilistic trajecto-
ries can hardly be obtained and applied well in practical set-
tings. On the one hand, the fine-grained mobility prediction
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is difficult, especially for the large-scale MCS applications.
On the other hand, it would cost a lot on personalized
mobility prediction, especially for a large number of users.
Additionally, the privacy issues also need to be noticed.

Even after we obtain the trajectories, we still face the
second challenge: how to select a suitable user set? Most of
previous studies use the greedy heuristics to select users
based on their utility functions, while these works are
typically used in offline scenario, i.e., selecting users with
the global information. We believe that the online scenario
where we make the decisions without the benefit of future
information, is the most relevant to MCS applications. In
online case, tasks and users would be coming in real time
and we must decide whether to select the user or not
immediately, which is so difficult to deal with.

In this paper, we focus on the two challenges above,
and propose a user selection framework for H-MCS, called
Crowd UserS. We first utilize a simplified but effective point
of interest (PoI) based prediction model to make the mobil-
ity prediction with better precision and less computation,
and propose a greedy offline user selection algorithm. Then,
we extend the problem to the online setting and propose
an online algorithm to make it more practical. Finally, we
present the distributed user selection framework Crowd
UserS and implement a prototype system.

For mobility prediction, we first simplify the mobility
prediction to PoI based prediction, by using the semi-
Markov mobility prediction model, which uses landmark
trajectory prediction to determine the probability distribu-
tion of the user’s arriving at some landmarks for each time
unit [1, 14, 15]. Using this prediction model, we can ignore
the trajectories at other places but focus on the small areas
containing the locations of sensing tasks, i.e., PoI. Thus, we
only consider the users’ movements among PoIs and make
predictions on PoIs. This prediction model helps us obtain
the probabilistic results with better precision and less com-
putation. Then, we consider whether the user could perform
sensing task on time as a probabilistic problem. Moreover,
different from previous studies [5, 6, 8, 9, 11, 12, 16], we
further take the uploading problem into consideration and
present two uploading ways (cellular links and collection
points) for two common kinds of tasks (time-sensitive tasks
and delay-tolerant tasks) [16]. For time-sensitive tasks, users
need to upload the sensing data immediately after perform-
ing sensing tasks, thus they should use the cellular links. For
delay-tolerant tasks, users can hold and upload the sensing
data before the deadline, thus they would like to use free
collection points, such as WiFi and Roadside APs, in order
to reduce their costs. In summary, with the help of PoI
based prediction model, we obtain the probabilities that the
users complete (perform and upload) the spatial-temporal-
sensitive sensing tasks.

For user selection, we would like to select a set of users
based on the mobility prediction. The selected users would
collaboratively perform sensing tasks as many as possible
under a participant number constraint. Actually, the user
selection problem is an NP-hard problem. We design a
greedy offline algorithm to solve it, with a competitive ratio
of 1 − f(umax)

f(µ∗)−|µ| . Furthermore, we extend the problem to
a more general online scenario, where users come in real
time and we decide to select or not immediately. We cast the

dynamic user selection problem as a variant of the secretary
problem and propose an online algorithm to select users by
stages, with an approximation ratio of 1−1/e

7 .
Additionally, combining the mobility prediction and

user selection algorithms, we present a distributed frame-
work, called Crowd UserS, in which users could make their
own predictions and only need to return the probabilities.
This distributed user selection framework not only reduces
the centralized computing but also protects privacy up to a
certain point. Finally, we also implement a prototype system
to evaluate the performance.

The main contributions of this paper are briefly summa-
rized as follows:

• We present a Heterogeneous Mobile CrowdSens-
ing system model in which the tasks have diverse
spatial-temporal requirements. We simplify the mo-
bility prediction to point-of-interest (PoI) based pre-
diction, and obtain the probabilities that the spatial-
temporal-sensitive tasks will be completed on time.

• We formulate a new prediction based user selection
problem with a participant number constraint and
prove the NP-hardness. We propose an offline greedy
user selection algorithm, with an approximation ratio
of 1− f(umax)

f(µ∗)−|µ| . Furthermore, we extend our problem
to a more realistic scenario where the tasks and users
would be coming in real time and we must decide
whether to select the user or not immediately. We
propose an online algorithm to deal with it, with an
approximation ratio of 1−1/e

7 .
• We propose Crowd UserS, a distributed user selection

framework for H-MCS, which reduces the central-
ized computing and partially protects privacy by us-
ing the distributed storage and computing architec-
tures. In addition, we implement a prototype system
on the Android platform.

• We evaluate the proposed algorithms on three real-
life traces and the results show that our algo-
rithms achieve better performances than the statisti-
cal and random selection strategy, even have good
enough performances compared with the strategy
with known user mobility.

The remainder of the paper is organized as follows.
Firstly, we review related works in Section 2. Then, the
system model and the problem formulation are introduced
in Section 3. In Section 4, we focus on the PoI based mobility
prediction. The offline/online user selection algorithms are
proposed in Section 5 and 6, respectively. The framework
and prototype system will be shown in Section 7. Finally, the
performance is evaluated through extensive simulations in
Section 8, and we discuss and conclude this paper in Section
9 and 10.

2 RELATED WORKS
2.1 User Selection
Recently, many researchers take part in the study of user
selection in Mobile CrowdSensing. Merkouris Karaliopou-
los et al. [4] use opportunistic networking techniques to
address the user selection problem and formulate the prob-
lem as instances of the minimum cost set cover problem.
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Furthermore, they prove the NP-hardness of the problem
and propose practical greedy heuristics. Zongjian He et al.
[8] propose a greedy approximation algorithm and a ge-
netic algorithm for the user selection problem in vehicular
networks based on the predicted trajectories. Lingjun Pu
et al. [5] propose a novel framework called Crowdlet for
self-organized mobile crowdsourcing and formulate an on-
line multiple stopping problem formulation to dynamically
select better users. Mingjun Xiao et al. [6] further study the
deadlines of tasks and design a submodular utility function.
Moreover, they extend the user selection problem to the
case where the sensing duration is taken into consideration,
and propose the approximation algorithm. In these works,
researchers focus on the locations but ignore the complex
but practical temporal requirements of tasks (e.g., beginning
and ending time). Therefore, the existing methods cannot
deal with our problem as the user selection algorithm in
H-MCS is quite different.

Among the existing works, some works notice the var-
ious spatial-temporal requirements and sensing periods.
Hanshang Li et al. [12] focus on a new dynamic selection
problem for spatial-temporal-sensitive mobile crowdsensing
tasks, with a goal of minimizing the sensing cost while
satisfying certain levels of coverage. In this work, sensing
tasks can arrive at any time and may have various tempo-
ral/spatial requirements and with various sensing periods.
They formulate the dynamic participant recruitment prob-
lem with spatial-temporal-sensitive sensing tasks in a large-
scale piggyback Mobile CrowdSensing system and propose
three greedy algorithms (one offline and two online) to
tackle it. Yan Liu et al. [11] propose two greedy-enhanced
genetic algorithms to deal with the multi-task user selection
problem for time-sensitive tasks and delay-tolerant tasks
respectively. For time-sensitive tasks, it performs Participa-
tory Sensing and the goal is to minimize the total moved
distance. For delay-tolerant tasks, it performs Opportunis-
tic Sensing and the goal is to minimize the total number
of workers. These works consider the complex but actual
spatial-temporal requirements of the tasks and continue to
study the user selection problem in depth. However, the pre-
dicted or probabilistic trajectories used in these works can
hardly be obtained and applied well in practical settings,
since the fine-grained and personalized mobility prediction
is so difficult in MCS and the privacy issues also need to be
noticed. In our work, we simplify the mobility prediction to
PoI based prediction and obtain the probabilistic utility of
users to select better user sets, in which users perform the
tasks in collaboration.

En Wang et al. [15] use the similar idea of PoI based
mobility prediction and propose the efficient prediction-
based user recruitment strategy for mobile crowdsensing,
which mainly concerns the cost of data uploading. In this
work, users are divided into two groups: Pay as you go
(PAYG) and Pay monthly (PAYM). A PAYG user can forward
and upload the sensing data freely when he/she encounters
a PAYM user. Then they formalize this user recruitment
problem as recruiting the user of the highest contact prob-
ability with PAYM users and propose the prediction based
strategy. This work mainly focuses on the forwarding and
uploading but less on the spatio-temporal-sensitive tasks,
which is quite different from our work.

2.2 Frameworks in Mobile CrowdSensing
As mentioned above, many researchers pour their time
and energy into the study of user selection and propose
some novel frameworks for mobile crowdsensing. Bin Guo
et al. [16] focus on the multitask-oriented worker selection
framework, called ActiveCrowd. Lingjun Pu et al. [5] present
a QoS-oriented self-organized mobile crowdsourcing frame-
work, called Crowd Foraging, where a mobile user can
self-organize her task crowdsourcing in realtime. In these
frameworks, they carefully consider the user recruitment
process and propose their novel frameworks. However,
their frameworks have strong restrictive conditions and lack
consideration for the centralized and privacy issues. Some
distributed and privacy-preserving frameworks [17, 18]
have been proposed to solve these issues. In this paper, we
carefully consider the user selection process and design the
system architecture of the Crowd UserS framework. Then we
deal with the centralized and privacy issues by using the
distributed storage and computing architecture. Finally, a
prototype system is implemented on the Android platform.

3 SYSTEM MODEL AND PROBLEM FORMU-
LATION
In this section, we introduce the spatial-temporal-sensitive
mobile crowdsensing, followed by the formulation of user
selection problem.

3.1 System Model
We consider a spatial-temporal-sensitive mobile crowd-
sensing scenario where sensing tasks have the diverse re-
quirements of times and places. More specifically, some
requesters want to get some timely sensing data, then
launch many sensing tasks with different spatial-temporal
requirements, denoted by S = {s1, s2, ..., sm}. These tasks
could be aggregated into different PoIs according to their
locations, and the set of PoIs can be denoted by L =
{l1, l2, ..., lL}. Hence, each task si can be seen as a three
tuple < li, tsi, tei >, in which tsi and tei represent the
beginning time and ending time, respectively.

Note that the PoIs can be seen as some small areas, and
the area size could be set at a suitable value, e.g. 300m2,
which is available for a user to perform tasks1. Reaching
one PoI means users can perform the tasks in this area.
We believe that this setting is realistic, since the target
sensing locations in most MCS applications actually can
be seen as some PoIs. For the area surveillance tasks, such
as environment monitoring, the sensed values in one small
area are almost the same, which makes it a PoI by definition.
For the location aware tasks, such as the example of the
queuing situation at 12:00 in Fig. 1, the setting of PoI is also
realistic, since users would be glad to walk a short distance
to perform the task in its PoI under the incentive. In fact,
the setting of PoI is very helpful for MCS in dealing with
the position error and protecting privacy partially.

1. The size configuration is an important research problem, while it
is not the main concern of this paper. The large PoIs may lead to the
rough prediction and the small PoIs would increase the computation
overhead. In this work, we set the size to 300m2, since it is the
suitable distance with no overlap. We also add some experiments to
test different PoI radiuses.
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Then, we consider that many users move around in
the scenario, denoted by U = {u1, u2, ..., un}. If the user
has been selected, the reward should be given to cover
his cost and encourage his participation [19]. The reward
is difficult to determine and many studies focus on the
incentive mechanism. To simplify, we assume the users have
the same reward2, denoted by c, and it could incent the user
to perform tasks. Thus, the budget constraint in this pa-
per can be simplified to the participant number constraint,
shown as k = bB/cc. After performing the sensing task, the
uploading problem also needs to be considered. We present
two uploading ways, cellular links or collection points. For
cellular links, it means that users upload data through
cellular networks by their mobile devices. For collection
points, it means that users hold the data until they reach
some small areas where users can upload data for free, such
as a shopping mall with free WiFi. Thus, we consider these
free collection points as PoIs and users can upload the data
at these collection points. Then, the H-MCS is conducted as
follows.

To begin with, the task requesters need some timely
sensing data and they launch the sensing task set S . Note
that S may change since requesters could launch tasks at
any time. Each task si has its own attributes, < li, tsi, tei >.
Mobile users who are willing to participate in crowdsensing
have been added to the candidate set U . They move around
in the network and may arrive at the PoIs L at particular
times t. We should notice that if and only if the mobile user
uj arrives li at time t ∈ [tsi, tei], uj has the ability (or will-
ingness) to perform the task si. Then, the user would upload
the data over the cellular link directly or hold and upload
the sensing data when he arrives at the free collection point
wk. We define the probability of uj performing with si
and uploading the sensing data as P (uj , si), which can
be derived from the PoI based Mobility Prediction Model.
Finally, using the probabilitiesP , we can obtain the expected
numbers of tasks completed (i.e., performed and uploaded)
by the users. Then the requesters would select at most k
users to collaboratively complete tasks as many as possible
under a budget constraint B and the users’ cost c. Note that
the requesters should get higher revenues than what they
paid, otherwise the requesters would not launch tasks and
recruit the users.

3.2 Problem Formulation

After introducing the system model above, we focus on
the user selection problem in H-MCS. In order to close to
reality, we consider that the requesters usually launch so
many tasks and some of them would not be completed.
The reasons are manifold, e.g. remote locations, strict time
limits, special sensing equipment and so on. Therefore, the
objective in H-MCS is actually to complete more tasks,
which is realistic. Meanwhile, mobile crowdsensing places
an emphasis on ”Crowd”, which means that there are so
many users willing to participate in crowdsensing. Nor-
mally, the requesters do not have such a large budget to

2. The setting of reward is not the point of this article, and the
different rewards can also be introduced to our problem. We can add
the reward as the divisor at our utility function, thus we can select the
user who contribute more and cost less.

recruit all of the users. Hence, the question is coming: How
to select a user subset µ ⊆ U to complete the most tasks under
a budget constraint? Then, the user selection problem in H-
MCS can be formalized as follows:

maximize Σsi∈SE(si, µ) (1)
s.t. µ ⊆ U (2)

Σui∈µc ≤ B (3)

Here, E(si, µ) is the expected probability that the users
in the selected set µ will complete the task si. Note that
each task si has its own beginning and ending time, and it
is so hard to consider all the spatial-temporal requirements
in union. We could use the PoI based mobility prediction
model to get the expected probability E(si, µ), which will
be discussed at length in Section 4.

4 POI BASED MOBILITY PREDICTION
In this section, we focus on the PoI based mobility prediction
in spatial-temporal-sensitive mobile crowdsensing.

4.1 Mobility Prediction Model
As mentioned above, we present a complex but practical
system model, where the sensing tasks have many spatial-
temporal requirements. It is difficult to select users who
can satisfy these spatial-temporal requirements directly, and
using the users’ mobility may be a possible solution. Some
researches have tried to use the predicted or probabilis-
tic trajectories or the statistical results of workers’ history
records. However, these predicted or probabilistic trajec-
tories can hardly be obtained and the statistical results
cannot provide the good enough predictions in practical
settings. On one hand, the fine-grained mobility prediction
is difficult, especially for the large-scale MCS applications.
On the other hand, it would cost a lot on personalized
mobility prediction, especially for a large number of users.
Additionally, the privacy issues also need to be noticed.

In light of these problems, we propose the PoI based mo-
bility prediction model for spatial-temporal-sensitive mobile
crowdsensing. The basic idea is to simplify the common
prediction model from the full map to some small areas
containing the locations of sensing tasks, i.e., PoIs. This
setting is suitable for MCS, since the target sensing locations
in most MCS applications actually can be seen as some
PoIs. For the area surveillance tasks, such as environment
monitoring, the sensed values in one small area are almost
the same, which makes it a PoI by definition. For the location
aware tasks, such as the example of the queuing situation
at 12:00 in Fig. 1, the setting of PoI is also realistic, since
users would be glad to walk a short distance to perform
the task in its PoI. In fact, the setting of PoI is very helpful
for MCS in dealing with the position error and protecting
privacy partially. Under this setting, we only need to make
the predictions on several PoIs while ignore the useless
predictions.

Note that the size and spatial distribution of the PoIs
are not regular, the location based mobility prediction may
be not suitable. While the PoIs can be seen as the states,
then the users’ movements among PoIs can be seen as the
transitions between states, and the Markov Models may
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behave better. Thus, in this work, we use the Semi-Markov
Process Model [14, 15, 20] and focus on the time-dependent
transition probabilities between states. The associated time-
dependent semi-Markov kernel Z(·) is defined by Eq. (4).

Zu(i, j, T ) =P (Sn+1
u = j, tn+1

u − tnu ≤ T |S0
u, ..., S

n
u ;

t0u, ..., t
n
u)

=P (Sn+1
u = j, tn+1

u − tnu ≤ T |Snu = i) (4)

Zu(i, j, t) is the probability that user u will move from
his current PoI i to his next PoI j at, or before time T . Su
indicates the user’s sequence of PoIs and tu is corresponding
arrival times. Note that user’s next PoI is associated with
his current location and we can derive the probability P
from the statistical results of user’s history records. Then
we obtain another kernel Q(·), denoted by Eq. (5).

Qu(i, j, T ) =



ΣLl=1ΣTt=1(Zu(i, l, t)− Zu(i, l, t− 1))·
Qu(l, j, T − t), i 6= j

1− ΣLl=1,l 6=iZu(i, l, T )+

ΣLl=1,l 6=iΣ
T
t=1(Zu(i, l, t)− Zu(i, l, t− 1))·

Qu(l, i, T − t), i = j
(5)

Note that mobile users cannot move from one PoI to
another in T = 0, so that we obtain Qu(i, i, 0) = 1 and
Qu(i, j, 0) = 0(i 6= j). In fact, Q(·) is a recursive function
and indicates the probability that user u will move from
the PoI i to j just at the time T . When i 6= j, we consider
the relay state transitions as i → k → j and obtain the
total probability. When i = j, we further consider the PoI
sojourn probability. Finally, we get the Q(·) representing the
probabilities that user arrive PoIs at some time. Then we can
use the probabilities to calculate the expectation of users’
contribution, that is, the users’ utility value.

4.2 User Utility

As mentioned in problem formulation, the contribution,
i.e., the expected number of tasks completed by the se-
lected users, can be seen as the utility value, denoted by
Σsi∈SE(si, µ). In it, E(si, µ) denotes the expected prob-
ability that all the users in µ collaboratively complete
the task si. We consider the users in the selected set µ
are independent. They would perform the same task si
in collaboration. In this case, the probability of complet-
ing the task is actually a joint probability, known as the
joint completing probability. Then, E(si, µ) can be calcu-
lated as Eq. (6).

E(si, µ) = 1−Πuj∈µ(1− P (uj , si)) (6)

Eq. (6) shows that the task will be completed as long as
one of the selected users completes it3. P (uj , si) indicates
the probability of user uj completing task si as mentioned

3. For the tasks which need sensor readings from a larger number of
users, our ‘joint completing probability’ should be modified from ‘at
least 1 user’ to ‘at least k users’, shown as 1 − Πuj∈µ(1 − P (uj)) −∑
µ̂∈µ,|µ̂|=k Πuk∈µ̂P (uk) ·Πuj∈µ\µ̂(1−P (uj)). Note that the compu-

tation overhead will rapidly increase along with the growth of number
of users, which may be not suitable in MCS.

above. The temporal and spatial requirements will be satis-
fied by P (uj , si). It can be calculated by the Q(·) in the PoI
based mobility prediction model.

Different from previous studies, we consider that com-
pleting a task means not only performing but also up-
loading the sensing data. We believe that the uploading
process is necessary and practical to be considered. As
mentioned above, we present two uploading ways: cellular
links and collection points for two common kinds of tasks,
time-sensitive tasks and delay-tolerant tasks [16]. For time-
sensitive tasks, users need to upload the sensing data imme-
diately after performing sensing tasks, thus they should use
the cellular links. For delay-tolerant tasks, users can hold
and upload the sensing data before the deadline, thus they
would like to use free collection points in order to reduce
their costs.

From the perspective of mobility, the main difference
between the two uploading ways is that users need to
move to one free collection point after performing tasks.
Note that we do not propose to use ad-hoc connections to
transfer the sensed data to the free collection point, since
this method may cost a lot on the transmissions and the
connecting predictions may cause privacy issues. Thus, two
uploading ways should have different P s. In other words,
where and how to upload the sensing data has a great
influence on P (uj , si). Users may upload data directly over
the cellular infrastructure or hold and upload it when they
reach the free collection points after performing the sensing
tasks. If the user uj decides to upload data directly over
cellular links, we just need to consider the probability of
arriving at the destination PoIs in time. If the user chooses
to use the collection points, we should further consider the
probability of arriving at one of the free collection points
after performing task si. Fortunately, all the results are
probabilistic and we could obtain a unified representation,
P (uj , si). We will discuss them as follows.

4.2.1 Mobile CrowdSensing over the cellular infrastructure
Most of existing works on mobile crowdsensing assume that
mobile users upload their sensing data from PoIs through
the cellular link immediately. In this case, we only take the
”perform” into account while not being distracted by the
uploading. Then, P (uj , si) can be calculated by Eq. (7).

P (uj , si) = 1−Πtei
t=tsi(1−Quj

(lj , li, t)) (7)

Quj (lj , li, t) is the probability that user uj moves from
its current location lj to task location li at time t. It can
be obtained by the mobility prediction model. We calculate
P (uj , si) by using Quj (lj , li, t) and consider the temporal
requirements as variables. Then, the different tasks with dif-
ferent requirements can be considered in union. Here, when
user uj arrives at the task PoI li during the task’s lifetime
[tsi, tei], he could perform the task. After performing the
task successfully, user uj will upload the sensing data to
requesters directly through the cellular link, such as 4G.

4.2.2 Mobile CrowdSensing over the collection points
Most tasks in mobile crowdsensing need a large number of
sensing data. Obviously, it costs too much when the users
upload data through the cellular link directly. Many tasks
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have real-time requirements as we discussed above. Hence,
many solutions have been introduced to reduce the costs
and meet the real-time requirements [10, 21]. Among them,
Merkouris Karaliopoulos et al. [4] propose that users could
hold and upload the sensing data when they reach free col-
lection points, such asWiFi andRoadsideAPs. In this case,
users will perform the sensing tasks successfully first. Then,
they should hold and upload the data later when they reach
the collection points. As introduced above, we represent the
set of collection points by using W = {w1, w2, ..., wW }.
Here, we should further consider that users with sensing
data need to move to one of the collection points, wk. As
shown in Eq. (6) and Eq. (7), users arriving at PoIs at
different times can be seen as independent events. Hence,
we define the probability that users will move to collection
points in time as the following equation:

R(uj , si, tji) = 1−Πtei
t=tji(1− C(uj , li, t− tji)) (8)

Eq. (8) shows that uj moves from the destination PoI of
task si to the collection points before the task’s deadline,
tei. Note that tji denotes the time when uj performs task
si, and the expression t = tji means uj moves to collection
points from the time tji. Specifically, we consider that the
PoI li and a collection point wk may have the same location.
In this case, it is equivalent for users to upload data through
cellular infrastructures. As a result, we use the equal sign
here.

Meanwhile, C(uj , li, t) is the probability that user uj
moves from task location li to any of the collection points.
Assuming that there is no overlap between the collection
points, it can be seen as an exclusion event that users arrive
at different collection points at the same time. Then, we
obtain C(uj , li, t) by using Q(·) as follows:

C(uj , li, t) =
∑
wk∈W

Quj (lj , wk, t) (9)

Note that we use li as the initial state of user uj . If li
and wk may have the same location, we can obtain that
Quj

(li, li, 0) = 1. That is to say that user uj can upload
his sensing data directly through the collection points at the
same location.

Then, P (uj , si), the probability of performing the task
and uploading the data can be rewritten by using Eq. (10).

P (uj , si) = 1−Πtei
t=tsi(1−Quj

(lj , li, t) ·R(uj , si, t)) (10)

Here, when user uj arrives at the task PoI li during
the task’s lifetime [tsi, tei], he could perform the task.
After performing the task successfully, user uj will move
to any collection point and upload the sensing data to
requesters through the free collection points, such as WiFi
and Roadside APs.

In summary, we could calculate P (uj , si), the probability
that user uj will complete the task si, through whether
we upload data over cellular links or collection points.
Using the probabilistic expression P (uj , si), we can get the
expected number of tasks completed by a selected user set,
which is defined as Σsi∈SE(si, µ), i.e., the users’ utility
function. To simplify the notation, we define our objective
function, Σsi∈SE(si, µ) = f(µ). We use the Q(·), obtained

Algorithm 1 The g-MUS Algorithm
Input: S : a set of tasks, U : a set of users with their Q, k:

the maximum number of selected users, k = bB/cc, φ: the
available user set
Output: µ: the selected user set
1: Calculate Q for each use
2: Initialize φ = U and µ = ∅
3: while |µ| < k do
4: Select one user ui from φ to maximize θui = f(µ ∪
{ui})− f(µ)

5: Update µ = µ ∪ {ui} and φ = φ \ {ui}
return µ.

from PoI based mobility prediction model, to deal with the
various temporal and spatial requirements of tasks in union
by using P (uj , si). Based on that, we propose a greedy
offline user selection algorithm to select a user set that will
complete as many tasks as possible. Furthermore, we extend
the scenario to a more general one and propose an online
algorithm. We will discuss the two algorithms at the next
section.

5 OFFLINE USER SELECTION

In this section, we analyze the hardness of user selection
problem in spatial-temporal-sensitive mobile crowdsensing,
and then present a greedy offline algorithm.

5.1 Problem Hardness
Before introducing the proposed greedy algorithm, we first
prove the NP-hardness of the user selection problem in H-
MCS, as shown in the following theorem.

Theorem 1. The prediction based user selection problem in H-
MCS is NP-hard.

Proof. The foundation of user selection problem in our pa-
per is PoI based mobility prediction, for which we could
consider a special case, that is to give the predetermined mo-
bility information. Here, we could get Quj

(lj , li, t) ∈ {0, 1},
which means that user uj would reach li at t or not. Simi-
larly, P (uj , si) ∈ {0, 1} means uj would complete the task
si or not. Then, we can get the task set ”covered” by user
uj , denoted as Sj . If the tasks have the same cost, we could
select k users under the participant number constraint.
Then, the problem is indeed a classic NP problem, Max
k-cover [22]: given a collection of task set {S1, S2, ..., Sn},
each task set will cover several tasks Sj = sj1, sj2, ..., then
the objective is to select k sub-collections of {S1, S2, ..., Sn}
to cover the most tasks. That is to say, the special case is
NP-hard. Consequently, the prediction based user selection
problem is also at least NP-hard. The theorem holds.

5.2 Greedy Algorithm
The prediction based user selection problem in H-MCS is
NP-hard and there are so many sub-collections which con-
form to the participant number constraint. In other words,
the user selection problem has such a large solution space
that performing an exhaustive search is not feasible. Hence,
we use the greedy heuristic strategy to approximately solve
the problem.
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Now we are ready to describe our greedy user selection
algorithm based on mobility prediction, called g-MUS, as
shown in Algorithm 1. First of all, we should get theQ(·) for
each user and use it to predict the user’s PoI based mobility
(line 1). We can obtain the result by processing the history
spatial-temporal traces according to Eq. (4) and Eq. (5). We
initialize the available user set and selected user set (line
2). Our algorithm will select one of the available users in
each iteration of the while-loop (line 3 to 5). The selected
user in each round should have the maximum gain θui

=
f(µ∪{ui})−f(µ) = Σsi∈SE(si, µ∪{ui})−Σsi∈SE(si, µ),
in which E(·) is calculated based on Eq. (6) and Q). The
maximum gain ensures that we select the one who will
contribute the most in collaboration with the selected users
(line 4). After one user has been selected, we update the
selected set and available set, respectively. Finally, we obtain
the selected user set.

5.3 Performance Analysis

Mobility prediction is the basis for our user selection algo-
rithms, in other words, the performance analysis depends
on the ideal assumption of perfect mobility prediction. To
simplify the notation, we use f(µ) to replace Σsi∈SE(si, µ),
as defined above. We first prove the property of the objective
function.

Theorem 2. 1)f(∅) = 0; 2)f(µ) is increasing and submodular.

Proof. 1) µ = ∅ means that no user has been selected and no
one would perform tasks. Then, E(si, ∅) = 0 for each si ∈
S , according to Eq. (6). Thus, f(∅) = Σsi∈SE(si, ∅) = 0.
2) We first prove that f(µ) is an increasing function. Without
loss of generality, we have two user subsets, µ1 and µ2 and
µ1 ⊆ µ2. Then, we obtain the Eq. (11) for each si ∈ S . Here,
we define that µ3 = µ2 \ µ1 and P (uj , si) can be calculated
by Eq. (7) and Eq. (10) according to their uploading ways.
While P (uj , si) represents the probability of uj performing
si and uploading the sensing data, we can get that 0 ≤
P (uj , si) ≤ 1 (∀ uj ∈ U , si ∈ S), according to Eq. (7) and
Eq. (10). Then, E(si, µ1)−E(si, µ2) ≤ 0 for each si ∈ S and
Σsi∈SE(si, µ1)− Σsi∈SE(si, µ2) ≤ 0. Therefore, f(µ) is an
increasing function.

E(si, µ1)− E(si, µ2)

=(1−Πuj∈µ1(1− P (uj , si)))− (1−Πuj∈µ2(1− P (uj , si)))

=Πuj∈µ2(1− P (uj , si))−Πuj∈µ1(1− P (uj , si))

=Πuj∈µ1(1− P (uj , si)) · (Πuj∈µ3(1− P (uj , si))− 1) ≤ 0
(11)

Similarly, we prove the f(µ) is submodular. Here, we
define ui ∈ U \ µ2, and obtain Eq. (12).

(f(µ1 ∪ {ui})− f(µ1))− (f(µ2 ∪ {ui})− f(µ2))

=(Σsi∈SE(si, µ1 ∪ {ui})− Σsi∈SE(si, µ1))−
(Σsi∈SE(si, µ2 ∪ {ui})− Σsi∈SE(si, µ2))

=Σsi∈S(Πuj∈µ1(1− P (uj , si)) · P (ui, si)−
Πuj∈µ2(1− P (uj , si)) · P (ui, si))

=Σsi∈SΠuj∈µ1(1− P (uj , si)) · P (ui, si)·
(1−Πuj∈µ3(1− P (uj , si))) ≥ 0 (12)

As discussed above, we know that 0 ≤ P (uj , si) ≤ 1
(∀ uj ∈ U , si ∈ S). Then, we obtain that f(µ1 ∪ {ui} −
f(µ1) ≥ f(µ2 ∪{ui})− f(µ2) according Eq. (12). Therefore,
the submodular property of f(µ) holds.

Now, we can give the approximation ratio of the greedy
strategy by the following theorem.

Theorem 3. The proposed greedy strategy can achieve a (1 −
f(umax)
f(µ∗)−|µ| )-approximation solution, where umax is the best user
in the first round of the greedy strategy and µ∗ is the optimal user
set.

Proof. Let u1, u2, ..., uk be the sequence of users selected by
the greedy strategy, uk+1 is the next one if we have a larger
budget, and their costs are c1, c2, ..., ck, ck+1. Set µ0 = ∅
and µi = uj : 1 ≤ j ≤ i. µk is the selected subset under the
budget B. Then, we obtain that for each 1 ≤ i ≤ k,

f(µi−1 ∪ {ui})− f(µi−1)

ci

≥maxu∗∈µ∗
f(µi−1 ∪ {u∗})− f(µi−1)

c∗

≥
∑
u∗∈µ∗(f(µi−1 ∪ {u∗})− f(µi−1))∑

u∗∈µ∗ c∗

≥f(µ∗)− f(µi−1)

B
(13)

Note that the optimal solution also has the same budget
constraint, so we have

∑
u∗∈µ∗ c∗ ≤ B. Also, the function

f(µ) is submodular according to Theorem 2. Thus, the last
inequality in Eq. (13) holds. Then, we obtain the cost of ui
and the total costs of µ,

ci ≤
B

f(µ∗)− f(µi−1)
· (f(µi−1 ∪ {ui})− f(µi−1)) (14)

Then, we could get the total costs of the selected subset
µ. We add all the costs in µ and the extra ck+1 together to
get the lower bound B,

B <
∑
ui∈µ

ci + ck+1

≤ B

f(µ∗)− f(µk−1)
· (f(µk−1 ∪ {uk})− f(µk−1)) + ...+

B

f(µ∗)
· f(umax)+

B

f(µ∗)− f(µk)
· (f(µk ∪ {uk+1})− f(µk)) (15)

Here, µk is the selected subset under the budget B. If
we add the extra user uk+1, the total costs should be out of
the budget, then the Eq. (15) holds. Note that umax have the
biggest f(u), so we obtain the Eq. (16).

B <
B

f(µ∗)− f(µk)
· f(umax) + |µ| · B

f(µ∗)
· f(umax) (16)

The objective is to get the relationship between f(µk)
and f(µ∗), so we simplify the Eq. (16). As mentioned in the
framework model, requesters should get higher revenues
than what they paid, which means f(µ∗)

|µ| > 1. So, we have
f(µ∗)− |µ| > 0 and obtain the Eq. (17).

f(µk) > (1− f(umax)

f(µ∗)− |µ|
) · f(µ∗) (17)
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Fig. 2: Illustration of offline/online user selection: (a)offline: users and tasks are predetermined before the start of MCS;
(b)online: tasks and users would be coming in real time and we must decide whether to select the user or not immediately.

Thus, the approximation ratio is 1− f(umax)
f(µ∗)−|µ| , according

to the Eq. (17). The theorem holds.

In brief, the greedy criterion of our algorithm is to select
the user who contributes the most with the least cost first.
The complexity of the user selection algorithm consists of
two parts, the PoI based mobility prediction model and the
iterative selection process. For mobility prediction, we get
the size per user of the Q matrix (L2T ), where L is the
number of PoIs and T donotes the prediction window. As
shown in Eq. (5), calculating Q(·) is actually an iterative
process. These results will be very sparse in the real world
[14] and could be done before the user selection. For the
iterative selection process, the computation overhead is
dominated by Line 4, and the worst case is O(n2mT ). Here,
T is the lifetime of tasks and is relevant to the prediction
window.

6 ONLINE USER SELECTION

In this section, we extend our problem to a more practi-
cal scenario, called online scenario, where tasks and users
would be coming in real time and we must decide whether
to select the user within a short time.

6.1 Online Scenario

In our initial problem, we consider that all the users and
tasks are predetermined before the start of MCS, and no
further tasks and users can come after MCS starts. Then,
the server uses the offline user selection algorithm to select
some users to perform these predetermined tasks, as shown
in Fig. 2 (a). The offline algorithm works well when the
mobile crowdsensing is scheduled before the beginning.
However, in real world, the tasks and users could arrive at
any time. Moreover, the users would like to know whether
to be recruited or not within a short time after they are
coming. Hence, we extend our problem to this practical
online scenario where tasks and users would be coming in
real time and we must decide whether to select the user or
not immediately, as shown in Fig. 2 (b).

Note that all the users should record their traces before
participating into MCS, otherwise we cannot do the mobility
predictions and the user selection will make no sense. Also,
users would not participate in MCS all the time. We define
the working time of user as his activetime, and the length
is much less than the total time. We consider that the
users working at different activetimes would cover different

Algorithm 2 The o-MUS Algorithm
Input: S : a set of tasks, U = u1, u2, ..., un: a stream of users

with their Q, sorted by their coming time, k: the maximum
number of selected users, k = bB/cc, l: the length of a phase,
l = dn/ke, ε: the utility threshold
Output: µ: the selected user set
1: Calculate Q for each user.
2: Initialize φ = U , µ = ∅, and i = 0.
3: while i < n do
4: i+ + . ui is coming
5: if k − |µ| ≥ n− i then
6: µ = µ ∪ {ui} . recruit all the rest
7: else
8: if i%l == 1 then
9: ε = 0 . initialize the threshold at a new

segment
10: if i%l ≤ bl/ec then . observe
11: Calculate θui

= f(µ ∪ {ui})− f(µ)
12: Update ε = max{ε, θui

}
13: else if i%l > bl/ec then . select
14: Calculate θui

= f(µ ∪ {ui})− f(µ)
15: if θui

≥ ε then
16: Update µ = µ ∪ {ui}
17: i = l · |µ|+ 1 . ignore the rest in this

segment
18: Continue

return µ

sensing tasks. Thus, we ignore the coming times but focus
on how many tasks could be ”covered” by users, that is, the
contributions obtained by Eq. (6) and Q. Then, we can use
the results to determine whether to select or wait for a better
one.

6.2 Online Algorithm

The user selection problem in online scenario is much more
challenging. When a user connects to the server, we have to
decide whether to recruit or not immediately, without the
knowledge of future users. Moreover, the users perform the
sensing tasks collaboratively, which means that the selected
users would influence the next selection (i.e., the submod-
ular objective function f(µ)), and it makes the problem
more complex. Fortunately, the user selection problem is
very suitable to formulate as a variant of famous secretary
problem, submodular secretary problem[23].

The basic form of the secretary problem is to hire the best
secretary out of n rankable applicants. The applicants would
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be coming one by one, and decisions are made immediately.
Once rejected, an applicant cannot be recalled. Further con-
sidering the multiple secretaries and the submodular utility
function, MohammadHossein Bateni et al. proposed the
submodular secretary problem, in order to select k secretaries
so as to maximize the expectation of a submodular function
which defines efficiency of the selected secretarial group
based on their overlapping skills.

In our user selection problem, we consider that a total
of n users will connect to server during the MCS campaign.
Users would be coming in real time and the decisions must
be made immediately after the connection. The goal can
actually be interpreted as to select k = bB/cc users to
maximize the expected number of completed tasks, which
is the same submodular function in offline case, i.e., f(µ).
Then we use the online algorithm for submodular secretary
problem to approximately solve the problem.

The online user selection algorithm is summarized in
Algorithm 2. We partition the n users into k equally-sized
segments, and try to select the best one in each segment4.
Specifically, we should predict the users’ PoI based mobility
first(line 1), which is the foundation. Then, we divide the n
users into k segments with the length l = dn/ke, and wait
for the next user’s coming. If the coming user is the first one
in the segment, we initialize the utility threshold ε = 0 (line
9). In each segment, we observe the first bl/ec users and
update the threshold as the max θui = f(µ ∪ {ui}) − f(µ),
then select the next one who has a larger θui (line 10-18).
Finally, we obtain the selected user set.

6.3 Performance Analysis
The online user selection algorithm actually has the same
goal as the offline case, while adding an ”online” condition
on it. Thus, we have the same objective function f(µ) in
online case, which has been proven as a monotonic increas-
ing submodular function. Let OPT = {ui1 , ui2 , ..., uik} be
the optimal solution obtained. Note that the set i1, i2, ...ik
is a uniformly random subset of 1, 2, ..., n, and the permu-
tation of the selected users is also uniformly random. It is
reasonable since users coming at different time will only
work for a period of time (usually a short time in reality),
thus they would ”cover” (perform) different tasks, which
can be seen as the contributions uniformly according to our
objective function. Under the monotone submodular func-
tion and uniformly random users, our proposed online user
selection algorithm can be proved to achieve an expected
approximation ratio of at least 1−1/e

7 [23].

7 CROWD USERS FRAMEWORK

In this section, we propose Crowd UserS, a prediction-based
user selection frameworkand implement a prototype system
on the Android platform.

7.1 Framework Architecture
The proposed Crowd UserS framework follows the client-
server architecture as illustrated in Fig. 3. Note that the

4. We virtually insert dummy users if n is not divisible by k. Note
that we can not obtain the exact n in real world. It is acceptable that we
estimate or predict n according to the historical data.

Server

Users
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… …

… …

Launch Tasks Upload results

Personal Mobility 
Prediction 

Store

Personal Mobility 
Prediction 

Store

User Selection Store Data Processing

Upload Sensing Data

1.Request P
2.Return P
3.Select Users

Fig. 3: The system architecture of Crowd UserS.

clients have been divided into requesters and users, while
the servers are data centers or clouds.

On the requesters side, the requesters could launch
tasks on the server and get the results they need. We
distinguish them from the server since we would like to
build the Crowd UserS framework as a a general framework
for mobile crowdsensing.

On the server side, the Crowd UserS would show the
tasks launched by requesters. Then, the user selection al-
gorithm should be used to select a better subset of users
to complete the tasks under budget constraints.After the
selected users upload their sensing data, the necessary data
processing would be performed on the server. Finally, the
server would return the results to requesters. In this paper,
we focus on the user selection in mobile crowdsensing.
Note that we have considered the different uploading ways
and offline/online settings, and provide a unified repre-
sentation. Crowd UserS has the flexible transitions on them
according to the user profile or the requirements extracted
from sensing tasks and scenarios.

On the users side, each client is a mobile smart device
carried by a user. When the user is selected, he could per-
form the sensing tasks using his mobile smart device, then
upload the sensing data. Note that each user could record
his personal mobility information and calculate the proba-
bility P locally, which is designed to reduce the centralized
computing and protect privacy partially. Specifically, the
server doesn’t need to know the sensitive information (i.e.,
mobility trace), which would protect privacy up to a certain
point. It just requests P from users. And users can calculate
it on their mobile devices by using the Q(·) function, which
is also stored locally. The mobile devices have sufficient
storage and computing capabilities, since Q(·) will be very
sparse in the real world [14].

7.2 Prototype Implementation

We implement a prototype system of Crowd UserS with three
components: a Web portal (requesters), an application on the
Android platform (users), and a central server (server). Note
that we implement the application on several off-the-shelf
smartphones using Android OS 5.0+, such as Xiaomi Note
and OPPO R9s, according to the framework model shown
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Fig. 4: The system prototype of the Crowd UserS framework.

in Fig. 3. The main interfaces of Crowd UserS are shown in
Fig. 4.

On the server side, the requesters could launch and
modify the sensing tasks by using the Insert, Delete and
Update functions. The server could push the tasks to users
and request the user’s probability P . On the crowd side,
each user has his main page and could modify his user
profiles, such as choosing ”Uploading through the collection
points only” to let the user specify how to upload the sensing
data. When the server sends the tasks to the user and
requests P , the user could get the tasks’ information. If the
user decides to join, his probability P would return to the
server or return 0. Then, the offline greedy algorithm or the
online algorithm would begin to work and provide rewards
for the selected users according to the demand.

8 PERFORMANCE EVALUATION
In this section, we conduct extensive simulations on three
real-life mobile traces to evaluate the performance of our
proposed Crowd UserS.

8.1 Algorithms in Comparison

For the offline case, the user selection problem focuses
on the various spatial-temporal requirements. It is quite a
bit different from the existing works, and as a result, the
previous algorithm cannot be used to solve our problem
directly. In this paper, we design the MAXP algorithm
modified from the related algorithms in [4], [6], and [11]. In
this algorithm, the user mobility has been seen as a statistical
result of a user’s trace to measure the probability that he will
pass by the PoI of a task. Then, the user with the maximum
effective increments will be added to the selected user set
µ in each round. We also implement the random selection
algorithm RAND, and the ideal selection algorithm DUS
with predetermined user mobility [4]. Besides, we use the
suffix -D to represent that users upload the sensing data
directly and the suffix -C means that users should hold and
upload data at some collection points.

For the online case, it is actually an extention of the
offline case on the coming times and prompt decisions. The

online algorithm has the same objective and measurement
of utility with the offline algorithm. Actually, the online
algorithm can be seen as an approximation of the offline
algorithm. We have evaluated the effectiveness of the user
selection algorithm based on mobility prediction over the
different uploading ways in the offline case. Thus, in the
online case, we mainly focus on the comparison between
the online and offline algorithms, i.e., g-MUS and o-MUS,
where the uploading ways are decided by the tasks ran-
domly. In addition, we also implement the random selection
algorithm RAND as a supplement.

8.2 Data Sets and Simulation Configurations
We conduct extensive simulations on three real-life mobile
traces: Feeder [24], Shanghai Traces, and GeoLife [25, 26]. We
will introduce these three traces respectively as follows.

The Feeder dataset contains Taxicab GPS data collected in
Shenzhen, China. It provides better mobility and we select
196 taxis as users because their records are continuous and
have similar periods of time. The 13 most frequently ac-
cessed Points (covered by more than 400 times) are selected
as the PoIs, as shown in Fig. 5.

The Shanghai Traces dataset was collected by the taxis
in Shanghai over several months. The dataset has more than
14700 records and each record represents a taxi trace. We
select part of the records (310 traces) to filter some abnormal
traces and 18 PoIs have also been outlined in red on Fig. 6.

The GeoLife trajectory dataset was collected by 182 users
with a broad range of users outdoor movements. It contains
more than 17, 000 trajectories and has a total duration of
50, 000+ hours, recorded by GPS loggers and phones. We
select 727 traces with continuous and similar periods of time
as users, then the thermodynamic map and the selected 13
PoIs are shown in Fig. 7.

The Feeder and Shanghai Traces datasets were collected by
taxis with strong randomness and The GeoLife dataset with
fine-grained trajectories was collected by mobile phones
carried by users with a larger scale. These three widely-
used datasets can measure the effectiveness of our proposed
algorithms well. The tasks will be generated with different
locations (PoIs) and times. Then, we compare the different
algorithms by using the average number of completed tasks.
The budget constraints (participant number constraints),
the number of tasks, and the lifetimes of tasks would be
considered in the experiments. For the online algorithm, we
evaluate the activetime of users particularly.

8.3 Performances
8.3.1 Offline Algorithm
We evaluate the performances on the Feeder, Shanghai Traces,
and GeoLife in offline case first, as shown in Fig. 8. We
change the lifetime, budget, number of tasks, and number
of collection points, while keeping the others fixed. The
results on three datasets have the similar tendencies and
show the effectiveness of our proposed prediction based
user selection algorithm.

Specifically, our proposed g-MUS algorithm in Crowd
UserS achieves a good performance. It performs better than
the MAXP and RAND algorithm in most of the time. More-
over, compared with the DUS algorithm with the known
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Fig. 5: PoIs selection based on the
Feeder dataset.

Fig. 6: PoIs selection based on the
Shanghai Traces dataset.

Fig. 7: PoIs selection based on the Geo-
Life dataset.

0 100 200 300
0

20

40

60

80

100

120

140  g-MUS-D
 RAND-D
 MAXP-D
 DUS-D
 g-MUS-C
 RAND-C
 MAXP-C
 DUS-C

A
ve

ra
ge

 n
um

be
r o

f c
om

pl
et

ed
 ta

sk
s

Number of tasks

(a) B = 3, lifetime = 200

0 2 4 6

0

20

40

60

80

100

120

140

A
ve

ra
ge

 n
um

be
r o

f c
om

pl
et

ed
 ta

sk
s

Budget constraint

(b) lifetime = 200,m = 200

0 100 200 300

0

50

100

A
ve

ra
ge

 n
um

be
r o

f c
om

pl
et

ed
 ta

sk
s

Average lifetime of tasks (min)

(c) B = 3,m = 200

0 2 4 6

0

10

20

30

40

50

60

70

80

90

A
ve

ra
ge

 n
um

be
r o

f c
om

pl
et

ed
 ta

sk
s

Number of collection points

(d) B = 3, lifetime = 200,m =
200

0 100 200 300

0

50

100

150

 g-MUS-D
 RAND-D
 MAXP-D
 DUS-D
 g-MUS-C
 RAND-C
 MAXP-C
 DUS-C

A
ve

ra
ge

 n
um

be
r o

f c
om

pl
et

ed
 ta

sk
s

Number of tasks

(e) B = 3, lifetime = 200

0 2 4 6

0

20

40

60

80

100

120

140

160

A
ve

ra
ge

 n
um

be
r o

f c
om

pl
et

ed
 ta

sk
s

Budget constraint

(f) lifetime = 200,m = 200

0 100 200 300

0

50

100

150
A

ve
ra

ge
 n

um
be

r o
f c

om
pl

et
ed

 ta
sk

s

Average lifetime of tasks (min)

(g) B = 3,m = 200

0 2 4 6
0

10

20

30

40

50

60

70

80

90

100

110

A
ve

ra
ge

 n
um

be
r o

f c
om

pl
et

ed
 ta

sk
s

Number of collection points

(h) B = 3, lifetime = 200,m =
200

0 100 200 300

0

50

100

150

200

Number of tasks

A
ve

ra
ge

 n
um

be
r o

f c
om

pl
et

ed
 ta

sk
s

 g-MUS-D
 RAND-D
 MAXP-D
 DUS-D
 g-MUS-C
 RAND-C
 MAXP-C
 DUS-C

(i) B = 3, lifetime = 200

0 2 4 6

0

20

40

60

80

100

120

140

160

180

A
ve

ra
ge

 n
um

be
r o

f c
om

pl
et

ed
 ta

sk
s

Budget constraint

(j) lifetime = 200,m = 200

0 100 200 300
0

50

100

A
ve

ra
ge

 n
um

be
r o

f c
om

pl
et

ed
 ta

sk
s

Average lifetime of tasks (min)

(k) B = 3,m = 200

0 2 4 6

0

20

40

60

80

100

120

A
ve

ra
ge

 n
um

be
r o

f c
om

pl
et

ed
 ta

sk
s

Number of collection points

(l) B = 3, lifetime = 200,m = 200

Fig. 8: The simulation results of the Feeder, Shanghai Trace, and GeoLife in offline case.

mobility, the users selected by our algorithm can only
complete 10% to 20% fewer tasks, which also shows that
the PoI based mobility prediction method achieves a good
prediction accuracy. Note that the algorithms with the suffix
-D have the similar trends but relatively poor performances
than the ones with -C. The reason is that the users should
arrive at a PoI and collection points sequentially in most
cases, unless there is one of collection point in the PoI. We
also change the number of collection points in Fig. 8 (d, h,
and l). Along with the increase of collection points, the algo-
rithms with suffix -C perform better and the performances
nearly reach the ones with suffix -D. When there is a free
collection point for every PoI, the algorithms with suffix -C
and -D are actually the same.

In addition, we conduct simulations to evaluate the
approximation ratio of the greedy strategy. We perform

the exhaustive search to get the optimal solution, called
OPT, as the comparison algorithm. The results are shown in
Table 1, where our greedy strategy can achieve the inferred
approximation ratio and matches the result of the theoretical
analysis.

8.3.2 Online Algorithm

Our online algorithm is proposed to deal with the online
problem extended from the offline setting. Actually, the on-
line algorithm is an approximation of the offline algorithm,
but it can achieve an acceptable performance for the online
scenario. We evaluate the performances of three algorithms
(g-MUS, o-MUS, and RAND) on the Feeder, Shanghai Traces,
and GeoLife in online scenario.

We conduct these algorithms by changing the lifetime,
budget, number of tasks, and activetime of users, while
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TABLE 1: The approximation ratio of the offline greedy user selection algorithm.
Feeder, f(µmax) = 24.5 Shanghai Traces, f(µmax) = 41.2 GeoLife, f(µmax) = 43.0

Budget g-MUS OPT Ratio Appr-Ratio g-MUS OPT Ratio Appr-Ratio g-MUS OPT Ratio Appr-Ratio
2 47.5 63.9 0.74 0.60 67.2 81.5 0.82 0.48 59.3 92.3 0.64 0.52
3 66.5 86.9 0.77 0.71 86.4 105.7 0.82 0.60 80.3 103.9 0.77 0.57
4 78.9 99.5 0.79 0.74 104.4 124.3 0.84 0.65 88.4 115.2 0.77 0.61
5 92.6 110.3 0.84 0.77 114.4 136.8 0.84 0.69 93.4 121.9 0.77 0.63
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Fig. 9: The simulation results of the Feeder, Shanghai Trace, and GeoLife in online case.

keeping the others fixed, as shown in Fig. 9. The simulation
results show that o-MUS can achieve a high percentage of
g-MUS and better than RAND in most of time, which shows
the effectiveness of our proposed online user selection algo-
rithm. Along with the increasing of variables, the completed
tasks in o-MUS and g-MUS grow quickly and even have
the similar trends, while the RAND rises but by a smaller
increase. We also change the activetime of users in Fig. 9 (d,
h, and l). When the activetime is short, there is an upward
trend in the number of completed tasks. With the increase of
activetime, our online algorithm cannot work so well. The
reason is that the longer activetime is close to the duration
of MCS campaign, which makes the users coming earlier
have great advantages than the later ones, and thus, our
online algorithm, which partitions the users into k segments
by their coming orders and selects the best user in each
segment, cannot work well. However, in reality, users won’t
work for a long time for MCS, so our assumption of the
short activetime is usually reasonable.

Finally, we test the number of completed tasks along
with the growth of PoI radius under the offline and online
scenarios. As shown in Fig. 10, the number of completed
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Fig. 10: The relationship between the number of completed
tasks and PoI radius.

tasks goes up slowly along with the growth of PoI radius.
The reason is that the larger PoI radius may lead to a better
prediction while the increase of the PoI radius is relatively
small rather than the whole map. Meanwhile, we also test
the average running times of the user selection algorithms in
our prototype system on the Android platform. As shown
in Table 2, both the online and offline algorithms achieve
the short running times (less than 1s), which are totally
acceptable in real-life deployments. In addition, the running
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TABLE 2: The average running time of the user selection algorithms.
Feeder Shanghai Traces GeoLife

MUS-D MUS-C MUS-D MUS-C MUS-D MUS-C
offline (ms/user) 6.10 734.30 6.58 831.77 3.67 393.63
online (ms/user) 1.53 117.54 1.63 127.81 0.80 46.04

time of computing mobility prediction model for one day
consumes around 5-10 minutes. Note that we only need to
run it once for a period of time and also can obtain the
computational help from the server if necessary.

9 DISCUSSION
This section discusses issues that are not reported or ad-
dressed in this work due to space and time constraints,
which can be added to our future work.

• Spatiotemporal Data Correlation. In this paper, we
would like to recruit many users in order to cover
all the tasks, which costs a lot and may even be
impossible (e.g., some tasks would have the remote
locations or short lifetimes and no users can complete
them). To deal with these problems, some researchers
have proposed to exploit the spatiotemporal cor-
relation between different tasks (e.g., some nearby
restaurants usually have the similar crowd flows) to
complete a few tasks while intelligently inferring the
others, which is called sparse MCS [27, 28]. In our
future work, we plan to introduce the spatiotemporal
data correlation into our framework, which can help
reduce the required number of users and deal with
the difficult tasks.

• Privacy Protection. In MCS, the privacy protection is
very important and our proposed distributed user
selection framework, called Crowd UserS, can pro-
tect privacy to a certain extent by using the dis-
tributed storage and computing architectures. How-
ever, it still needs some professional technologies
or methods of privacy protection. For example,
some researchers proposed to leverage the Differential
Geo-Obfuscation to obfuscate the uploaded locations
while achieving high sensing coverage [29, 30]. This
method is suitable to be added into our user selec-
tion framework in the future work, where users can
upload the obfuscated location to protect privacy
and the server can use it to calculate the utilities
according to the coverage.

10 CONCLUSION

In this paper, we discuss the user selection problem in H-
MCS. We present the PoI based mobility prediction model
to estimate the probabilities that spatial-temporal-sensitive
tasks will be completed on time. Then, we propose a greedy
offline user selection algorithm to select a approximately
optimal user set under a participant number constraint. Fur-
thermore, we extend our problem to a general online setting,
and propose an online algorithm based on the offline one.
Finally, we present the Crowd UserS, a distributed frame-
work, and implement a prototype system. The extensive
simulations have been conducted on three real-life mobile
traces. The results prove the efficiency of our proposed
Crowd UserS framework.
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