
Facility Location Strategy for Minimizing Cost in
Edge-Based Mobile Crowdsensing
En Wang1, Dongming Luan1, Yongjian Yang1 and Jie Wu2, IEEE Fellow

1Department of Computer Science and Technology, Jilin University, Changchun, China
2Department of Computer and Information Sciences, Temple University, Philadelphia, USA.

Abstract—Mobile crowdsensing emerges as a powerful sensing
paradigm which utilizes a group of users with mobile devices
to perform sensing tasks cooperatively. The traditional mobile
crowdsensing architecture is centralized and cloud-based, where
the users upload the sensing data directly to the central server.
Due to the fact that the amount of sensing data is very large, it
will bring much burden to upload and process data collected by
mobile users on the central server. In this paper, we propose an
edge-based mobile crowdsensing architecture, which introduces
a new intermediate layer for data storage, processing and aggre-
gation through deploying mobile edge servers between the tra-
ditional cloud server and the user layer. Considering the limited
budget, a decision-maker has to decide which server is activated
to process each data type at minimum cost, where the cost consists
of the facility cost for activating server and processing data,
and the service cost measured by the distance of mobile users’
movement during the process of uploading data. Since a user
may have multiple types of data, this problem is formulated as
a variant of the uncapacitated multi-commodity facility location
problem. Furthermore, an approximation algorithm is proposed
to solve it for minimizing cost, which is proved to have a
bound to the optimal solution. We conduct extensive simulations
based on the widely-used real-world datasets: roma/taxi set,
epfl/mobility set and geolife trajectory set. The experiment results
show that the proposed approximation algorithm outperforms
other baseline algorithms and accords with the theoretical bound
results.

Index Terms—Facility Location, Mobile Edge Computing,
Mobile Crowdsensing, Minimizing Cost.

I. INTRODUCTION

In recent years, mobile devices have been widely used in
people’s daily life, being equipped with a multitude of embed-
ded sensors. The sensors with powerful sensing ability enable
mobile users to perform the sensing tasks. In view of this, a
new sensing paradigm called Mobile CrowdSensing (MCS)
is proposed [1] to leverage mobile users to collect urban
sensing data. MCS has been used to solve many problems
ranging from building radio environment map [2], road surface
assessment [3] and roadside parking management [4] to digital
map updating [5].

In traditional MCS, to complete the sensing tasks, mobile
users move to the specified task location to collect data. Then,
the generated sensor data is uploaded to the cloud server
which is responsible for processing the data and providing
the MCS service. In this way, the construction of traditional
MCS architecture is centralized and cloud-based, which faces
some limitations. The huge data volumes in large-scale MCS
scenarios bring significant burden on the central server and

Cost 2

A user may
upload data

through
multiple
servers.

 A single
server

processes
each data

type.

Which server
is activated to
process each
data type ?

Mobile user

Activated
edge server

Unactivated
edge server

s1
s2

s3

s4

u2u1u1a

b

a

b

a

b

a

b

Cost C(a)
Cost C(b)

Fig. 1: Problem description in edge-based mobile crowdsens-
ing. For example, user u1 spends cost 1, cost 2 and cost 3
to upload data and the mobile edge server s1 costs C(a) to
process ‘a’ type data.

mobile network. Moreover, all the sensor data is processed
and stored on the central cloud server which may increase the
risk of the user privacy disclosure. Fortunately, with the rapid
development of Internet of Things and the proliferation of
4G/5G networks, mobile edge computing could be used to help
solve the problems in centralized and cloud-based architecture.

Mobile Edge Computing (MEC) is a new network architec-
ture proposed by the European Telecommunications Standards
Institute [6]. It moves the computation tasks that are originally
executed on the cloud server to the vicinity of the data source,
which improves the performance of the network and reduces
the computational load of the cloud server. In view of this,
we propose an edge-based MCS architecture by deploying
the mobile edge servers between mobile users and the central
cloud server. The mobile edge server is responsible for storing,
processing and aggregating the data uploaded by mobile users.
Since there are multiple types of data carried by mobile users
after performing the sensing tasks, the MCS platform will
direct the users with the same data type to upload data through
the same mobile edge server to reduce the transmission cost
and facilitate data aggregation. So the edge-based MCS has
the following advantages: it relieves the computational and
storage burden of both mobile devices and the cloud server
through moving the computation to the network edge. Since
the edge servers can process and aggregate data, they can
return the sensing result and provide MCS service directly

without contacting cloud servers in some real-time usage
scenarios. This decreases the latency of data propagation and
service provision.

In the edge-based MCS scenario, after collecting the sensing
data, the mobile users will reach the proximity of the cor-
responding mobile edge servers to upload data. In order to
facilitate data aggregation, each type of data must be uploaded
on the same mobile edge server. The total cost is twofold:
facility cost and service cost. The facility cost includes the
mobile edge server activation cost and the cost for processing
data. Because mobile users usually spend most time in a few
places such as home and workplace in daily life, they tend to
leave their home or workplace to upload data and return to the
initiation. Hence, the service cost is the total distance for the
user traveling from the initiation to corresponding mobile edge
servers and return to the initiation. In Fig. 1, the service cost
for user u1 is the sum of cost 1, cost 2 and cost 3. The facility
cost for mobile edge server s1 is C(a), which includes the cost
for activating server and processing data. There is a trade-off
between facility cost and service cost. If we activate mobile
edge servers that are close to mobile users to minimize the
service cost without considering facility cost, then the facility
cost will definitely increase. Otherwise, if we only consider
minimizing the facility cost, the facility cost will decrease but
the service cost may increase. Hence, the MCS platform has
to decide that for each data type, which server to activate in
order to minimize both facility cost and service cost. It is worth
noting that one mobile edge server can process multiple types
of data and each data type must be served by a single mobile
edge server.

To solve the above problem, we formulate this problem as a
variant of the uncapacitated multi-commodity facility location
problem in this paper. Our solution begins by performing user
virtualization and solving LP relaxation of the formulated ob-
jective function. Then, we filter the solution and select a group
of representative users. Next, we round the fractional solution
to an integer solution. Finally, the remaining users are assigned
to the edge servers which process their representatives. The
above research ideas raise the following challenges: (1) the
simplest facility location problem is NP-hard; (2) there are
multiple data types and a single mobile edge server must serve
each type of data, so this problem is more difficult than the
classical facility location problem; (3) one mobile user may
carry more than one type of data and it is difficult to find a
solution that has a bound to the optimal solution.

The main contributions of this paper are briefly summarized
as follows:
• We propose an edge-based mobile crowdsensing architec-

ture, where mobile edge servers are deployed at network
edge between mobile devices and the central cloud server
in the MCS scenario. It can relieve the computational and
storage burden of the cloud server and mobile devices.

• The cost minimization problem is formulated as a variant
of the uncapacitated multi-commodity facility location
problem which is much more complex than the traditional
facility location problem. Furthermore, we propose an

approximation algorithm to determine the mobile edge
servers to activate and the corresponding data types
processed by each activated mobile edge server. We prove
that the proposed approximation algorithm has a bound
to the optimal solution.

• We conduct extensive simulations and the experiment
results show that the algorithm proposed in this paper
outperforms other baseline algorithms and achieves a
bounded cost.

The remainder of the paper is organized as follows. We
review the related works in Section II. In Section III, we
present the system model and formulate the problem. An
approximation algorithm is proposed in Section IV. In Section
V, we prove that the approximation algorithm has a bound to
the optimal solution. In Section VI, the extensive simulation
is conducted to evaluate the performance of the proposed
algorithm. We conclude the paper in Section VII.

II. RELATED WORKS

A. Edge-based Mobile Crowdsensing

There have been some research works focusing on MCS
based on distributed architecture. Marjanovic et al. [7] pro-
pose a mobile edge computing architecture for MCS that can
reduce the complexity of data processing and increase the
quality of MCS service. The authors in [8] propose two privacy
preserving reputation management strategies in MCS based
on edge computing to preserve privacy and handle malicious
participants. In [9], the authors propose an edge-based context-
aware crowdsourcing framework to perform instantaneous
image sensing in a disaster environment. In [10], the authors
propose an energy-efficient edge-based framework for large-
scale vehicular crowdsensing applications, which aims to
minimize the energy consumption of vehicles participating in
heterogeneous crowdsensing applications. The authors in [11]
propose an enhanced MCS system which combines the deep
learning based data validation and edge computing based data
processing.

Different from the research works mentioned above where
mobile edge servers receive data from the data source in the
close proximity, in edge-based MCS architecture proposed in
this paper, each data type is processed by a single mobile edge
server for the convenience of data aggregation. The decision-
maker has to decide which servers to activate to process data.

B. Facility Location Problem

The facility location problem, also known as location
analysis, has attracted many researchers’ attention. In [12],
the authors apply an evolutionary simulated annealing strat-
egy to solve the large-scale uncapacitated facility location
problem. It combines two well-known approaches with the
purpose of avoiding local minima. In [13], the authors put
forward an improved approximation algorithm to solve the
capacitated facility location problem. In [14], the authors
study the lower-bounded facility location problem and put
forward a true approximation algorithm which respects the
lower bound constraints for the problem. In addition to the

classical facility location problem, there are also many variant
versions of the facility location problem and some works have
appeared to solve them. R.Ravi et al. [15] put forward an
approximation algorithm to solve the multi-commodity facility
location problem with a bound to the optimal solution. The
authors in [16] put forward a quasi-greedy algorithm to solve
the classical uncapacitated 2-level facility location problem,
which can approximate the problem in polynomial time with
a ratio of 1.77. In [17], the authors propose an 8-approximation
algorithm for minimizing total movement of the mobile facility
location problem through rounding an LP relaxation in five
phases. In [18], the authors aim to solve the dynamic facility
location problem by modeling the problem as a 0-1 quadratic
program and propose a heuristic solution which is proved to
have a lower bound.

Since a single mobile edge server can process multiple types
of data, the facility location problem in this paper can be seen
as a variant of the multi-commodity facility location problem.
However, different from the classical multi-commodity facility
location problem, we consider the distance among mobile edge
servers and a user can carry multiple types of data, which
makes it more difficult.

III. SYSTEM OVERVIEW
A. System Model

We consider an edge-based MCS model that consists
of a group of mobile users, signified by the set U =
{u1, u2, . . . , un} and a set of mobile edge servers S =
{s1, s2, . . . , sm}. Moreover, after collecting the sensing data,
mobile users may carry multiple types of data. All the types of
data are denoted as B = {b1, b2, . . . , br} and the data types
carried by user ui are Bi ⊆ B. The total cost is twofold:
facility cost and service cost. Each mobile edge server si
can operate in any configuration β(i) ∈ 2B , specifying the
combination of data types it processes with the cost Ci(β).
Each mobile edge server si has an activation cost C(si) and
for each data type b, there is an incremental processing cost
Ci(b). Therefore, the facility cost for activating mobile edge
server si in configuration β is Ci(β) = C(si) +

∑
b∈β Ci(b).

The service cost for the mobile user is regarded as the
mobile users’ travel distance during the process of uploading
data. Each user begins with an initial location and heads
for the corresponding edge servers one by one and return
to the initial location finally. In this paper, we assume that
a mobile user carries at most two types of data. This case
is very common because a person usually spends most of
time in several places everyday (e.g. workplace and home).
A user tends to collect a data when going to work (home
to workplace), and collect another data on the way home
(workplace to home). As shown in Fig. 2, for user u1 that
will go to server s1, s3 for uploading data, u1 will consume
the cost C(u1, s1) +C(s1, s3) +C(s3, u1), which is equal to
the total distance u1 travels. Specifically, the cost for traveling
between server and initiation is named as u-s service cost such
as C(u1, s1) + C(s3, u1) and the cost for traveling between
servers is named as s-s service cost such as C(s1, s3). The

s1

s3
C(𝑠2, 𝑠3)

C(𝑢1, 𝑠1)

C(𝑠3,𝑢2)

C(𝑠1 , 𝑠3)

C(𝑠3 ,𝑢1)

𝐶 𝑠1 + 𝐶1(𝑏1)

𝐶 𝑠2 + 𝐶2(𝑏4)

C 𝑠3 + 𝐶3 𝑏2 + 𝐶3(𝑏3) s5

s2

C(𝑢2, 𝑠2)

s4

u1b1

b2

b1

b2
b3

b4

b3

b4

u2u2

Fig. 2: An example of edge-based MCS system model. Servers
s1 and s2 are selected to process data type b1 and b4 respec-
tively. Server s3 is selected to process data type b2 and b3.

facility cost for server s1 is C(s1)+C1(b1). Specifically, C(s1)
is the activation cost for s1 and C1(b1) is the processing cost
for s1 to process data type b1.

B. Problem Formulation

In this paper, we aim to find a solution to determine which
mobile edge servers to activate and which data types are
assigned to the activated mobile edge servers for minimizing
the total cost. Let Cj denote the service cost of user j. Variable
y0i indicates whether or not mobile edge server i is activated. It
is 1 when activated and 0 otherwise. Variable ybi = 1 indicates
that mobile edge server i processes b type data and it is 0
otherwise. Variable xbij is 1 if user j with b type data is
assigned to server i to upload data. Note that when b = 0,
Ci(b) denotes the cost for activating server i. Hence, our
purpose is to find the best facility location strategy for the
following optimal problem:

Minimize

m∑
i=1

r∑
b=0

Ci(b)y
b
i +

n∑
j=1

Cj (1)

s.t.

m∑
i=1

xbij = 1 ∀b ∈ Bj ,∀j ∈ U

m∑
i=1

ybi = 1 ∀b ∈ B

xbij ≤ ybi ∀b ∈ B, ∀i ∈ S, ∀j ∈ U
ybi ≤ y0i ∀b ∈ B, ∀i ∈ S
x, y ∈ {0, 1}

The first constraint ensures that there exists a mobile edge
server that can process each data type carried by each user.
The second constraint ensures that each data type is processed
by a single mobile edge server. The third constraint means that
only when the mobile edge server has the ability to process
the corresponding data, can the user upload data through it.
The fourth constraint guarantees the mobile edge server has

the ability to process data only when it is activated. We aim
at finding a strategy to minimize the total cost satisfying the
above constraints.

IV. FACILITY LOCATION STRATEGY FOR
MINIMIZING COST

In this section, we describe the facility location strategy in
detail. Firstly, we relax the constraints and due to the reason
that each user has multiple types of data, we transform a user
into a set of virtual users where each virtual user has one data
type. Then, we transform the objective function into a linear
version and the fractional solution is obtained by solving LP
relaxation. Next, we filter the solution so that each virtual
user is assigned to mobile edge servers which are relatively
close to it. Furthermore, we select a group of representatives
from virtual users and assign the remaining virtual users to the
corresponding representatives. Finally, we round the fractional
solution to the integer solution and assign the remaining virtual
users to the edge servers which serve their representatives.
Each mobile user will upload data through the mobile edge
servers that are allocated to its virtual users.

A. User Virtualization and Linear Relaxation

Due to the fact that the objective function (1) is hard to solve
directly in polynomial time, we relax the constraint as shown
in function (2). Moreover, we only consider u-s service cost
instead of the total service cost and perform user virtualization
in this step to transform the objective function into a linear
function.

Minimize

m∑
i=1

r∑
b=0

Ci(b)y
b
i +

n∑
j=1

Cj (2)

s.t.

m∑
i=1

xbij ≥ 1 ∀b ∈ Bj ,∀j ∈ U

m∑
i=1

ybi ≥ 1 ∀b ∈ B

xbij ≤ ybi ∀b ∈ B, ∀i ∈ S, ∀j ∈ U
ybi ≤ y0i ∀b ∈ B, ∀i ∈ S
0 ≤ x, y ≤ 1

The process of user virtualization is as follows: we replicate
a set of virtual users for each mobile user so that each virtual
user has one data type. The virtual user set for user j is defined
as {ubj : ∀b ∈ Bj}. Specifically, for the user with only one
data type, we will transform the user into two virtual users
with the same data type. The u-s service cost for the virtual
user is the distance between the mobile edge server and the
initiation. So the u-s service cost for the user is equal to the
sum of its virtual users’ u-s service costs. For a user with only
one data type, the u-s service cost is the roundtrip from the
initiation to the mobile edge server, which is equal to the sum
of the two virtual users’ u-s service costs.

Then, we aim to find a solution to minimize the sum of
facility costs and virtual users’ u-s service costs. The objective

function has been transformed into a linear function. After
performing the linear relaxation, we will get some fractional
solutions which are feasible for the relaxation of our objective
function. Although s-s service cost is not considered in this
step, according to the triangle inequality, s-s service cost is
lower than the sum of the u-s service costs. Furthermore, we
will prove that s-s service cost of this solution has a bound
to the optimal solution in the next section.

B. Filtering Technique

Then, we apply the filtering technique used in [19] to filter
the solution and obtain a new fractional solution, where the
new solution satisfies the property that the user is fractionally
assigned to mobile edge servers which are not too far away
from it.

We fix a constant 0 < α < 1 and define the α−point,
pbj(α), for each virtual user ubj . Then, we order the mobile edge
servers which serve ubj according to non-decreasing distance
to j. Let cij denote the distance between mobile edge server
i and virtual user ubj . Let φ be a permutation of servers that
serve ubj such that cφ(1)j ≤ cφ(2)j ≤ · · · ≤ cφ(k)j . Then,

pbj(α) = cφ(i∗)j , where i∗ = min{i′ :
∑i
′

i=1 x
b
φ(i)j ≥ α}. For

each virtual user ubj , let αbj =
∑
i:cij≤pbj(α)

xbij . Obviously,
αbj ≥ α. We merely set

xbij =

{
xbij/α

b
j , cij ≤ pbj(α);

0 otherwise.
(3)

And for each i ∈ S, we set ybi = min{1, ybi /α}. After the fil-
tering process, we will obtain a new fractional solution, which
has the property that when a virtual user ubj is fractionally
assigned to a mobile edge server si, the corresponding cost
cij is not too big.

C. Representatives Selection

After filtering the fractional solution, we select a set of
virtual users as representatives. The process of representatives
selection is similar to [15]. Specifically, we classify the virtual
users who carry the same type of data into groups and
select a representative from each of them. The process of
representatives selection of different data types is independent.

The detailed progress is described as follows: for a data
type b, let Db denote the set of virtual users who carry b
type data. Let the selection cost of a virtual user j ∈ Db be
ĉj =

∑
j′∈Db

cjj′ , where cjj′ is the distance between user
j and j

′
. Variable jb signifies the user with the minimum

selection cost among all users in Db and jb is selected to be
the representative of b type data. The representative set of all
data types is denoted as R.

D. Rounding Technique

The rounding technique is used to round the fractional
solution into the integer solution. The algorithm executes
iteratively and it keeps a feasible fractional solution (x̂, ŷ).
Initially, let (x̂, ŷ) = (x, y). In the process of the algorithm, we

denote Ŝ as the set of partially activated mobile edge servers,
specifically, Ŝ = {i ∈ S : ∃b, ŷbi > 0}. For each jb ∈ R, we
define S

′
as the set of mobile edge servers for which x̂bij > 0,

that is, S
′
= {i ∈ Ŝ : x̂bij > 0}. Then the algorithm will find

the server i ∈ S′ so that Ci(b) is smallest and let i
′

denote
this server. Following this, assign jb to i

′
and round the value

ŷb
i′
= 1 and ŷbi = 0 for each i ∈ S − i′ . Accordingly, x̂b

i′ j
is

set to be 1 and x̂bij is 0 for each i ∈ S − i′ .
The algorithm executes iteratively until all the representa-

tives are assigned to a mobile edge server. Note that this round-
ing process guarantees that each data type must be processed
by a single mobile edge server. Finally we assign the other
virtual users to the servers which serve their representatives
and each mobile user will go to the mobile edge servers that
are allocated to its virtual users.

V. BOUND PROOF

In this section, we prove that the proposed approximation
algorithm has a bound to the optimal solution.

Firstly, we use the filtered fractional solution and represen-
tatives to construct a k-set cover instance and prove that y
is a feasible fractional solution of the constructed k-set cover
instance. The k-set cover problem is a special case of the
weighted set cover problem in which each set has no more
than k elements. We use the following IP formulation for
the instance of k-set cover problem. Here we define a server-
configuration pair (i, β) where i ∈ S and β ∈ 2B . There is
a cost Ci(β) for each server-configuration pair (i, β). Note
that we only consider the virtual users in R and a virtual user
ubj is covered by (i, β) if and only if xbij > 0 and b ∈ β.
Let variable zβi be 1 if the server-configuration pair (i, β) is
included in the solution. The IP formulation for the instance
of k-set cover is as follows:

Minimize
∑
i,β

Ci(β)z
β
i (4)

s.t.
∑

(i,β):xb
ij>0,b∈β

zβi ≥ 1 ∀jb ∈ R

The fractional solution y can be transformed as a fractional
solution of an instance of k-set cover problem so that only
polynomially many server-configuration pairs have non-zero
values [15]. Given a mobile edge server i ∈ S, sort the data
types in the non-decreasing order of ybi , that is, y0i ≥ y1i ≥
y2i ≥ . . . ≥ yki . Let [b]={1, 2, . . . , b}. We activate mobile edge
server i in configuration [b] to extent z[b]i = ybi − yb+1

i for
b = 1, 2, . . . , k − 1 and z

[k]
i = yki . Hence, for each mobile

edge server si, there are at most k configurations that zβi > 0.
Then, we prove the bound of the proposed approximation

algorithm using the following lemmas.

Lemma 1. Function (4) is an instance of k-set cover and
z = y is a feasible fractional solution of the linear relaxation
version for the instance, the cost of which is no more than∑
i,β Ci(β)y

β
i .

Proof. Since we select only one representative for each data
type, the total number of representatives is equal to the total
number of data types and the cardinality of each set in the
formulated k-set cover instance is no more than k (let k be the
total number of data types r). Since (x, y) is a feasible solution
of the linear relaxation of formulated objective function, there
exists

∑
i x

b
ij ≥ 1 for each jb ∈ R and zβi ≥ xbij for each

b ∈ β, which ensures that z is a feasible fractional solution
of the formulated k-set cover instance and bounds the cost of
the fractional solution.

Lemma 2. There is an integer solution (x̂, ŷ) satisfying the
following properties: (1)x̂bij ≤ ŷβi ,∀b ∈ β; (2) x̂bij = 1 only
if xbij > 0; (3) ŷβi = 1 only if yβi > 0; (4)

∑
i,β Ci(β)ŷ

β
i ≤

log k
∑
i,β Ci(β)y

β
i .

Proof. Due to the fact that the integrality gap of k-set cover
problem is no more than log k [20], there is an integer solution
ẑ for the formulated k-set cover instance and its cost is no
more than log k

∑
i,β Ci(β)y

β
i and let ŷ = ẑ. Hence, property

(3) and (4) are proved. It is clear that for each representative
jb ∈ R, there must exist yβi = 1, b ∈ β such that xbij > 0.
Let x̂bij be 1 and 0 otherwise. So property (1) and (2) are
proved.

Finally we activate the mobile edge server and fix the data
type for which ŷβi = 1. When considering the constraint that
each data type is processed by a single mobile edge server,
the solution is a special case of the k-set cover problem where
each element is covered by only one set. Due to the fact that
ybi = min{1, ybi /α}, hence ybi ≤ ybi /α. Due to the fact that the
optimal solution of integer program problem is not superior
to the optimal solution of its relaxation, we use the optimal
solution of the linear relaxation for the objective function as
our lower bound. Hence, according to Lemma 2, the facility
cost is bounded within log k

α of the optimal facility cost.
Then we prove that u-s service cost has a bound to the

optimal. Let ϕ(j) be the server that is assigned to process
virtual user j in the solution. Variable ϕ∗(b) denotes the server
that processes data type b in the optimal solution. Variable
cj,ϕ(j) is u-s service cost of virtual user j.

Lemma 3. The u-s service cost of the proposed solution is no
more than (3

1−α + 4) · Copt in which Copt is the u-s service
cost of the optimal solution.

Proof. Let j∗b be the virtual user that minimizes cj,ϕ∗(b)
in Db. Since the inequality cj∗b ,ϕ∗(b) ≤ cj,ϕ∗(b) for all
j ∈ Db, there exists ĉj∗b ≤ 2

∑
j∈Db

cj,ϕ∗(b). Due to the
fact that the representative jb minimizes ĉj in Db, we have
ĉjb ≤

∑
j∈Db

2cj,ϕ∗(b). Then, consider a virtual user j ∈ Db

and ϕ
′
(j) is the server that processes j while ignoring the

constraint that each data type is processed by a single server.
Because of the triangle inequality, we have cjb,ϕ′ (j) ≤ cj,jb +
cj,ϕ′ (j). Furthermore, cj,ϕ(j) ≤ 2cj,jb + cj,ϕ′ (j). We denote
the virtual user set as V . As ĉjb =

∑
j∈Db

cj,jb , by summing
cj,ϕ(j) over all virtual users, we have

∑
j∈V cj,ϕ(j) ≤ (3

1−α +

4) ·Copt, where 3
1−α is the approximation ratio of u-s service

TABLE I: User-server distance.

s
u

u1 u2 u3 u4

s1 5 6 18 6
s2 5 6 13 10
s3 5 13 13 6

TABLE II: Facility cost.

s
b

b0 b1 b2

s1 3 8 11
s2 3 10 5
s3 3 5 11

cost, ignoring the constraint that each data type is processed
by a single mobile edge server and it is proved in [15]. The
total u-s service cost is equal to the sum of u-s service costs
of all virtual users. Hence, the bound in the lemma is proved.

Finally, we prove the bound of s-s service cost. Let dmax
denote the maximum distance among mobile edge servers
and dmin denote the minimum distance among mobile edge
servers.

Lemma 4. The s-s service cost of the proposed approximation
solution is bounded within dmax

dmin
of the optimal.

Proof. There is a situation as shown in Fig. 3 in which there
are four mobile users u1, u2, u3, u4 and three candidate mobile
edge servers s1, s2, s3. There are two data types: b1 and b2.
The distance between server s1 and s2 is 6, which is the
minimum distance among servers and denoted as dmin. The
distance between s2 and s3 is 10, which is the maximum
distance and denoted as dmax. The distance between s1 and s3
is 8. The distance between users and servers and facility cost
configuration are shown in Table. I and II. It is worth noting
that b0 denotes the activation costs for servers in Table. II.
So in this case, the proposed solution will configure server s2
and s3 to process data b2 and b1 respectively. The s-s service
cost is dmax. However, the s-s service cost of the optimal
solution is the distance between s1 and s2, which is dmin.
In other situations, the ratio between s-s service cost of the
proposed algorithm and the optimal solution is no more than
dmax

dmin
. Hence, the s-s service cost is bounded within dmax

dmin
of

the optimal. The lemma is proved.

Hence, in conclusion, our proposed algorithm is a constant-
factor approximation algorithm and has a bound to the optimal
solution. The approximation ratio is the maximum value of
{ log kα , 3

1−α + 4, dmax

dmin
}.

VI. PERFORMANCE EVALUATION

A. Data Preparation

Three widely-used real-world traces, roma/taxi set[21],
epfl/mobility set [22] and geolife trajectory set [23] were used
to evaluate the performance of the proposed facility location
strategy for minimizing the cost. The roma/taxi set contains
about 320 taxis’ GPS coordinate mobility traces in Rome, Italy
collected over 30 days. The epfl/mobility set records the GPS
trajectories of approximately 500 taxis in the San Francisco
Bay Area, USA, which are collected over 30 days. The geolife
trajectory set was collected in Geolife project by 182 users. It

u2

b2

u1

S2

b1b2

S3

S1

u4
b1

u3
b2

Mobile edge
server

Mobile user

 b1, b2 Two data types

Fig. 3: The scenario for proving the bound of s-s service cost.

contains 17,621 GPS trajectories with a distance of 1.2 million
kilometers. The first points of users’ trajectories are set as the
initial locations and we randomly select POI locations as the
candidate mobile edge server locations.

We construct three different strategies: LF, DIS and RAN.
The performance of the proposed approximation algorithm
APX is compared with these strategies in the paper. For each
data type b, LF strategy selects the mobile edge server i which
processes the data type with the lowest facility cost, Ci(b). For
each data type, DIS strategy selects the mobile edge server that
has the minimum average distance to the set of mobile users
with this data type. RAN strategy randomly selects a mobile
edge server for each data type. We take the total cost as the
evaluation metric, which is the sum of the facility cost and
service cost for all activated mobile edge servers and mobile
users.

B. Simulation Results

In this section, firstly, we give an example to illustrate
the differences in the execution results of APX, DIS and
LF strategies. Secondly, we evaluate the performances of the
proposed approximation algorithm compared with the method
LF, DIS and RAN along with changes in the number of
candidate servers, number of mobile users and number of data
types. The specific evaluation results on three datasets are
demonstrated in Figs. 5-7. Then, an example of simulation
result of APX in roma/taxi set is presented. Finally, the
optimal results are compared with the proposed approximation
algorithm.

Firstly, we give an example to illustrate the difference
among APX, DIS and LF algorithms. The example consists of
four candidate mobile edge servers s1, s2, s3, s4, four mobile
users u1, u2, u3, u4 and three data types from 1 to 3. Note
that in Table. III, when data type is 0, it denotes the activation
cost for each server. The configuration information including
facility cost configuration, the distance between users and
servers as well as the distance between servers are shown in
detail in Table. III-V respectively.

Fig. 4 illustrates the scenarios for using three algorithms
respectively. When using APX algorithm, server s1 is activated

TABLE III: Facility cost.

Server
Type

0 1 2 3

s1 2 1 3 3
s2 5 3 2 1
s3 2 3 1 2
s4 4 4 2 5

TABLE IV: User-server distance.

Server
User

u1 u2 u3 u4

s1 1 3 5 7
s2 5 3 1 3
s3 5 5 4 3
s4 7 5 3 1

TABLE V: Server-server distance.

Server
Server

s1 s2 s3 s4

s1 0 5 5 7
s2 5 0 4 3
s3 5 4 0 3
s4 7 3 3 0

s1

s2

s3

s4

u2: [1,2]

u3: [2]

u4: [3]

u1: [1]

(a) The scenario for using APX method.

s1

s2

s3

s4
u2: [1,2]

u3: [2]

u4: [3]

u1: [1]

(b) The scenario for using DIS method.

s1

s3

s4

u2: [1,2]

u3: [2]

u4: [3]

u1: [1]

s2

(c) The scenario for using LF method.

Fig. 4: An example for the comparison of APX, DIS and LF algorithms. The mobile edge servers in black color denote the
activated servers and the rest are unactivated servers.

to process type 1 of data and server s2 is activated to process
type 2 and 3 of data. The service cost and facility cost are
21 and 11 respectively. The total cost is 32. When using
DIS algorithm, server s1, s2 and s4 are activated to process
type 1, 2 and 3 of data respectively. The service cost and
facility cost are 17 and 19 respectively. The total cost is 36.
When using LF algorithm, server s1, s2 and s3 are activated
to process type 1, 3 and 2 of data respectively. The service
cost and facility cost are 29 and 12 respectively. So the total
cost is 41. In this case, although the service cost of DIS
is lowest, the performance of APX is best. Due to the fact
that each mobile edge server has an activation cost and LF
algorithm only focuses on minimizing the processing cost, it
may have more activation cost than that of APX. Furthermore,
this results in the fact that the facility cost of LF is more than
that of APX sometimes. In conclusion, the APX algorithm
minimizes the total cost by considering the facility cost and
service cost comprehensively, which performs better than DIS
and LF algorithms, though DIS and LF may have relatively
low service cost and facility cost sometimes.

Secondly, we compare the total cost in terms of number of
users in three datasets in Fig. 5 and the number of users varies
from 20 to 90. The simulation results show that the total cost
performances rank as follows:APX < DIS < LF < RAN
in all three data sets, though the cost of DIS is close to that of
APX in roma/taxi set. The total costs of all four algorithms
increase with the growth of the number of users.

Thirdly, we evaluate the performances of the four algorithms
with the change of number of candidate servers in Fig. 6. It
is easy to find out that the total cost of APX is lowest in

all three datasets. The error bars in Fig. 6 measure the value
of standard deviation and show that the simulation results are
accurate. The total costs of all four algorithms decrease along
with the increase of number of candidate servers. The reason
is that when the number of candidate servers increases, there
will be more chance to activate the proper servers.

Then, as illustrated in Fig. 7, the performances of four
algorithms are evaluated with the change in the number of
data types. Note that the number of data types here means
the total number of data types carried by all mobile users.
The simulation results show that the total cost performances
of all four algorithms in three datasets rank as follows:
APX < DIS < LF < RAN and the error bars show
that the simulation results are accurate. The total costs of all
four algorithms increase with the growth of the number of
data types. The reason is that when the number of data types
increases, each user may carry more data types and they may
travel to more mobile edge servers to upload data.

Furthermore, as shown in Fig. 8, we give an example of the
simulation result of APX in roma/taxi set, where the number
of candidate mobile edge servers is 10, the number of mobile
users is 10 and the total number of data types carried by all
mobile users is 5.

Finally, we conduct some simulations to compare the results
of the proposed approximation algorithm with the optimal
results in roma/taxi set. Specifically, we compare the facility
cost and u-s service cost between APX algorithm and the
optimal results. Besides, we calculate the ratio between the
cost of APX and the optimal solution. We set α = 0.6, the
number of candidate servers is 15 and the number of mobile

20 30 40 50 60 70 80 90 100

Number of Users

500

1000

1500

2000

2500

T
o

ta
l
c
o

s
t

APX

DIS

LF

RAN

(a) roma/taxi set

20 30 40 50 60 70 80 90 100

Number of Users

500

1000

1500

2000

T
o

ta
l
c
o

s
t

APX

DIS

LF

RAN

(b) epfl/mobility set

20 30 40 50 60 70 80 90 100

Number of Users

1000

2000

3000

T
o

ta
l
c
o

s
t

APX

DIS

LF

RAN

(c) geolife trajectory set

Fig. 5: The simulation results in terms of number of users.

(a) roma/taxi set (b) epfl/mobility set (c) geolife trajectory set

Fig. 6: The simulation results in terms of number of candidate servers.

(a) roma/taxi set (b) epfl/mobility set (c) geolife trajectory set

Fig. 7: The simulation results in terms of number of data types.

users is 50. The detailed results are shown in Table VI-VII.
In Table VI, we compare the facility cost of APX and the
optimal in terms of the change of number of data types. Due
to the fact that the value of data type number changes little,
the value of ratio fluctuates slightly. But the ratio is always
less than the bound. In Table VII, we compare the u-s service
cost between APX and the optimal results. Since many of the
fractional solutions obtained in roma/taxi set are close to 1,
the filtering technique will filter few fractional solutions and
the impact of the value of α to the cost is limited. The cost of
APX is the same when changing α. However, the ratio is also
less than the bound. This matches the theoretical analysis.

TABLE VI: The comparison of facility cost between APX and
the optimal solution.

Data type number APX Optimal Ratio Bound
2 109 79 1.37 1.38
3 154 140 1.10 2.19
4 227 200 1.14 2.77
5 270 185 1.46 3.21
6 439 253 1.74 3.58

VII. CONCLUSION
We study the facility location problem for minimizing cost

in edge-based mobile crowdsensing in this paper. Firstly,

Fig. 8: A presentation of the simulation result of APX in
roma/taxi set. The mobile edge servers in black color denote
the activated servers and the rest are unactivated servers.

TABLE VII: The comparison of u-s service cost between APX
and the optimal solution.

α APX Optimal Ratio Bound
0.2 712 678 1.05 7.50
0.3 712 678 1.05 8.28
0.4 712 678 1.05 9.00
0.5 712 678 1.05 10.00
0.6 712 678 1.05 16.50

we propose an edge-based mobile crowdsensing architecture
where mobile edge servers are deployed at network edge and
each type of data is processed and aggregated by a single
mobile edge server. This manner decreases the computation
and transmission cost in the network. Then, the problem is
formulated as a variant of the uncapacitated multi-commodity
facility location problem and an approximation algorithm is
proposed to solve it, which is proved to have a bound to
the optimal solution. Finally, the extensive simulations are
conducted based on widely-used real-world traces: roma/taxi
set, epfl/mobility set and geolife trajectory set. The results of
the simulation could match theoretical analysis and prove that
the proposed approximation algorithm performs better than
other baseline algorithms.

VIII. ACKNOWLEDGMENTS

This work is supported by the National Natural Science
Foundation of China under Grant No.61772230 and Na-
tional Natural Science Foundation of China for Young Schol-
ars No.61702215, China Postdoctoral Science Foundation
No.2017M611322 and No.2018T110247 and this research is
also supproted in part by NSF grants CNS 1824440, CNS
1828363, CNS 1757533, CNS 1618398, CNS 1651947, and
CNS 1564128.

REFERENCES

[1] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowd sensing: Current state and
future challenges,” IEEE Communications Magazine, vol. 49, no. 11, pp.
32–39, 2011.

[2] Z. Han, J. Liao, Q. Qi, H. Sun, and J. Wang, “Radio environment
map construction by kriging algorithm based on mobile crowd sensing,”
Wireless Communications and Mobile Computing, vol. 2019, pp. 1–12,
02 2019.

[3] L. Xiao and D. W. Goldberg, “Toward a mobile crowdsensing system for
road surface assessment,” Computers Environment and Urban Systems,
vol. 69, p. S0198971517301333, 2018.

[4] K. Banti, M. Louta, and G. Karetsos, “Parkcar: A smart roadside
parking application exploiting the mobile crowdsensing paradigm,” in
International Conference on Information, Intelligence, Systems and
Applications, 2017, pp. 1–6.

[5] Z. Peng, S. Gao, B. Xiao, S. Guo, and Y. Yang, “Crowdgis: Updating
digital maps via mobile crowdsensing,” IEEE Transactions on Automa-
tion Science and Engineering, vol. PP, no. 99, pp. 1–12, 2017.

[6] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-edge computing architecture: The role of mec in the internet of
things,” IEEE Consumer Electronics Magazine, vol. 5, no. 4, pp. 84–91,
2016.

[7] M. Marjanovic, A. Antonic, and I. P. Zarko, “Edge computing architec-
ture for mobile crowdsensing,” IEEE Access, vol. PP, no. 99, pp. 1–1,
2018.

[8] L. Ma, X. Liu, Q. Pei, and X. Yong, “Privacy-preserving reputation
management for edge computing enhanced mobile crowdsensing,” IEEE
Transactions on Services Computing, vol. PP, no. 99, pp. 1–1, 2018.

[9] Z. Zhao, F. Liu, Z. Cai, and N. Xiao, “Edge-based content-aware
crowdsourcing approach for image sensing in disaster environment,” in
Proceedings of the 14th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services, 2017.

[10] L. Pu, X. Chen, G. Mao, Q. Xie, and J. Xu, “Chimera: An energy-
efficient and deadline-aware hybrid edge computing framework for
vehicular crowdsensing applications,” IEEE Internet of Things Journal,
vol. PP, no. 99, pp. 1–1, 2018.

[11] Z. Zhou, H. Liao, B. Gu, K. M. S. Huq, S. Mumtaz, and J. Rodriguez,
“Robust mobile crowd sensing: When deep learning meets edge com-
puting,” IEEE Network, vol. 32, no. 4, pp. 54–60, July 2018.

[12] V. Yigit, M. E. Aydin, and O. Turkbey, “Solving large-scale uncapaci-
tated facility location problems with evolutionary simulated annealing,”
International Journal of Production Research, vol. 44, no. 22, pp. 4773–
4791, 2006.

[13] F. A. Chudak and D. P. Williamson, “Improved approximation algo-
rithms for capacitated facility location problems,” in International Ipco
Conference on Integer Programming and Combinatorial Optimization,
1999, pp. 207–222.

[14] Z. Svitkina, “Lower-bounded facility location,” Acm Transactions on
Algorithms, vol. 6, no. 4, pp. 1–16, 2010.

[15] R. Ravi and A. Sinha, “Multicommodity facility location,” in Fifteenth
Acm-siam Symposium on Discrete Algorithms, 2004.

[16] J. Zhang, “Approximating the two-level facility location problem via a
quasi-greedy approach,” Mathematical Programming, vol. 108, no. 1,
pp. 159–176, 2006.

[17] Z. Friggstad and M. R. Salavatipour, “Minimizing movement in mobile
facility location problems.” in IEEE Symposium on Foundations of
Computer Science, 2008.

[18] P. Chardaire, A. Sutter, and M. C. Costa, “Solving the dynamic facility
location problem,” Networks, vol. 28, no. 2, pp. 117–124, 1996.

[19] D. B. Shmoys, E. Tardos, and K. Aardal, “Approximation algorithms
for facility location problems,” in Annual ACM Symposium on Theory
of Computing, vol. 3, no. 3, 1997, pp. 265–274.

[20] V. V. Vazirani, Approximation Algorithms, 2001.
[21] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi,

“CRAWDAD dataset roma/taxi (v. 2014-07-17),” Downloaded from
https://crawdad.org/roma/taxi/20140717, Jul. 2014.

[22] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser, “CRAW-
DAD dataset epfl/mobility (v. 2009-02-24),” Downloaded from
https://crawdad.org/epfl/mobility/20090224, Feb. 2009.

[23] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations
and travel sequences from gps trajectories,” in Proceedings of the 18th
International Conference on World Wide Web, ser. WWW ’09. New
York, NY, USA: ACM, 2009, pp. 791–800.

