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1. Introduction

Rebalancing dock-less bike sharing systems

underflow: an area lack of bikes, users cannot rent bikes
overflow: an area full of bikes, users cannot return bikes

overflow

rebalance via user incentive

Existing incentive scheme: source detour
Incentivize users to rent bikes at alternative locations with detour

[1] A Deep Reinforcement Learning Framework for Rebalancing Dockless Bike Sharing Systems (AAAI ’19)



Motivation

Destination detour

A complement of source detour

Example of destination incentive
temporal and spatial domains are discretized
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Objective
Maximize the total number of satisfied users over a day
under a given budget



2. Model & Problem Formulation

Rebalance scheme overview
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System dynamic are modeled by Markov Decision Process (MDP)

state: supply 5(7), rent demand D(?), arrival A(?), and remaining budget RAB(1)
action: source incentive price P+(t), and dest. incentive price P-(t)

reward: number of satisfied requests (could successfully rent and return)



2. Model & Problem Formulation

User model (Environment model)
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A user accepts the incentive only if the incentive price is higher than the cost

Problem formulation

max - Z:Ijl 7i(t) (1) objective
s.L. >t pl(t)<B-B (2) source incentive budget
oSt p (t)<B (3) dest. incentive budget
D () = 225 17‘,,(1‘) g pi(t), Vi, t (4) inventory constraint
pi(t + 1) =i (t)+>2"1 (15:(t) —75(t))Vi, 2. (5) inventory evolution

[2] Incentivizing users for balancing bike sharing systems (AAAI '15)



3. Algorithm Design

An existing solution for source incentivel!l

Based on the deep deterministic policy gradients algorithm[3!

They decompose the Q-value of the entire area of interest
into multiple sub-Q-values of smaller regions.

A hybrid incentive scheme

Considering both source and destination incentives
Extend the actor-critic framework used in [1]
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[1] A Deep Reinforcement Learning Framework for Rebalancing Dockless Bike Sharing Systems (AAAI ’19)
[3] Continuous control with deep reinforcement learning (ICLR ‘16)




3. Algorithm Design

Intuition of parameters in actor networks

Adaptively adjust the strength (the maximum detour distance) for
source and destination incentives
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Example: avoiding long-distance detour in our cost model (x 62)
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4. Simulations

Mobike dataset

One-month history trip data from 8/1/2016 to
9/1/2016 in Shanghai City

Temporal and spatial imbalance distribution
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4. Simulations

Comparison in decreased unserviced ratio (DUR)
DUR = (N1-N2)/N1
N1: number of unsatisfied users without incentive
N2:number of unsatisfied users with incentive
The hybrid incentive scheme achieves the highest DUR

Comparison in profit
Assume each successful ride has 1 reward
The Hybrid incentive scheme earns positive profit
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5. Summary

We show the advantages of destination incentives

We propose the hybrid incentive scheme

Experiments on the real-world dataset show the

efficiency of our hybrid scheme
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