Facility Location Strategy for Minimizing Cost in Edge-Based Mobile Crowdsensing

Out I ine

I. Background
II. Challenges
III. Problem Formulation
IV. Strategy
V. Theoretical Analysis
VI. Performance Evaluation

Background

:The limitation of centralized MCS

\checkmark The significant computational burden on the central server.
\checkmark The unpredictable network latency.
\checkmark The risk of the user privacy leak.

Background

* The edge-based MCS

\checkmark The mobile edge servers are deployed at network edge as the bridge between the central server and mobile users.
\checkmark The mobile edge servers process and aggregate the uploaded data.
\checkmark Each user may collect multiple types of data. To facilitate data aggregation, the same type of data should be uploaded to the same edge server.

Background

\checkmark The total cost includes service cost and facility cost

\checkmark Which server to activate for processing data and how to make a suitable match between users and mobile edge servers in order to minimize the total cost?

Challenges

* The problem is formulated as a variant of the facility location problem, which raises the following challenges:
\checkmark The simplest facility location problem is NP-hard.
\checkmark there are multiple data types and each user carries a subset of those types of data, so it is more difficult to find a facility location strategy with minimum cost.
\checkmark It is difficult to find a solution with a bound of total cost to the optimal solution.

Problem Formulation

Service cost

\checkmark u-s service cost: the cost for travelling between the edge server and the initiation.
\checkmark s-s service cost: the cost for travelling between edge servers.

- Facility cost
\checkmark Each edge server s_{i} has an activation cost $C\left(s_{i}\right)$ and for each data type b , there is a processing cost $C_{i}(b)$ for server s_{i}.
\checkmark Each edge server s_{i} can operate in any configuration $\beta(i) \in 2^{B}$ with the facility cost $C_{i}(\beta) . C_{i}(\beta)=C\left(s_{i}\right)+\sum_{b \in \beta} C_{i}(b)$.

Problem Formulation

[^0]\checkmark The cost for processing data: $C_{1}\left(b_{1}\right)$

Assumption: a mobile user carries at most two types of data.

Problem Formulation

* The formulated problem

\checkmark When $\mathrm{b}=0, C_{i}(b)$ denotes the cost for activating edge server i and $\mathrm{b}>0, C_{i}(b)$ denotes the cost for processing data b .

$$
\begin{array}{rll}
\text { Minimize } & \sum_{i=1}^{m} \sum_{b=0}^{r} C_{i}(b) y_{i}^{b}+\sum_{j=1}^{n} C_{j} \\
\text { s.t. } & \sum_{i=1}^{m} x_{i j}^{b}=1 & \forall b \in B_{j}, \forall j \in U \\
& \sum_{i=1}^{m} y_{i}^{b}=1 & \forall b \in B \\
& x_{i j}^{b} \leq y_{i}^{b} & \forall b \in B, \forall i \in S, \forall j \in U \\
& y_{i}^{b} \leq y_{i}^{0} & \forall b \in B, \forall i \in S \\
& x, y \in\{0,1\} &
\end{array}
$$

Strategy

* Overview of strategy

\checkmark Transform each user into a set of virtual users where a virtual user has only one type of data.
\checkmark Transform the objective function into a linear version and get the fractional solution by solving the linear relaxation.
\checkmark Filter the fractional solution.
\checkmark Select a group of representatives from the virtual users.
\checkmark Round the fractional solution into the integer solution to assign the representatives to the mobile edge servers and then assign the users to the servers that serve their representatives.

Strategy

* User virtualization

User with two data types

Real user

Virtual users

User with one data type

\checkmark The u-s service cost of the real user is equal to the sum of the u-s service costs of its virtual users.

Strategy

* Linear relaxation

\checkmark Relax the constraints as follows.

$$
\begin{array}{rll}
\text { Minimize } & \sum_{i=1}^{m} \sum_{b=0}^{r} C_{i}(b) y_{i}^{b}+\sum_{j=1}^{n} C_{j} \\
\text { s.t. } & \sum_{i=1}^{m} x_{i j}^{b} \geq 1 \quad \forall b \in B_{j}, \forall j \in U \\
& \sum_{i=1}^{m} y_{i}^{b} \geq 1 & \forall b \in B \\
& x_{i j}^{b} \leq y_{i}^{b} & \forall b \in B, \forall i \in S, \forall j \in U \\
& y_{i}^{b} \leq y_{i}^{0} & \forall b \in B, \forall i \in S \\
& 0 \leq x, y \leq 1 &
\end{array}
$$

\checkmark Find the fractional solution that minimizes the sum of facility cost and the virtual users' u-s service costs. We also prove that the s-s service cost also has a bound to the optimal solution.

Strategy

Filtering technique

$\checkmark\left\{u_{j}^{b}: \forall b \in B_{j}\right\}$: the virtual user set for user j.
\checkmark Order the edge servers that serve u_{j}^{b} according to no-decreasing order to u_{j}^{b}. Let \varnothing be a permutation of those servers that $c_{\phi(1) j} \leq$ $c_{\phi(2) j} \leq \cdots \leq c_{\phi(k) j}$
\checkmark Let $p_{j}^{b}(\alpha)=c_{\phi\left(i^{*}\right) j}$, where $i^{*}=\min \left\{i^{\prime}: \sum_{i=1}^{i^{\prime}} x_{\phi(i) j}^{b} \geq \alpha\right\},(0 \leq \alpha \leq 1)$. $\alpha_{j}^{b}=\sum_{i: c_{i j} \leq p_{j}^{b}(\alpha)} x_{i j}^{b}$.

$$
\bar{x}_{i j}^{b}= \begin{cases}x_{i j}^{b} / \alpha_{j}^{b}, & c_{i j} \leq p_{j}^{b}(\alpha) \\ 0 & \text { otherwise }\end{cases}
$$

$$
\bar{y}_{i}^{b}=\min \left\{1, y_{i}^{b} / \alpha\right\}
$$

Strategy

* Representatives selection

\checkmark Classify the virtual users who carry the same type of data into groups and select a representative from each group.
$\checkmark D_{b}$: the set of virtual users that carry b type of data.
\checkmark selection cost for $\mathrm{u}_{\mathrm{j}} \hat{c}_{j}=\sum_{j^{\prime} \in D_{b}} c_{j j^{\prime}}$
\checkmark Select the user with the minimum selection cost to be the representative of D_{b}.

Strategy

* Rounding technique

\checkmark Keep a feasible solution (\hat{x}, \hat{y}). Initially, $(\hat{x}, \hat{y})=(\bar{x}, \bar{y})$.
\checkmark The activated edge server set: $\hat{S}=\left\{i \in S: \exists b, \hat{y}_{i}^{b}>0\right\}$
\checkmark The edge server set that serves representative $j_{b}: S^{\prime}=\{i \in$ $\left.\hat{S}: \hat{x}_{i j}^{b}>0\right\}$
\checkmark For each representative j_{b}, select the server i^{\prime} that has the minimum activation cost from S^{\prime}. Round the value:

$$
\hat{y}_{i^{\prime}}^{b}=1, \hat{x}_{i^{\prime} j}^{b}=1 \text { and } \hat{y}_{i}^{b}=0, \hat{x}_{i j}^{b}=0 \text { for each } i \in S-i^{\prime}
$$

\checkmark Assign the remaining users to the servers which serve their representatives.

Theoretical Analysis

The facility cost is bounded within $\log k / \alpha$ of the optimal solution.

The u-s service cost is no more than $\left(\frac{3}{1-\alpha}+4\right) \cdot C_{O P T}$

The approximation ratio of the proposed strategy is the maximum value of $\left\{\frac{\log k}{\alpha}, \frac{3}{1-\alpha}+\right.$ $\left.4, \frac{d_{\text {max }}}{d_{\text {min }}}\right\}$

The s-s service cost is bounded within $d_{\max } / d_{\text {min }}$

Performance Evaluation

- Data preparation

Roma/taxi set epfl/mobility set geolife trajectory set

* Methods in Comparison

1. APX (the proposed approximation strategy in the paper)
2. DIS (for each data type, select the server that has the minimum average distance to the set of users with this data type)
3. LF (for each data type, select the server that has the minimum processing cost)
4. RAN (randomly select a server to each data type)

* Performance metric
total cost

Performance Evaluation

The simulation result in terms of number of users

Performance Evaluation

The simulation results in terms of number of candidate servers and data types

Performance Evaluation

The comparison of facility cost between APX and the optimal solution

Data type number	APX	Optimal	Ratio	Bound
2	109	79	1.37	1.38
3	154	140	1.10	2.19
4	227	200	1.14	2.77
5	270	185	1.46	3.21
6	439	253	1.74	3.58

* The comparison of u-s service cost between APX and the optimal solution

α	APX	Optimal	Ratio	Bound
0.2	712	678	1.05	7.50
0.3	712	678	1.05	8.28
0.4	712	678	1.05	9.00
0.5	712	678	1.05	10.00
0.6	712	678	1.05	16.50

Performance Evaluation

* The presentation of the simulation results of APX in roma/taxi set

Q\&A

Thank you!

Q\&A

[^0]: (2) $\mathrm{s}_{4} \mathrm{C}\left(s_{3}\right)+C_{3}\left(b_{2}\right)+C_{3}\left(b_{3}\right)$

