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User Recruitment System for Efficient Photo
Collecting in Mobile Crowdsensing

En Wang, Yongjian Yang†, Jie Wu, IEEE Fellow, Kaihao Lou, Dongming Luan, and Hengzhi Wang

Abstract—Mobile crowdsensing recruits a group of mobile
users to cooperatively perform a common sensing job with their
smart devices. As a special issue, photo crowdsensing allows
users to utilize the built-in cameras of mobile devices to take
photos for an event or a target. Then, the photos can be used
in numerous application areas, such as target reconstruction,
scenario reduction and so on. Therefore, photo crowdsensing
has attracted considerable attention recently due to the rich
information that can be provided by images. In this paper, we
focus on using the photos to make reconstructions for the specific
targets. Furthermore, we develop a user recruitment system for
efficient photo collecting in mobile crowdsensing (RSMC), where
the task requesters publish a sensing task to the users, and the
map is gridded according to the locations of the sensing targets.
Then, we use a semi-Markov model to calculate the user’s utility
for the sensing task. Finally, a user recruitment strategy is devised
to recruit the optimal k users for finishing the sensing task. We
conduct extensive simulations based on three widely used real-
world traces: roma/taxi, epfl and geolife. The results show that
compared with other recruitment strategies, RSMC takes the
largest number of efficient photos for the sensing task.

Index Terms—Mobile crowdsensing, User recruitment, Photo
collecting, Semi-Markov

I. INTRODUCTION

The rising popularity of smartphones has led to a new world
consisting of phones, and they have been equipped with a
variety of sensors (e.g., camera, light sensor, chemical sensor
and GPS) that allow them to be considered mobile devices
with a powerful sensing ability. Due to these developments,
a new sensing paradigm called mobile crowdsensing (MCS)
has been proposed [1] to recruit some mobile users for
finishing a common sensing task through their smartphones.
The collection and processing of sensing data on mobile users’
smartphones produce useful knowledge, which serves many
applications ranging from traffic route planning and available
resources reporting to specific target tracking and air quality
monitoring [2–8].

In this paper, we are particularly interested in mobile visual
crowdsensing (MVC) [9], [10], where people take photos for
an interesting event or a specific target with their mobile
devices. Compared with the traditional MCS, MVC collects
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Fig. 1. User recruitment system framework in mobile crowdsensing. The
framework is composed of the following four models: task publishing, map
gridding, utility calculating and user recruitment models.

richer information through images. Hence, in many cases,
MVC is superior to traditional crowdsensing that collects
sensing data through deploying fixed sensors.

Previous works in MVC mainly include two aspects. The
first aspect is developing some applications, where Creek-
Watch [11], PhotoNet [12], PhotoCity [13], and WreckWatch
[14] are some examples in which the built-in cameras of
smart devices have been used to take photos for specific
tasks. The second aspect focuses on data utility measurement
or data collection of the photos taken by the workers [15].
The fact that few works propose user recruitment strategies
in MVC, especially for developing user recruitment systems
in MVC, is common knowledge. Actually, in MCS, the user
recruitment problem has been discussed many times in mobile
crowdsensing, and there has been much research on user re-
cruitment strategies [16], [17], where a common challenge for
most mobile crowdsensing applications is to identify mobile
users who can contribute the most value to the sensing task.
However, compared with the user recruitment in MCS, MVC
faces several distinct challenges, such as multidimensional
photo coverage needs and photo redundancy identification and
elimination. Hence, proposing a user recruitment system for
MVC is also necessary and urgent. To this end, in this paper,
we develop a user recruitment system, where we focus on
using the photos to make reconstructions for the targets of
a specific area (e.g., make a reconstruction for a tourist spot
or a city area). This approach raises the following research
challenges.

• Efficient Areas: according to the specific target recon-
struction task, we should decide the efficient areas for
users to take photos, and it is useful to measure the
efficiency of users, especially for taking the mobility
traces into consideration.

• User Utility: according to the users’ mobility traces and
the efficient areas, we must decide the user’s utility for
the specific target reconstruction task.

• Optimal User Set: according to the users’ utilities and
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the recruiting budget, we should decide the top-k users
to finish the crowdsensing task.

To solve the above challenging problems, we design a
user recruiting system for efficient photo collecting in mobile
crowdsensing, which consists of four models (as shown in
Fig. 1):

• Task Publishing Model: a requester publishes a sensing
task for taking photos of the specific targets. To recruit
suitable users for finishing the sensing task, we divide the
task into the locations of the target buildings or tourist
spots. We also decide the efficient areas for users to take
photos, according to the task locations.

• Map Gridding Model: according to the requester’s sens-
ing task, the positions of the target buildings or spots
are decided, and we divide the map into grids. To map
the targets into the specific grids, the surrounding (north,
south, east, and west) grids of the targets are defined
as the efficient areas. The target reconstruction can be
accomplished by the photos taken around the targets.

• Utility Calculating Model: we use a semi-Markov model
to determine the probability distribution of the user arrival
time at the efficient areas, and then, the user’s utility is
determined by the expected number of efficient photos
that they can take before the sensing task’s deadline.

• User Recruitment Model: taking the redundant photos
(photos taken in the same efficient area) into consider-
ation, the top-k users recruiting problem is NP-hard. We
use a submodular function to solve the NP-hard problem;
then, the top-k users can be recruited to take the expected
largest number of efficient photos.

The main contributions of this paper are briefly summarized
as follows:

• We design a useful system framework (including task
publishing, map gridding, utility calculating and user
recruitment models) for recruiting the most suitable users
to finish the crowdsensing tasks.

• We propose a semi-Markov model to determine the
probability distribution of the user arrival time at the
efficient grids and then obtain the utility function.

• We formulate the top-k user recruitment problem as
an NP-hard problem, and we adopt a practical greedy
heuristic that uses the submodular function to solve the
NP-hard recruiting problem.

• We conduct extensive simulations based on three widely
used real-world traces: roma/taxi, epfl, and geolife. The
results show that compared with other recruitment strate-
gies, RSMC takes the largest number of efficient photos
for the sensing task.

The remainder of this paper is organized as follows: we
review the related work in Section II. The user recruitment
system for collecting photos in MCS is described in detail in
Section III. In Section IV, we evaluate the performance of the
designed recruitment system through extensive simulations.
We conclude the paper in Section V.

II. RELATED WORK

A. Visual Crowdsensing System
Focusing on automated scene analysis, Li et al. [18] conduct

a crowded scene survey, which includes crowdsensing models,
algorithms, protocols, and system performance. Chen et al.
[19] propose a coadjutant visual sensing system through shar-
ing pictures and creating a virtual opportunistic community.
Guo et al. [20] also conduct a study in terms of the picture
collection problem in mobile crowd photographing, and they
propose a pyramid-tree model to collect the best subset of
pictures. Wang et al. [21] utilize the combination of mobile
crowd sensing and crowd smart to sense temporary obstacles
and send timely reminders to the road walkers. Dong et al. [22]
propose iMoon: building 3D models of the indoor environment
to solve the problem of missing paths by integrating paths
into a navigation mesh. The above studies focus on designing
systems or developing applications for MVC; however, these
works pay no attention to the user recruiting strategy. Hence,
this paper can be regarded as an important module of the above
systems and applications.

B. Recruitment Strategy in MCS
He et al. [23] propose the user recruitment protocol for

vehicle-based crowdsourcing by predicting the trace of the
vehicle. To maximize task coverage, Wang et al. [24] propose
two algorithms to select some seeds in social networks. Wang
et al. [25] reformulate the multitask assignment problem to
minimize sensing quality thresholds, with the purpose of
assigning a suitable set of tasks to each worker. Yu et al. [26]
propose to utilize a location-based social network to build a
framework for improving marketing effectiveness by carefully
selecting users to serve offline events. Li et al. [27] propose
a recommender system that selects a subset of participants to
maximize the utility of the platform for effectively sensing
the data. Pouryazdan et al. [28] provide a framework based
on game theory to ensure truthfulness for a mobile crowd-
sensing system in the user recruitment stage. Wang et al. [29]
provide a comprehensive review for diversifying the problem
formulation and allocation algorithms together with future
research opportunities. Wang et al. [30] propose a mobile
crowdsensing task assignment scheme by allocating tasks that
consider users’ moving regularity. Liu et al. [31] propose a
multitask allocation framework in mobile crowdsensing with
biobjective optimization goals, named TaskMe, which is based
on minimum cost maximum flow theory. Wang et al. [32]
propose PSTasker, an MCS platform that aims to maximize
the overall system utility by suitably allocating the tasks to
users. The above works focus on proposing a user recruitment
strategy to efficiently finish the mobile crowdsensing task.
However, the above works are unable to address coverage and
redundancy problems of data collecting in MVC; hence, they
could not be directly used in the recruiting system for MVC.

III. USER RECRUITMENT SYSTEM

A. Task Publishing Model
We design a generic task publishing model, which re-

quires the task requester to publish the following data type:
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Fig. 2. The illustration of the multistage task publishing process for mobile
crowdsensing.

⟨T list, T ⟩, where T list means the target list consisting
of the locations of targets (buildings or scenic spots) such
that each target is regarded as a roundness in the map,
and the target’s information includes ⟨longitude, latitude
and diameter⟩. T means the deadline for the sensing task.
Actually, the above task-publishing process is repeated serially
as shown in Fig. 2; then, the multistage task publishing
process is formulated. At the beginning of each stage, the
task requester publishes the locations of the targets and the
importance degrees of the targets. If some targets are not
well constructed in the previous stage, then their importance
degrees would be higher in this stage. The importance degree
is quantified as the weight of the target, which will also
influence the user recruitment. It is not difficult to realize that
the different stages are independent of each other; hence, we
use the single-stage recruiting problem as an example in this
paper. Furthermore, the duration of a stage is set as one hour,
which is not a long time; thus, we recruit the users at the
beginning of the stage and will not adjust the recruiting before
the stage deadline.

At the beginning of the stage, a requester publishes a sensing
task to make reconstructions for a set of buildings. Then, the
positions and deadline are also published, and we can know
the longitude and latitude of the buildings’ geometric centers
and the diameter of the building. The detailed positions of the
buildings can be further described. Moreover, the deadline to
upload the photos of these buildings is also provided.

For each task, we have n users who are ready to be
recruited: U = {u1, u2, · · · , un}. Here, ui refers to the user
ID for taking the photos. According to the users’ traces, we
can decide the minimum size for the sensing area, which is
a minimized rectangular area to cover all the users’ historical
mobility traces and sensing targets. When a requester publishes
a sensing task, we can extract the detailed information about
the sensing targets (position, size, etc.).

B. Map Gridding Model

Definition 1. A grid is a square region characterized by (i, j),
which denotes the ith row and jth column grid in the map.
Each grid has an equal size. A gridded map is a collection
of disjoint grids that collectively cover the mobility area of a
GPS dataset.

It is not difficult to realize that a region on the Earth
bounded by longitudinal and latitudinal lines is not a square.
However, it is easy for us to map the user’s longitudinal and
latitudinal traces into a square area in a plane region, especially
for a small area [33].

Users

Efficient

Grids

Sensing

Targets

Fig. 3. The illustration of the gridded map for mobile crowdsensing.

After mapping each user’s trace to a gridded map, we
convert the trace to a string of grids. At any given time, the
state of the user can be recorded as the grid ID. Generally,
the more grids there are, the more overhead for maintaining
the user’s states but also the higher prediction precision of
user mobility. Considering that the grid division is uniform,
we decide the gridded map based on sensing targets’ locations
and the requirement of the task requester.

According to the targets’ locations and sizes, we can decide
the minimum size of the grid. Similarly, according to the
shooting distance requirement of the target, we can decide
the maximum size of the grid. Then, we partition the entire
map area into grids by the following rules:

• Each grid contains and totally covers up to only one
sensing target.

• The grids are equal size, and there is no overlap among
them.

• The side length of the grid must be smaller than the
required shooting distance.

Through the above rules, the map is gridded into a × b
grids. The side length of a grid is larger than the maximum
diameter of the target and smaller than the required maximum
shooting distance. If a target covers multiple grids, without
loss of generality, the target is assigned to the grid that covers
its geometric center. Finally, we can achieve a gridded map
as shown in Fig. 3, where a set of users move around the
grids, and some grids are occupied by the sensing targets. It
is worth noting that in different scenarios, the areas of targets
may change, although we can always find a suitable gridding
result through the above rules. Then, the north, south, east and
west grids of the sensing target are defined as the efficient
grids.

Definition 2. An efficient grid is a grid where the user can
take an efficient photo for a sensing target.

The technology that reconstructs a target through the photos
taken from multiple angles [34] has considerably matured.
However, the reconstruction procedure is not the main part
of this paper. The most important concept is that more
photos lead to a higher modeling quality [35]. Hence, we
use the number of nonredundant efficient photos to measure
the performance of finishing the task. Therefore, we just
propose a suitable recruitment strategy for maximizing the
number of efficient photos that can be used to serve the target
reconstructions. In this paper, according to the gridded map,
we use the photos taken from four angles (north, south, east,
and west) to perform the target reconstruction (as shown in
Fig. 4). There have been many software offerings (Photo scan)
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Fig. 4. An example of performing target reconstruction through the four
photos of different angles (north, south, east and west).

or online applications (3D cloud) that can finish the above
works. Meanwhile, the modeling procedure can be performed
on a cloud server when the users’ photos are successfully
uploaded. Moreover, if we want to enhance the reconstruction
quality, we could extend the work to a situation with more
angles and modify the model of map gridding accordingly.
In the following discussions, we explain the extension of this
work to a multiangle situation through an easy improvement.

C. Utility Calculating Model

In the gridded map, the targets are located at the stationary
grids, and the users move around the targets. Then, a user’s
trace could be regarded as the transition among the grids.
When a user moves into an efficient grid, efficient photos for
the corresponding targets can be taken. In an attempt to decide
a user’s utility for the specific task, we predict the expected
number of efficient photos that a user could take before the
deadline. Therefore, in this paper, we use the semi-Markov
model to address the grid-based mobility prediction problem
[8].

1) Semi-Markov Model: There are n users moving around
the targets. The state of a user is defined as the grid ID it
is currently in. Generally, the state set of user k is Lk =
{(1, 1), (1, 2), (1, 3), · · · , (a, b)}, which represents the grid ID
that user k is in now. a×b represents the total number of grids.
The nth state of user k is recorded as Lk

n, which is the nth
grid in the trace of user k. The entering time for user k to the
nth grid is T k

n .
Through the above transition, a user k’s trace can be

regarded as a time homogeneous semi-Markov process [36],
[37] (Lk

n, T k
n ) because the probability of a user k moving from

state Lk
n to state Lk

n+1 has no relationship to the state Lk
n−1.

Hence, Lk
n can be regarded as a standard discrete-time Markov

chain. T k
n represents the time point to move from Lk

n to Lk
n+1.

Moreover, we provide the following symbols: Mk
n =

T k
n+1 − T k

n , which represents the holding time in the grid.
Obviously, Mk

n is independent and identically distributed
(i.i.d.). Hence, the distribution for Mk

n is different from the
geometric or exponential distribution. For example, each user
may have its own expected holding time for the specific grid.

The main equation for the above semi-Markov model is
shown in Eq. 1, where F

(x,y)
(i,j) (k, t) is the probability for user k

to move from grid (i, j) to grid (x, y) before time t. Obviously,
in Eq. 1, Lk

n+1 depends on Lk
n but is independent of Lk

n−1.

F
(x,y)
(i,j) (k, t)=P (Lk

n+1
=(x, y),Mk

n ≤ t|Lk
0 · · ·Lk

n, T
k
0 · · ·T k

n )

= P (Lk
n+1

=(x, y),Mk
n ≤ t|Lk

n = (i, j)) (1)

Next, we consider P as the probability matrix for moving
among the grids. Additionally, the holding states for a user

satisfy a Markov chain. Then, the probability of moving from
grid (i, j) to grid (x, y) is shown in Eq. 2, where num(i,j)(k)
is defined as the number of moves out from grid (i, j) without
considering the next grid, and where num

(x,y)
(i,j) (k) is the

number of moves from grid (i, j) to grid (x, y). It is worth
noting that if (i, j) and (x, y) are not neighboring grids, then
a user could not move directly from (i, j) to (x, y). In other
words, for matrix P , only when the grids are neighbors in
the gridded map may a user have a value to move between
them. Hence, when |i− x| > 1 or |j − y| > 1, the value in P
is 0.

P
(x,y)
(i,j) (k)=



P (Lk
n+1

=(x, y)|Lk
n
=(i, j))

=num
(x,y)
(i,j) (k)/num(i,j)(k),

if |i− x| ≤ 1 && |j− y| ≤ 1

0, else

(2)

The probability for user k to move from grid (i, j) to grid
(x, y) before time t is symbolized as T

(x,y)
(i,j) (k, t), which is

shown in Eq. 3.

T
(x,y)
(i,j) (k, t) = P (Mk

n ≤ t|Lk
n = (i, j), Lk

n+1 = (x, y))

=

t∑
c=1

P (Mk
n
=c|Lk

n
=(i, j), Lk

n+1
=(x, y))) (3)

Then, we can calculate the probability T(i,j)(k, t) that user
k will leave the grid (i, j) no later than time t as follows:

T(i,j)(k, t)=P (Mk
n ≤ t|Lk

n
=(i, j))=

∑
∀(x,y)̸=(i,j)

F
(x,y)
(i,j) (k, t).

(4)

As previously described, the state holding time is defined
as Mk

n . Obviously, T(i,j)(k, t) also indicates the distribution
of the grid-holding time in (i, j) for user k, regardless of the
next grid or state.

According to Eqs. 1-3, we can derive the time-homogeneous
semi-Markov kernel part F (x,y)

(i,j) (k, t), which is shown as Eq. 5.

F
(x,y)
(i,j) (k, t)=P (Lk

n+1
=(x, y),Mk

n ≤ t|Lk
0 · · ·Lk

n, T
k
0 · · ·T k

n )

= P (Mk
n ≤ t|Lk

n
=(i, j), Lk

n+1
=(x, y))

P (Lk
n+1

=(x, y)|Lk
n
=(i, j))

= T
(x,y)
(i,j) (k, t)P

(x,y)
(i,j) (k) (5)

2) User Utility: Another main equation for the semi-
Markov model is R(x,y)

(i,j) (k, t), which represents the probability
that user k is now in grid (i, j), and after time t, the
user k could be in grid (x, y). Obviously, R

(x,y)
(i,j) (k, t) and

the previous F
(x,y)
(i,j) (k, t) are two different concepts, where

F
(x,y)
(i,j) (k, t) means the probability that user k’s current grid

is (i, j) and its next grid is (x, y), with the moving time from
(i, j) to (x, y) less than t. However, R(x,y)

(i,j) (k, t) represents the
probability that the user k’s current grid is (i, j) and will be
in (x, y) after time t. In other words, the moving process from
(i, j) to (x, y) may pass through other grids. In this manner,
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R
(x,y)
(i,j) (k, t) can be used to predict the user k’s location after

a given time t once its current grid is known.
It is not difficult to realize that

∑
∀(x,y)

R
(x,y)
(i,j) (k, t) = 1. For

the start time t = 0 without any moving out, if (x, y) ̸=
(i, j), then R

(x,y)
(i,j) (k, t) = 0. Similarly, if (x, y) = (i, j), then

R
(x,y)
(i,j) (k, t) = 1.

Aiming at calculating R
(x,y)
(i,j) (k, t), we start with an easy

situation: user k has never left grid (i, j) before time t. Then,
according to Eq. 4, the probability that Mk

n is larger than t is
shown in Eq. 6:

P (Mk
n > t|Lk

n = (i, j)) = 1− T(i,j)(k, t) (6)

Then, another situation is considered when user k has been
in at least another grid between time 0 and t, and the first
moving out occurs at time c, such that user k moves to (r, f).
Then, we can calculate the probability as follows:

P (Lk
t
=(x, y)|Lk

0
=(i, j) and at least one transition to (r, f))

=
∑
∀(r,f)

t∑
c=1

(F
(r,f)
(i,j) (k, c)−F

(r,f)
(i,j) (k, c−1))R

(x,y)
(r,f) (k, t−c),

(7)

where (F
(r,f)
(i,j) (k, c)−F

(r,f)
(i,j) (k, c−1)) represents that the first

moving out for user k occurs at time c to grid (r, f).
Taking the above two situations into consideration, we

obtain R
(x,y)
(i,j) (k, t) as follows:

R
(x,y)
(i,j) (k, t)=



∑
∀(r,f)

t∑
c=1

(F
(r,f)
(i,j) (k, c)− F

(r,f)
(i,j) (k, c− 1))

R
(x,y)
(r,f) (k, t− c), (x, y) ̸=(i, j)

1− T(i,j)(k, t)+∑
∀(r,f )̸=(i,j)

t∑
c=1

(F
(r,f)
(i,j) (k, c)− F

(r,f)
(i,j) (k, c− 1))

R
(x,y)
(r,f) (k, t− c), (x, y)=(i, j)

(8)

By now, a user’s probability to be in a grid (x, y) before the
sensing task’s deadline is achieved. For an efficient grid, the
higher the user’s probability is, the more contribution it can
make to the sensing task. Then, a user’s utility for a specific
grid is shown as follows:

U (x,y)(k)=1−
T∏

t=0

(1−R
(x,y)
(a,b) (k, t)) (9)

In this subsection, we attempt to calculate the user’s utility
for taking the efficient photos for the sensing targets. Hence,
we should use the sum probability for arriving at the efficient
grids of user k to measure the expected number of efficient
photos that could be taken. There are many efficient grids in
the map, and the expected number of efficient photos that a
user could take is just the sum probability of arriving at the
efficient grids. However, the following two cases need to be
considered; the first case is that, as previously discussed, a
target has an importance degree. For example, if a target is not
well reconstructed in the previous stage, then in the following
stage, it is important to recruit the users who could contribute

Weight=2

Weight=1

Weight=1

Fig. 5. The descriptions for the efficient grids with the weight. Each target
has an importance degree, as previously discussed, and the degree is quantized
as the weight of the target. Then, the initial weight of the grid around the
target is just the weight of the target. However, if a grid is efficient for two
targets, in other words, a user in this grid could take two efficient photos for
the different targets, then the weight of this grid is the sum of the targets’
weights.

more efficient photos for this target. The second case is that
a grid may be efficient for two or more targets; then, the grid
(x, y) has a weight W(x,y), which is the sum of the weights of
the surrounding targets adjacent to (x, y) (as shown in Fig. 5).
In Fig. 5, the weight of the dark grid is 3 because it is adjacent
to the two targets, whose weights are 1 and 2. Through the
above analysis, the user’s utility can be calculated as follows:

U(k)=
∑

∀(x,y)∈E

W(x,y)U
(x,y)(k) (10)

D. User Recruitment Model

Now, the user’s utility is determined. Based on the user’s
utility, we can propose a top-k user recruitment strategy, which
recruits k users to collectively take the maximum number of
efficient photos.

Given a user set S, for all the users k ∈ S, the probability
that they could be in grid (x, y) before the deadline is shown
as follows:

U (x,y)(S)=1−
∏
∀k∈S

(1− U (x,y)(k)) (11)

Then, the expected number of efficient photos that they
could take can be achieved. It is not difficult to determine
that for all the efficient grids set E, the utility of the user set
S (i.e., the expected number of efficient photos that user set
S could take) can be obtained as follows:

US=
∑

∀(x,y)∈E

W(x,y)U
(x,y)(S) (12)

1) Top-k User Recruitment: Before addressing the above
user recruitment problem, we first try to prove that the top-
k user recruitment problem is NP-hard, as shown in the
following theorem [38].

Theorem 1. The k nodes selection problem is NP-hard.

Proof. First, an easier situation is considered in this paper:
every user’s utility for a specific grid is 1 or 0, which means
that whether the user will be at a specific efficient grid before
the deadline is a deterministic event, not a probabilistic event.
Actually, the purpose of this k-user recruitment problem is to
recruit the k number of users (user set S) from all the users
to arrive at as many efficient grids as possible. This problem
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Pu3(x,y)=0.5

Pu1(i,j)=1
u1

u2

u3

(i,j)

(x,y)

Users Grids

Pu2(i,j)=1

Fig. 6. The descriptions of two different user recruitment strategies. A top-2
user recruitment strategy is considered. If we just recruit the users with the
highest utility for the two grids, (i, j) and (x, y), then users 1 and 2 will be
recruited. However, users 1 and 3 are obviously a better user set (total utility
is 1.5) than users 1 and 2 (total utility is 1).

can be considered a k set cover problem, which is a well-
known NP-hard problem: a task set κ is provided, a collection
of subsets is {κi|1 ≤ i ≤ n}, and thus, we seek to determine
a k size of the subcollection of {κi|1 ≤ i ≤ n} that covers as
many tasks as possible in κ. That is, the easier (compared with
the original k-user recruitment problem) k recruiting problem
is NP-hard. Obviously, the original k-user recruitment problem
is at least NP-hard.

As previously discussed, the top-k user recruitment prob-
lem is NP-hard. Therefore, in order to address the NP-hard
problem, we attempt to use a greedy algorithm. One approach
that occurred to us was that according to every user’s utility,
we choose the user with the highest utility, and the same
actions are performed k times. However, the above recruitment
strategy is obviously not the optimal solution. For example, as
shown in Fig. 6, users 1 and 2 could both arrive at grid (i, j)
before the deadline; meanwhile, user 3 has a probability of 0.5
to arrive at grid (x, y). (i, j) and (x, y) are two efficient grids.
Considering a top-2 user recruitment problem, if we recruit the
two users with the highest utility, then users 1 and 2 would be
recruited, and their total utility is 1 (1+0). However, a better
strategy is to recruit users 1 and 3 because the utility of users
1 and 3 is 1.5 (1+0.5).

Aiming at selecting the top k users and achieving the
maximum number of efficient photos, we propose the greedy
heuristic strategy to recruit the best users set S. The purpose
is to maximize US , which is calculated as Eq. 12. The detailed
greedy algorithm is shown in Algorithm 1. The logic of
Algorithm 1 is first recruiting the best user with the highest
utility and, then, among the rest of the users, selecting the user
who can maximize the value of US as the second recruiter to
be added into S. The same actions are performed k times. As
shown in Fig. 6, in this way, we select users 1 and 3 (or 2
and 3), rather than users 1 and 2 as the final recruiters.

2) Approximation Ratio: We have proposed a greedy al-
gorithm to address the above NP-hard problem. Then, for
tackling the complexity of the algorithm, the bound is derived
in this subsection.

Theorem 2. US is a submodular function, which means that
for two arbitrary user sets S1 and S2, if S1 ⊆ S2, then ∀uk /∈
S2, the submodular property holds, i.e., US1∪{uk} − US1 ≥
US2∪{uk} − US2

.

Algorithm 1 Greedy heuristic for recruitment of k users
Input:

Number of users: K
Recruited users: S
S’ total utility: US

Output:
Top-k users set: S

1: S ←− ∅; US = 0
2: for i =1 to k do
3: h←−arg max

h∈K\S
US∪h

4: S = S ∪ h; update US

5: return S

Proof. We first prove that when |S2| − |S1| = 1, US1∪{uk} −
US1

≥ US2∪{uk} − US2
. Then, we extend it to the general

case, where |S2| − |S1| = ω > 1.
First, without loss of generality, we let S2\S1 = {uh}

according to S1 ⊆ S2, then |S2| − |S1| = 1. To prove
the submodular property of US , we consider the arriving
probability to one efficient grid (x, y), which can be divided
into the following three cases [38]:

Case 1: uk has no chance to be in (x, y). For this
case, U (x,y)(k) = 0. Therefore, we have US1∪{uk} = US1

and US2∪{uk} = US2 . As a result, US1∪{uk} − US1 =
US2∪{uk} − US2

= 0.
Case 2: uk has an arriving probability to (x, y), but uh has

no chance to be in (x, y). For this case, U (x,y)(h) = 0. Then,
US2 = US1∪{uh} = US1 , and US2∪{uk} = US1∪{uk}∪{uh} =
US1∪{uk}. Consequently, we can obtain US1∪{uk} − US1

=
US2∪{uk} − US2

.
Case 3: Both uk and uh have an arriving probability

to (x, y). Then, for all the users in S1, the total arriving
probability to (x, y) is defined as P (x,y)

1 . Similarly, for S2, the
arriving probability to (x, y) is defined as P

(x,y)
2 . Obviously,

P
(x,y)
1 ≤ P

(x,y)
2 , and then, US1∪{uk} − US1

= 1 − (1 −
P

(x,y)
1 )(1−U (x,y)(k))−P

(x,y)
1 . Similarly, US2∪{uk}−US2 =

1− (1−P
(x,y)
2 )(1−U (x,y)(k))−P

(x,y)
2 . Therefore, we have

(US2∪{uk} − US2
)− (US1∪{uk} − US1

)

= (1−(1−P
(x,y)
2 )(1−U (x,y)(k))−P

(x,y)
2 )

−(1−(1−P
(x,y)
1 )(1−U (x,y))−P

(x,y)
1 )

= (P
(x,y)
1 − P

(x,y)
2 )U (x,y)(k) ≤ 0 (13)

Therefore, US1∪{uk} − US1
≥ US2∪{uk} − US2

.
In conclusion, US1∪{uk} − US1 ≥ US2∪{uk} − US2 holds

for ∀(x, y) ∈ E in all cases. Now, we consider the case
of |S2| − |S1| = ω ≥ 1. Without loss of generality, we
assume that S2\S1 = {uh, uh+1, · · · , uh+ω−1}. Then, we
have US1∪{uk} − US1

≥ US1∪{uk}∪{uh} − US1∪{uh} ≥
US1∪{uk}∪{uh}∪{uh+1} − US1∪{uh}∪{uh+1} ≥ · · · ≥
US1∪{uk}∪{uh}∪···∪{uh+ω−1} − US1∪{uh}∪···∪{uh+ω−1} =
US2∪{uk} − US2

Therefore, US is a submodular function. Theorem 2 is
proven.
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Fig. 7. An example of the irregularly gridded map.

Theorem 3. For a nonnegative, monotone submodular func-
tion f , let S be a set of size k obtained by selecting elements
one at a time, each time choosing an element that provides
the largest marginal increase in the function value. Let S∗ be
a set that maximizes the value of f over all k-element sets.
Then, f(S) ≥ (1 − 1/e) · f(S∗); in other words, S provides
a (1− 1/e)- approximation.

Proof. Submodular functions have a very nice tractability
property [39], which is relevant to us in the following way: we
have a function f that is submodular, which takes only non-
negative values and is monotonic such that adding an element
e to the set cannot cause f to decrease: f(S∪{e}) ≥ f(S) for
all elements e and sets S. We wish to find a k-element set S
for which f(S) is maximized. This is an NP-hard optimization
problem (it can be shown to contain the set covering problem
as a simplified case). However, a result from Nemhauser,
Wolsey, and Fisher [40] shows that the following greedy hill
climbing algorithm approximates the optimum to within a
factor of 1−1/e (where e is the base of the natural logarithm):
start with the empty set, and repeatedly add an element that
yields the maximum marginal gain.

E. Discussion

The proposed system model in this paper focuses on a
gridded map as shown in Fig. 5. Actually, this is not a
necessary condition; the system design in this paper is just
a special case, undertaken to simplify the calculation. In other
words, even if the map is not regularly gridded and the efficient
grids are not located at the four angles (an example of six
angles is shown in Fig. 7), the solution proposed in this paper
could still be changed to satisfy the new problem. It is not
difficult to realize that the grids in the map could be any
shape, and we could still record the parameters mentioned in
the utility calculating model. We use the grid ID to distinguish
the different areas rather than the row and column numbers.
For example, we could also record the grid holding time,
the probability of moving out and so on. Then, based on the
efficient grids, the user’s utility is also achieved. Hence, the
system model proposed in this paper could be easily extended
to a new map area with an irregular map division.

IV. PERFORMANCE EVALUATION
A. The Traces Used and Settings

We adopt three real-world traces, roma/taxi trace set [41],
epfl trace set [42], and geolife trace set [43], [8] to test the
performances of the recruitment system. The roma/taxi trace
set includes 320 taxi drivers that work in the center of Rome,

TABLE I
SIMULATION PARAMETERS

Parameter Traces
roma/taxi epfl geolife

Simulation Time 650,660,· · · ,740,750
Task Deadline 800
Time Unit (s) 15 30 5
Grid Number 15×13 12×14 10×16
User Number 49 57 59

Target Number 7 7 7
Longitude 41.83∼41.96 37.72∼37.81 39.83∼39.97
Latitude 12.42∼12.56 -122.51∼-122.39 116.12∼116.52

Italy. The traces record the positions of drivers. Each taxi
driver has a tablet that periodically retrieves a GPS position
and sends it to a central server. The epfl trace set contains
mobility traces of taxi cabs in San Francisco, CA, USA. It
contains GPS coordinates of approximately 500 taxis collected
over 30 days in the San Francisco Bay area. The geolife
trace set contains 17,621 trajectories with a total distance of
approximately 1.2 million kilometers and a total duration of
approximately 48,000 hours. These trajectories are recorded
by different GPS loggers and phones.

We first address these datasets by filtering out some ab-
normal user traces (discontinuous records or remote areas).
According to the addressed users’ traces, we achieve the map
area for the users to move around. Then, we put the traces
into the Baidu map according to the GPS records. Because
the three traces are all in the city area, we randomly select
some famous buildings or travel spots as the sensing targets.
Based on the map gridding model, we decide the gridded map
and the sensing targets (as shown in Fig. 8). The detailed
simulation parameters in this network environment are listed
in Table I. In particular, simulation time means the number of
time slices, which is the period to collect data. The collecting
period is 15 s for the roma/taxi dataset, 30 s for the efpl dataset
and 5 s for the geolife dataset.

B. Algorithms and Performance Comparison

To demonstrate the performance of the designed user re-
cruitment system in mobile crowdsensing, we have performed
some simulations to evaluate two goals: (1) accuracy in the
user’s utility and (2) efficiency of the top-k users.

For the first part, to test whether the utility calculation of
RSMC is accurate, we compare two recruitment strategies:
RSMC and RS. RSMC is proposed in this paper for recruiting
one user of the highest utility to take photos for the sensing
targets. Therefore, at the system start time, we estimate the
expected number of efficient photos that every user could
take before the deadline and recruit the user with the highest
number of efficient photos. RS (random selection) randomly
recruits a user at the system start time.

For the second part, we attempt to test whether RSMC
can achieve the highest sensing efficiency compared to the
other two recruitment strategies: RSMC-H and RS. In this
part, we focus on the top-k user recruitment problem. RSMC
uses the system proposed in this paper to recruit the optimal
k users (highest US) to take photos for the sensing targets.
RSMC-H recruits k users that each have the highest utility; in
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(a) roma/taxi (b) epfl (c) geolife

Fig. 8. The gridded map and sensing targets in the Baidu map of the three real-world datasets.
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(a) roma/taxi trace set
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(b) epfl trace set
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(c) geolife trace set

Fig. 9. The performance comparison between RSMC and RS.

other words, RSMC-H does not consider the mutual influence
among users’ utilities. However, RS randomly recruits k users
at the system start time.

While a range of data is gathered from the simulations,
we take the following three main performance metrics into
consideration:
(1) Number of efficient photos, which is the total number of

efficient photos (without redundancy: taken in the same
grid for the same target) that the recruiters could take
before the deadline.

(2) Average delay, which is the average time needed for taking
the efficient photos from the start time.

(3) Calculation time, which is the time needed for calculation
of one layer of the R matrix, which is shown in Eq. 8.

Here, we emphasize that using the number of efficient
photos instead of the number of completed tasks to measure
the performance is implemented because the four angles are
not necessary (it is just an example to show the modeling
procedure). Therefore, it is difficult for us to quantify the
number of completed tasks. To solve this problem, we use the
number of efficient photos to measure the completion level of
the sensing task.

C. Calculation Optimization

In terms of the above simulation, the main problem is the
calculation speed because the calculation process consumes
vast memory space. It is not difficult to realize that we need to
calculate four kinds of matrices: P , T , F and R. Furthermore,
each kind of matrix consists of many layers that are determined
by the task deadline, and each layer is a matrix, including
the square of the grid number. The grid number is the row
number multiplied by the column number. For example, in
the roma/taxi trace, for a P matrix, it is composed of 800

TABLE II
CALCULATION TIME FOR ONE LAYER OF THE MATRIX

Matrix Without Optimization With Optimization
P 0.626 s 0.006 s
T 0.2547 s 0.0048 s
F 0.1085 s 0.0036 s
R 5.1 h 1 min

matrices, and the size of each matrix is 195×195. Hence, it
occupies considerable memory space.

To optimize the calculation process, we first put the matrices
on the disk, and the later calculation process would locate the
needed item on the disk. Furthermore, for each user’s four
matrices, we move the data to the memory to accelerate the
calculation speed because the different users’ calculations can
be parallel-processed, while for each user, its four matrices
cannot be parallel-processed. Second, we further change to
a three-tuple notation ⟨row number, column number, value⟩ to
record the nonzero item in the original matrix. This is because
the P , T , and F matrices are sparse, and using the three-tuple
notation ⟨row number, column number, value⟩ to record the
data can further improve the calculation speed.

Through the above two methods, the original calculation
process is optimized, and we test the time for calculating
one layer of the matrix, with the simulation results shown
in Table II.

D. Simulation Results

1) Accuracy of Utility: In the first part of the simulation
results, we attempt to prove the accuracy of utility proposed in
this paper. In other words, we attempt to test whether the user
with the highest utility can actually take the largest number of
efficient photos. To this end, we evaluate the performances
of RSMC and RS, and we also conduct three groups of
simulations using the roma/taxi, epfl, and geolife traces. At
the beginning of the system time, RSMC recruits the user with
the highest utility before the sensing deadline, and when the
user enters an efficient grid, an efficient photo can be taken.
At the end of deadline, the number of the efficient photos is
regarded as the accuracy of utility. A higher number of efficient
photos means a more accurate utility calculation. However, RS
randomly selects a user as the recruiter. The same performance
is tested in the three real-world traces. RSMC and RS are



9

650 700 750
18

20

22

24

26

Simulation Time (s)

N
u
m

b
e
r 

o
f 
E

ff
ic

ie
n
t 
P

h
o
to

s

RSMC

RSMC−H

RS

(a)

650 700 750
120

140

160

180

200

220

Simulation Time (s)

A
v
e
ra

g
e
 D

e
la

y
 (

s
)

RSMC

RSMC−H

RS

(b)

0 2 4 6 8 10
10

15

20

25

30

K

N
u
m

b
e
r 

o
f 
E

ff
ic

ie
n
t 
P

h
o
to

s

RSMC

RSMC−H

RS

(c)

0 2 4 6 8 10
100

150

200

250

300

350

K

A
v
e
ra

g
e
 D

e
la

y
 (

s
)

RSMC

RSMC−H

RS

(d)

25 30 35 40 45
20

22

24

26

28

Number of Users

N
u
m

b
e
r 

o
f 
E

ff
ic

ie
n
t 
P

h
o
to

s

RSMC

RSMC−H

RS

(e)

25 30 35 40 45
140

150

160

170

180

190

Number of Users

A
v
e
ra

g
e
 D

e
la

y
 (

s
)

RSMC

RSMC−H

RS

(f)
Fig. 10. Performance comparisons on the roma/taxi trace set: number of
efficient photos & average delay.

compared in this paper, and the number of efficient photos as
a function of the simulation time is shown in Fig. 9 for the
roma/taxi, epfl, and geolife traces.

As shown in Fig. 9-(a), in the roma/taxi real-world trace,
along with the simulation time from 100 to 800, we test the
number of efficient photos taken by RSMC and RS. It is not
difficult to observe that the number of efficient photos taken
by RSMC is always higher than that of RS. This is not difficult
for us to understand because RSMC always recruits the user
with the highest utility.

Moreover, there is an upward trend in the number of
efficient photos along with the increase in the simulation time
for RSMC and RS. This upward trend is mainly because a
longer time leads to a higher probability for a user to pass an
efficient grid; hence, the number of efficient photos increases.
More importantly, along with the increase in the simulation
time, the difference in terms of the number of photos between
RSMC and RS also increases. The above phenomenon also
proves that RSMC can always achieve a higher accuracy in
terms of utility.

In Fig. 9-(b), we test the number of efficient photos taken by
RSMC and RS along with the simulation time from 100 to 800
in the epfl real-world trace. It is not difficult to observe that
RSMC always achieves a larger number of efficient photos
than RS, which proves that the utility calculation proposed
in this paper can recruit better users than randomly selecting
users. Similarly, the difference in terms of the number of
photos between RSMC and RS also increases with the increase
in simulation time.

As shown in Fig. 9-(c), in the geolife real-world trace, we
also test the number of efficient photos taken by RSMC and
RS along with the simulation time from 100 to 800. The results
show that in terms of the efficient photos performance, RSMC
always achieves a higher efficiency than that of RS. This
finding proves that the utility calculation proposed in this paper
is suitable to recruit an efficient user. Moreover, because the
efficient photos taken by the recruiters will increase along with
the increase in simulation time, there is an upward trend of the
number of efficient photos as the simulation time increases for
both RSMC and RS. Similar to the previous simulations, the
difference in terms of the number of photos between RSMC
and RS also increases along with the increase in simulation
time. In conclusion, in the roma/taxi, epfl, and geolife traces,
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Fig. 11. Performance comparisons on the epfl trace set: number of efficient
photos & average delay.

RSMC always achieves a better performance for the number
of efficient photos than that of RS.

2) Top-K Users Recruitment Efficiency: In this section,
we focus on testing the performances of the top-k users
recruitment strategy. In other words, we attempt to use the
system proposed in this paper to recruit a set of the number
k users to finish the crowdsensing task. We focus on the
following two performances: number of efficient photos taken
by the top k recruiters and the average delay for taking the
efficient photos. To evaluate the performance of RSMC, we
design two other recruitment strategies, RSMC-H and RS,
which have been proposed in the previous subsection. We test
the number of efficient photos and average delay, along with
changing the simulation time, the value k, and the number of
users in three real-world datasets. The simulation results are
shown in Figs. 10-12.

As shown in Fig. 10, we first test the performances in the
roma/taxi trace, and the performance ranking of the number of
efficient photos is RSMC>RSMC-H>RS, which is reasonable
and can match the theoretical result. Three conditions (simu-
lation time, value of k and the number of users) are also taken
into consideration to influence the final performances.

First, when the value of k is set to 5, the total number of
users is 49, and the simulation time is changing, the number of
efficient photos appears to be an upward trend for the RSMC
recruitment strategy. It is easy for us to understand because a
longer time leads to a larger number of sensing photos. For
the RSMC-H, we recruit the users with the highest utility,
and the simulation time’s changing scope is not very large;
thus, the users with the highest utility may be the same user
set. Consequently, the RSMC-H may recruit the fixed users
along with different simulation time situations. The above
phenomenon appears in Fig. 10, where the number of efficient
photos taken by RSMC-H remains unchanged in the different
simulation times. However, the number of efficient photos
taken by RS appears to be an upward trend along with the
increase in the simulation time.

Second, the simulation time is set to 700, and the total
number of users is 49. Along with the increase in the value
k, we also test the number of efficient photos, as shown in
Fig. 10. Obviously, there is also an upward trend for the RSMC
recruitment strategy. This is correct because a larger number
of recruiters leads to a larger number of efficient sensing
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Fig. 12. Performance comparisons on the geolife trace set: number of efficient
photos & average delay.

photos. It is not difficult to realize that the three recruitment
strategies all appear to be an upward trend along with the
increase in the value k. However, RSMC always achieves
the highest performance compared with RSMC-H and RS.
More importantly, the performance ranking of the number of
efficient photos is also RSMC>RSMC-H>RS, which proves
that RSMC recruits the optimal k users to finish the sensing
task. This finding also matches our theoretical results.

Finally, the simulation time is set to 700, the value of k is set
to 5, and along with the increase in the total user number, we
test the number of efficient photos and the average delay. The
simulation results show that RSMC still achieves the highest
number of efficient photos along with the change of the total
user number. In conclusion, in the roma/taxi real-world trace,
the number of efficient photos taken by RSMC is larger than
the other two strategies, RSMC-H and RS, along with the
increases in the simulation time, the value of k and the number
of users.

Then, in Fig. 11, the two previous performances in the
epfl trace are tested. The simulation results show that the
performance ranking of the number of efficient photos is
RSMC>RSMC-H>RS, along with the change of simulation
time, value of k and the number of users. The simulation
results match the theoretical derivations.

First, the value of k is set to 4, the total number of users
is 57, and along with the change of simulation time, the
number of efficient photos appears to be an upward trend
for the RSMC recruitment strategy. This result is because a
longer time leads to a larger number of sensing photos. A
similar shape also appears for RSMC-H. More importantly,
RSMC always achieves the largest number of efficient photos
compared with RSMC-H and RS.

Second, the simulation time is set to 700, and the total
number of users is 57. Along with the increase in the value
k, we also test the number of efficient photos, as shown in
Fig. 10. There is also an upward trend for the RSMC recruit-
ment strategy. More importantly, the performance ranking of
the number of efficient photos is still RSMC>RSMC-H>RS,
which proves that RSMC recruits a better group of k users to
finish the sensing task. This is also our theoretical result.

Third, the simulation time is set to 700, and the value of k
is set to 4. Along with the increase in the total user number,
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Fig. 13. Performance comparisons on the roma/taxi trace set.
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Fig. 14. Performance comparisons on the epfl trace set.
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Fig. 15. Performance comparisons on the geolife trace set.

we test the number of efficient photos and average delay. The
simulation results show that RSMC still achieves the highest
number of efficient photos along with the change of the total
user number. In conclusion, in the epfl real-world trace, the
number of efficient photos taken by RSMC is larger than that
of the other two strategies, RSMC-H and RS, along with the
increases in the simulation time, the value of k and the number
of users.

Finally, as shown in Fig. 12, we test the performances in
the geolife trace. The performance ranking of the number
of efficient photos is still RSMC>RSMC-H>RS, and the
simulation sets and results are also similar to those of the
previous simulations. Three conditions (simulation time, value
of k and the number of users) are also taken into consideration
to influence the final performances.

To further prove the efficiency of the proposed RSMC, in
the previous simulation settings, we test the performance of
the number of efficient photos compared with the work [31].
The simulation results are shown in Figs. 13-15, where RSMC
achieves a better performance than MCMF. This result is
because MCMF selects users according to the traveling cost of
the TSP problem, and the purpose of this work is to minimize
the cost for the users to finish the sensing task; therefore, it
does not consider the coverage effects among users. However,
the purpose of RSMC is to cover as many efficient areas as
possible.

V. CONCLUSION

We have designed a user recruitment system for efficient
photo collecting in mobile crowdsensing, which includes the
following four submodels: task publishing, map gridding,
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utility calculating and user recruitment. First, we decide the
sensing targets’ locations through a task publishing model.
Then, the map is gridded into subareas, and the efficient grids
are decided. Furthermore, we use the semi-Markov model to
predict the probability that a user enters an efficient grid before
the deadline. Based on the targets’ locations, the expected
number of efficient photos that a user can take is decided, and
the user’s utility is also determined. Finally, we formulate the
top-k user recruitment problem as an NP-hard problem, and
the submodular method is used to solve the NP-hard problem.
We conduct extensive simulations based on three widely used
real-world traces: roma/taxi, epfl, and geolife. The results show
that compared with other recruitment strategies, the recruiting
system RSMC takes the largest number of efficient photos for
the sensing task.
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