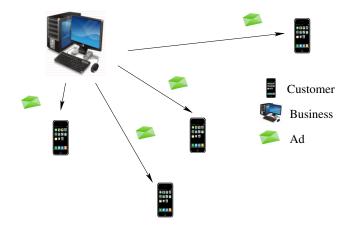
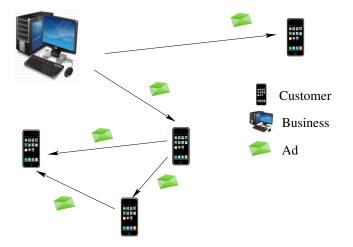
A Privacy-Preserving Social-Aware Incentive System for Word-of-Mouth Advertisement Dissemination on Smart Mobile Devices


${ m Wei} \, { m Peng}^1 \,$ Feng Li $^1 \,$ Xukai Zou $^1 \,$ Jie Wu $^2 \,$

 $^1 {\rm Indiana}$ University-Purdue University Indianapolis (IUPUI) $^2 {\rm Temple}$ University

21 June 2012


Smartphones allow innovative advertising.

From the direct model (B2C)...

Smartphones allow innovative advertising.

... to the word-of-mouth model (C2C).

Word-of-mouth?

cost effectiveness + user intelligence

" \ldots , send forth thy word, and let it fly."

— Thomas Gibbons

Word-of-mouth?

cost effectiveness + user intelligence

Word-of-mouth?

cost effectiveness + user intelligence

Our friends know us better than strangers.

Incentive.

- Why shall a user care?
- ▶ Align the interests of users and businesses.
- Encourage users to invite their interested friends.
- Encourage businesses by empowering them with control over budget.
- ▶ No spamming, please.
- ▶ Enforcement.
 - Detect misbehavior.
 - ▶ No one takes blame for others' wrongdoings.
- ▶ Privacy.
 - Do not inadvertently divulge relationship to strangers.

Incentive.

- Why shall a user care?
- Align the interests of users and businesses.
- Encourage users to invite their interested friends.
- Encourage businesses by empowering them with control over budget.
- ▶ No spamming, please.

Enforcement.

- Detect misbehavior.
- ▶ No one takes blame for others' wrongdoings.
- ▶ Privacy.
 - Do not inadvertently divulge relationship to strangers.

Incentive.

- Why shall a user care?
- Align the interests of users and businesses.
- Encourage users to invite their interested friends.
- Encourage businesses by empowering them with control over budget.
- ▶ No spamming, please.

Enforcement.

- ▶ Detect misbehavior.
- ▶ No one takes blame for others' wrongdoings.

► Privacy.

 Do not inadvertently divulge relationship to strangers.

Incentive.

- Why shall a user care?
- Align the interests of users and businesses.
- Encourage users to invite their interested friends.
- Encourage businesses by empowering them with control over budget.
- ▶ No spamming, please.
- ▶ Enforcement.
 - Detect misbehavior.
 - ▶ No one takes blame for others' wrongdoings.
- ▶ Privacy.
 - Do not inadvertently divulge relationship to strangers.

Incentive.

- Why shall a user care?
- ► Align the interests of users and businesses.
- Encourage users to invite their interested friends.
- Encourage businesses by empowering them with control over budget.
- ▶ No spamming, please.
- ▶ Enforcement.
 - Detect misbehavior.
 - ▶ No one takes blame for others' wrongdoings.
- ▶ Privacy.
 - Do not inadvertently divulge relationship to strangers.

- Incentive.
 - Why shall a user care?
 - ► Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - ▶ No spamming, please.
- ▶ Enforcement.
 - Detect misbehavior.
 - ▶ No one takes blame for others' wrongdoings.
- ▶ Privacy.
 - Do not inadvertently divulge relationship to strangers.

- Incentive.
 - Why shall a user care?
 - ► Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - ▶ No spamming, please.
- ▶ Enforcement.
 - Detect misbehavior.
 - ▶ No one takes blame for others' wrongdoings.
- ▶ Privacy.
 - Do not inadvertently divulge relationship to strangers.

- Incentive.
 - Why shall a user care?
 - ► Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - ▶ No spamming, please.
- ▶ Enforcement.
 - Detect misbehavior.
 - ▶ No one takes blame for others' wrongdoings.
- ▶ Privacy.
 - Do not inadvertently divulge relationship to strangers.

- Incentive.
 - Why shall a user care?
 - ► Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - ► No spamming, please.
- ► Enforcement.
 - Detect misbehavior.
 - ▶ No one takes blame for others' wrongdoings.
- ▶ Privacy.
 - Do not inadvertently divulge relationship to strangers.

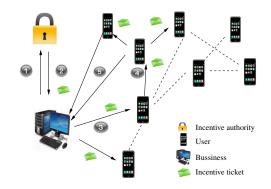
- Incentive.
 - Why shall a user care?
 - ► Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - ▶ No spamming, please.
- ► Enforcement.
 - Detect misbehavior.
 - ► No one takes blame for others' wrongdoings.
- ▶ Privacy.
 - Do not inadvertently divulge relationship to strangers.

- Incentive.
 - Why shall a user care?
 - ► Align the interests of users and businesses.
 - Encourage users to invite their interested friends.
 - Encourage businesses by empowering them with control over budget.
 - ▶ No spamming, please.
- ► Enforcement.
 - Detect misbehavior.
 - ► No one takes blame for others' wrongdoings.
- ► Privacy.
 - Do not inadvertently divulge relationship to strangers.

Incentive tickets, aka coupons.

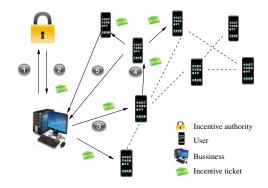
A user can **redeem** a coupon (when **paying** for a service/merchandise) or **duplicate** it.

Content T _C	What is the coupon good for?
Spray width W_C	Duplication restriction.
Available slots L_C	Number of available slots.
Authentication slots	For authentication.

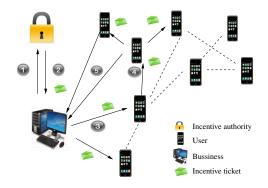

Assume a Public-key Infrastructure (PKI).

Just in case you read this later...

	-
I	The incentive authority.
s	A shop.
u, v, w	Users.
p_u	User u 's redemption probability.
k_u	The number of user u 's contacts.
M	A text segment.
$M_1 M_2$	Concatenation of text segments.
C_n	coupon cached by n .
T_C	Front-page section of coupon C .
W_C	Spray width of coupon C .
L_C	Available slots of coupon C .
K_n^+/K_n^-	n's public/private key.
$\{M\}_{K_n^-}$	n's digital signature on the hash of M .
$E_I(M)$	Encrypt M with I 's public key.
x_n	A cryptographic nonce generated by n .
R_C	Reward amount for coupon C .
i_1, i_2, \cdots, i_l	Identifiers in coupon circulation chain.

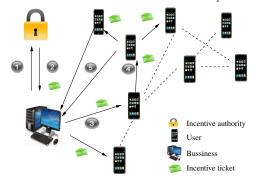

1. Shop s requests a coupon from authority I.

 $s \to I$: T_C, W_C, L_C

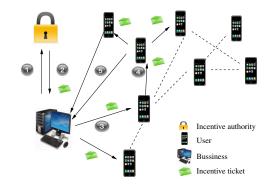

2. Authority *I* issues the coupon to shop *s*.

$$C_{s} = T_{C}, W_{C}|(L_{C} - 1),$$

$$E_{I}(\{T_{C}|W_{C}|L_{C}|s\}_{K_{I}^{-}}|x_{s}|I|s).$$


3. Shop s offers the coupon to user u.

$$\begin{split} C_u = & T_C, W_C | (L_C - 2), \\ E_I(\{C_s | u\}_{K_s^-} | x_u | s | u) \\ |E_I(\{T_C | W_C | L_C | s\}_{K_t^-} | x_s | I | s). \end{split}$$


4. User u duplicates the coupon to user v.

$$\begin{split} C_v = & T_C, W_C | (L_C - 3), \\ E_I(\{C_u | v\}_{K_u^-} | x_v | u | v) \\ & |E_I(\{C_s | u\}_{K_s^-} | x_u | s | u) \\ & |E_I(\{T_C | W_C | L_C | s\}_{K_I^-} | x_s | I | s). \end{split}$$

5. User v redeems the coupon at shop s.

 $v \to s: C_v$

Prior-redemption verification.

Authority I **iteratively** decrypts each slot and reconstructs the coupon's **circulation chain** starting from the shop s.

Protocol-compliant behaviors.

Verify before accepting.

- ▶ Signing transfers responsibility.
- Never over-duplicate.

Protocol-compliant behaviors.

- Verify before accepting.
- Signing transfers responsibility.
- Never over-duplicate.

Protocol-compliant behaviors.

- Verify before accepting.
- Signing transfers responsibility.
- Never over-duplicate.

$\blacktriangleright \cdots \rightarrow u \rightarrow v \rightarrow w \rightarrow \cdots$

- ▶ *u* and *w* are honest. *v* is malicious and tampers with the coupon.
- *u*'s signature protects u from being framed by u.
- \triangleright v's signature holds v responsible for tampering.

- $\blacktriangleright \cdots \rightarrow u \rightarrow v \rightarrow w \rightarrow \cdots$
- ► u and w are honest. v is malicious and tampers with the coupon.
- *u*'s signature protects u from being framed by u.
- \triangleright v's signature holds v responsible for tampering.

- $\blacktriangleright \cdots \rightarrow u \rightarrow v \rightarrow w \rightarrow \cdots$
- ► u and w are honest. v is malicious and tampers with the coupon.
- u's signature protects u from being framed by u.
- \triangleright v's signature holds v responsible for tampering.

- $\blacktriangleright \cdots \rightarrow u \rightarrow v \rightarrow w \rightarrow \cdots$
- ► u and w are honest. v is malicious and tampers with the coupon.
- u's signature protects u from being framed by u.
- \blacktriangleright *v*'s signature holds *v* responsible for tampering.

$\blacktriangleright \cdots \rightarrow u \rightarrow v \rightarrow \cdots$

- ▶ v is honest. u is malicious, tampers with the coupon, and colludes with w by having w sign the tampered coupon.
- ▶ v will not notice.
- ▶ *u* will not be detected for misbehavior in verification...
- ▶ ...but w will be.
- Nobody wants to be scapegoat: w will not vouch for u.

- $\blacktriangleright \cdots \rightarrow u \rightarrow v \rightarrow \cdots$
- ► v is honest. u is malicious, tampers with the coupon, and colludes with w by having w sign the tampered coupon.
- ▶ v will not notice.
- ▶ *u* will not be detected for misbehavior in verification...
- ▶ ...but w will be.
- Nobody wants to be scapegoat: w will not vouch for u.

- $\blacktriangleright \cdots \rightarrow u \rightarrow v \rightarrow \cdots$
- ► v is honest. u is malicious, tampers with the coupon, and colludes with w by having w sign the tampered coupon.
- ► v will not notice.
- ▶ *u* will not be detected for misbehavior in verification...
- ▶ ...but w will be.
- Nobody wants to be scapegoat: w will not vouch for u.

- $\blacktriangleright \cdots \rightarrow u \rightarrow v \rightarrow \cdots$
- ► v is honest. u is malicious, tampers with the coupon, and colludes with w by having w sign the tampered coupon.
- ► v will not notice.
- ► *u* will not be detected for misbehavior in verification...
- ▶ ...but *w* will be.
- Nobody wants to be scapegoat: w will not vouch for u.

What if...? Collusion.

- $\blacktriangleright \cdots \rightarrow u \rightarrow v \rightarrow \cdots$
- ► v is honest. u is malicious, tampers with the coupon, and colludes with w by having w sign the tampered coupon.
- ► v will not notice.
- ► *u* will not be detected for misbehavior in verification...
- ▶ ...but *w* will be.
- Nobody wants to be scapegoat: w will not vouch for u.

What if...? Collusion.

- $\blacktriangleright \cdots \rightarrow u \rightarrow v \rightarrow \cdots$
- ► v is honest. u is malicious, tampers with the coupon, and colludes with w by having w sign the tampered coupon.
- ► v will not notice.
- ► *u* will not be detected for misbehavior in verification...
- ▶ ...but *w* will be.
- Nobody wants to be scapegoat: w will not vouch for u.

Signatures hold users accountable

- ► Encryption keeps identifiers concealed.
- Abiding by the protocol is in each user's best interest.
- The circulation chain reconstructed from a redeemed incentive ticket faithfully reflects the incentive ticket's circulation among users

- Signatures hold users accountable
- Encryption keeps identifiers concealed.
- Abiding by the protocol is in each user's best interest.
- The circulation chain reconstructed from a redeemed incentive ticket faithfully reflects the incentive ticket's circulation among users

- Signatures hold users accountable
- ► Encryption keeps identifiers concealed.
- Abiding by the protocol is in each user's best interest.
- The circulation chain reconstructed from a redeemed incentive ticket faithfully reflects the incentive ticket's circulation among users

- Signatures hold users accountable
- ► Encryption keeps identifiers concealed.
- Abiding by the protocol is in each user's best interest.
- The circulation chain reconstructed from a redeemed incentive ticket faithfully reflects the incentive ticket's circulation among users

Incentive.

• Where are the rewards from?

- Who should be rewarded?
- How should the rewards be dispensed?

Incentive.

- Where are the rewards from?
- Who should be rewarded?
- ▶ How should the rewards be dispensed?

Incentive.

- Where are the rewards from?
- Who should be rewarded?
- How should the rewards be dispensed?

Where?

From the shop's profits in sales where a coupon is redeemed: Shop s tells authority I the reward upper limit $R_{C}.$

- Only reward effective advertisement.
- Budget control: think about real-world coupon ("duplication not valid").

Who?

$$s = i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \leq L_C)$$

 i_2, \cdots, i_{l-1} are rewarded for their effort of duplicating.

- ► Uniform.
 - Everybody receives the **same**.
 - Disadvantage: diminished attractiveness and looping strategy.
- ▶ Geometric.
 - ▶ p : sharing ratio between consecutive users (0
 - $p \approx 1$: degenerate to **uniform**.
 - $p \approx 0$: degenerate to **single-level** scheme; under-use user intelligence.

Social-aware.

- Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
- Privacy mandates the level to be 2.
- $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \geq 2).$
- ▶ $l \ge 4$: i_{l-1} gets $\frac{1}{1+\alpha}R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha}R_C$. l = 3: i_{l-1} gets $\frac{1}{1+\alpha}R_C$. l = 2: no rewards.
- α : social weight.

- ► Uniform.
 - Everybody receives the **same**.
 - Disadvantage: diminished attractiveness and looping strategy.
- Geometric.
 - ▶ p : sharing ratio between consecutive users (0
 - $p \approx 1$: degenerate to **uniform**.
 - $p \approx 0$: degenerate to **single-level** scheme; under-use user intelligence.

▶ Social-aware.

- Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
- Privacy mandates the level to be 2.
- $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \geq 2).$
- ▶ $l \ge 4$: i_{l-1} gets $\frac{1}{1+\alpha}R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha}R_C$. l = 3: i_{l-1} gets $\frac{1}{1+\alpha}R_C$. l = 2: no rewards.
- α : social weight.

- ► Uniform.
 - Everybody receives the **same**.
 - Disadvantage: diminished attractiveness and looping strategy.
- ▶ Geometric.
 - ▶ p : sharing ratio between consecutive users (0
 - $p \approx 1$: degenerate to **uniform**.
 - *p* ≈ 0: degenerate to single-level scheme; under-use user intelligence.

▶ Social-aware.

- Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
- Privacy mandates the level to be 2.
- $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \geq 2).$
- ▶ $l \ge 4$: i_{l-1} gets $\frac{1}{1+\alpha}R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha}R_C$. l = 3: i_{l-1} gets $\frac{1}{1+\alpha}R_C$. l = 2: no rewards.
- α : social weight.

- ► Uniform.
 - Everybody receives the **same**.
 - Disadvantage: diminished attractiveness and looping strategy.
- ► Geometric.
 - p : sharing ratio between consecutive users (0 .
 - $\blacktriangleright \ p \approx 1 {\rm :}$ degenerate to uniform.
 - ▶ $p \approx 0$: degenerate to **single-level** scheme; under-use user intelligence.
- Social-aware.
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \geq 2).$
 - ▶ $l \ge 4$: i_{l-1} gets $\frac{1}{1+\alpha}R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha}R_C$. l = 3: i_{l-1} gets $\frac{1}{1+\alpha}R_C$. l = 2: no rewards.
 - α : social weight.

- ► Uniform.
 - Everybody receives the **same**.
 - Disadvantage: diminished attractiveness and looping strategy.
- ► Geometric.
 - p : sharing ratio between consecutive users (0 < p < 1).
 - $p \approx 1$: degenerate to **uniform**.
 - ▶ $p \approx 0$: degenerate to **single-level** scheme; under-use user intelligence.
- ▶ Social-aware.
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \ge 2).$
 - ▶ $l \ge 4$: i_{l-1} gets $\frac{1}{1+\alpha}R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha}R_C$. l = 3: i_{l-1} gets $\frac{1}{1+\alpha}R_C$. l = 2: no rewards.
 - α : social weight.

- ► Uniform.
 - Everybody receives the **same**.
 - Disadvantage: diminished attractiveness and looping strategy.
- Geometric.
 - p: sharing ratio between consecutive users (0 .
 - $p \approx 1$: degenerate to **uniform**.
 - ▶ $p \approx 0$: degenerate to **single-level** scheme; under-use user intelligence.
- ▶ Social-aware.
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \geq 2).$
 - ▶ $l \ge 4$: i_{l-1} gets $\frac{1}{1+\alpha}R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha}R_C$. l = 3: i_{l-1} gets $\frac{1}{1+\alpha}R_C$. l = 2: no rewards.
 - α : social weight.

- ► Uniform.
 - Everybody receives the **same**.
 - Disadvantage: diminished attractiveness and looping strategy.
- Geometric.
 - p: sharing ratio between consecutive users (0 .
 - $p \approx 1$: degenerate to **uniform**.
 - ▶ $p \approx 0$: degenerate to single-level scheme; under-use user intelligence.
- ▶ Social-aware.
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \ge 2).$
 - ▶ $l \ge 4$: i_{l-1} gets $\frac{1}{1+\alpha}R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha}R_C$. l = 3: i_{l-1} gets $\frac{1}{1+\alpha}R_C$. l = 2: no rewards.
 - α : social weight.

- ► Uniform.
 - Everybody receives the **same**.
 - Disadvantage: diminished attractiveness and looping strategy.
- ► Geometric.
 - p: sharing ratio between consecutive users (0 .
 - $p \approx 1$: degenerate to **uniform**.
 - ▶ $p \approx 0$: degenerate to single-level scheme; under-use user intelligence.
- ▶ Social-aware.
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \geq 2).$
 - ► $l \ge 4$: i_{l-1} gets $\frac{1}{1+\alpha}R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha}R_C$. l = 3: i_{l-1} gets $\frac{1}{1+\alpha}R_C$. l = 2: no rewards.
 - α : social weight.

- ► Uniform.
 - Everybody receives the **same**.
 - Disadvantage: diminished attractiveness and looping strategy.
- Geometric.
 - p: sharing ratio between consecutive users (0 .
 - $p \approx 1$: degenerate to **uniform**.
 - ▶ $p \approx 0$: degenerate to single-level scheme; under-use user intelligence.
- ▶ Social-aware.
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \geq 2)$.
 - ► $l \ge 4$: i_{l-1} gets $\frac{1}{1+\alpha}R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha}R_C$. l = 3: i_{l-1} gets $\frac{1}{1+\alpha}R_C$. l = 2: no rewards.
 - α : social weight.

- ► Uniform.
 - Everybody receives the **same**.
 - Disadvantage: diminished attractiveness and looping strategy.
- Geometric.
 - p: sharing ratio between consecutive users (0 .
 - $p \approx 1$: degenerate to **uniform**.
 - ▶ $p \approx 0$: degenerate to single-level scheme; under-use user intelligence.
- Social-aware.
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \geq 2)$.
 - ► $l \ge 4$: i_{l-1} gets $\frac{1}{1+\alpha}R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha}R_C$. l = 3: i_{l-1} gets $\frac{1}{1+\alpha}R_C$. l = 2: no rewards.
 - α : social weight.

- ► Uniform.
 - Everybody receives the **same**.
 - Disadvantage: diminished attractiveness and looping strategy.
- Geometric.
 - p: sharing ratio between consecutive users (0 .
 - $p \approx 1$: degenerate to **uniform**.
 - ▶ $p \approx 0$: degenerate to single-level scheme; under-use user intelligence.
- ► Social-aware.
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \geq 2).$
 - ► $l \ge 4$: i_{l-1} gets $\frac{1}{1+\alpha}R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha}R_C$. l = 3: i_{l-1} gets $\frac{1}{1+\alpha}R_C$. l = 2: no rewards.
 - α : social weight.

- ► Uniform.
 - Everybody receives the **same**.
 - Disadvantage: diminished attractiveness and looping strategy.
- ► Geometric.
 - p: sharing ratio between consecutive users (0 .
 - $p \approx 1$: degenerate to **uniform**.
 - ▶ $p \approx 0$: degenerate to **single-level** scheme; under-use user intelligence.
- ▶ Social-aware.
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \geq 2).$
 - ► $l \ge 4$: i_{l-1} gets $\frac{1}{1+\alpha}R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha}R_C$. l = 3: i_{l-1} gets $\frac{1}{1+\alpha}R_C$. l = 2: no rewards.

• α : social weight.

- ► Uniform.
 - Everybody receives the **same**.
 - Disadvantage: diminished attractiveness and looping strategy.
- ► Geometric.
 - p : sharing ratio between consecutive users (0 .
 - $p \approx 1$: degenerate to **uniform**.
 - ▶ $p \approx 0$: degenerate to single-level scheme; under-use user intelligence.
- Social-aware.
 - Insight: Reward level should be fixed and as few as full user-intelligence utilization allows.
 - Privacy mandates the level to be 2.
 - $i_1 \rightarrow i_2 \rightarrow \cdots \rightarrow i_l \ (l \geq 2).$
 - ► $l \ge 4$: i_{l-1} gets $\frac{1}{1+\alpha}R_C$; i_{l-2} gets $\frac{\alpha}{1+\alpha}R_C$. l = 3: i_{l-1} gets $\frac{1}{1+\alpha}R_C$. l = 2: no rewards.
 - α : social weight.

Adam Smith's invisible hand metaphor.

If users and the shop share the same estimation about redemption probability distribution in the population, a **social weight** $\alpha = 1$ will lead to a **desirable** situation in which a user, **acting on his own interest**, serves the shop's interest best.

Questions?

Thank you for your attention!