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Abstract—Recently, the development of Bike Sharing Systems
(BSSs) brings environmental and economic benefits to the public.
However, BSSs frequently suffer from the imbalanced bike
distribution, including dock-less BSSs. The underflow or overflow
of bikes in a region may lead to a lower service level to BSSs
or congestion to the city. In the paper, we consider rebalancing
the dock-less BSS by providing users with monetary incentives.
The long-term objective is to maximize the number of satisfied
users who successfully complete their rides over a period of
time. The operator of the dock-less BSS can not only encourage
a user to rent bikes at the neighborhood of its source with a
source incentive, but also incentivize them to return bikes at
the neighborhood of its destination with a destination incentive.
To learn the differentiated incentive price for rebalancing bikes
across time and space, we extend a novel deep reinforcement
learning framework for user incentive. The source and destina-
tion incentives are integrated in an adaptive way by adjusting
the detour level at the source and/or destination by avoiding
bike underflow and overflow. In the experiment, we evaluate
our approach in comparison with two existing pricing schemes.
The locations of sources and destinations are abstracted from a
selected dataset from Mobike. The experiment results show that
our adapted learning algorithm outperforms the original one that
only considers source incentive as well as another state-of-the-art
approach in maximizing the long-term number of satisfied users.

Index Terms—dock-less bike sharing system, rebalance prob-
lem, user incentives, reinforcement learning

I. INTRODUCTION

Recently, the rapid development of Bike Sharing Systems
(BSSs) brings environmental and economic benefits to the
public [1]. The bikes of BSSs are easily accessible and
affordable for users, which greatly motivates users to ride
bikes for traveling a short distance. The convenience of the
BSS provides residents a way of green travel. A study [2]
covering 4 North American cities shows that nearly 40% of
BSS users drove less after participating the system. In addition,
bike sharing is an example of the sharing economy, and has
potential economic benefits. Although BSSs bring attractive
benefits to the public, the systems still suffer from imbalanced
bike distribution. Both temporally and spatially asymmetric
demands of users may cause imbalance in the distribution of
bikes. For docked BSSs like citi bike in NYC, each station
has capacity limitation and an extreme imbalance could cause
underflow or overflow events. That is, a station is empty when
users try to rent bikes or a station is totally full when users
attempt to return bikes. For dock-less BSSs like Mobike in
China, although there are no stations nor capacity limitations,
they still face underflow and/or overflow events as shown in
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Fig. 1. Resolving underflow/overflow through rebalance in dock-less BSSs.

Fig. 1. These may lead to a lower service level to the BSS or
congestion to the city. To avoid these negative impacts, it is
important to rebalance the BSS in a timely and cost-efficient
manner with a budget provided by BSS operators.

Existing user-based rebalance strategies for dock-less BSSs
cannot fully exploit the advantage of user incentive. A rebal-
ance scheme based on reinforcement learning for dock-less
BSS is proposed in [3]. However, this scheme only considers
encouraging users to rent bikes from nearby regions (source
detour) with a source incentive and ignores the possibility that
a user can also return bikes to alternative places (destination
detour) with a destination incentive. We find out that the
destination incentive can also help to rebalance the system.
The adaptive combination of source and destination incentive
can bring extra benefits to the system.

An example in Fig. 2 illustrates our observation. The setting
is shown in the figure where the map is divided into 4 × 3
square regions. The performance of rebalancing is quantified
by the service level, i.e. the number of users who successfully
finish their trip. In the example, there is one bike located at
R. User u1 arrives first with destination u′1, and user u2 with
destination u′2 arrives after u1 finishes his trip. The traces of
u1 and u2 under different incentive schemes are plotted in Fig.
2. The dashed line represents the movement of following the
source-incentive-only scheme. The solid line shows a better
way which combines source and destination incentives, which
can further improve the service level. Assume the maximum
walk distance of users is 200m, which includes the source
detour and destination detour. Under source-incentive-only
scheme, user u2 cannot successfully rent a bike after u1 returns
the bike at u′1, since the distance between u2’s source and u1’s
destination exceeds 200m. The service level is 1. In contrast,
if a user is allowed to both rent and return a bike at neighbor
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Fig. 2. A motivation example.

regions, the service level can be improved to 2. As shown
by the solid line, after u1 arrives, he rents the bike at R and
returns the bike at R′ by receiving a mandatory incentive.
When u2 arrives, he can rent the bike at R′ and finish his trip
to u′2. Fig. 2 shows that the service level can be improved by
allowing users to return bikes to neighbor regions.

Motivated by this observation, we propose the Dock-less
BSSs Rebalancing (DBR) problem. The setting up scenario is
that the operator of the dock-less BSS offers both source and
destination incentives for users and encourages them to rent or
return bikes at specific locations with a limited budget. If the
source or destination incentive is larger than user’s detour cost,
which contains an initial fee plus the fair related with detour
distance, then the user will accept the offer. We aims to design
an adaptive incentive scheme that maximizes the total number
of satisfied users over a day. Designing the adaptive incentive
scheme is not trivial. The asymmetric user demands in both
temporal and spatial domains bring the challenge of deciding
differentiated pricing for users temporally and spatially. The
rebalance scheme needs to adaptively adjust the ratio of the
source and destination incentive in a timely and cost-efficient
manner, which brings another challenge to the problem.

In this paper, we extend the novel deep reinforcement
learning framework proposed by [3] to rebalance the dock-
less BSS with user incentive. We propose to build a hybrid
incentive scheme and take the benefits brought by destination
incentive into account instead of just considering the source
incentive. For simplicity, the city map is divided into square
regions and the temporal domain is discretized into time-slots.
The architecture is shown in Fig. 3, and the system can adap-
tively adjust the ratio of the source and destination incentives.
Specifically, when training the reinforcement learning network,
the rebalancing scheme takes the bike trace information of
BSS and the budget provided by the operator as the state
and takes the source and destination incentive prices for each
region as an action. The environment feeds back the number
of satisfied users as the reward and updates the state.

The contributions of our paper are summarized as follows:
• We propose the Dock-less BSS Rebalancing (DBR) prob-

lem, where the BSS is balanced by incentivizing users.
Both source and destination incentives are considered.

• We illustrate the benefits brought by the destination
incentive and adapt the deep reinforcement learning ar-
chitecture designed for source incentive to optimize the
incentive scheme for considering destination incentive.
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Fig. 3. An overview of the architecture for rebalancing dock-less BSSs.

• We further consider two ways to adaptively combine
source and destination incentives under the same budget
constraint, and we set up experiments on a real-world
dataset to examine the performance of our approaches.

II. PROBLEM STATEMENT

A. Overview

In our model, we propose an adaptive approach for rebal-
ancing dock-less BSS. Given a limited budget, which is not
sufficient enough to totally balance the BSS, our approach
adaptively allocates it to incentivize users to conduct a detour
at source and/or destination based on the underflow/overflow
distribution across time and space. The objective is to maxi-
mize the overall service level of the system over a day. The
service level is quantified by the number of satisfied users.

Specifically, the incentive that is used to encourage users
to rent bikes at neighbor regions of their sources is denoted
as source incentive, while it is called destination incentive on
the other side. For source incentive, the BSS operator provides
locations of available bikes to each user along with incentive
prices of bikes in neighbor regions. For destination incentive,
the operator suggests users return bikes to neighbor regions
of the user’s destination. The price of the source and des-
tination incentives is determined by the incentive scheme. A
reinforcement learning based price scheme for source incentive
has been studied in [3]. We propose to jointly consider the
source and destination incentive inspired by the benefits of
destination incentive we observed. Users’ choice of accepting
incentives or not is simulated by the environment model. The
performance of the rebalance is evaluated via the service level
which is the number of satisfied users. The architecture of our
hybrid incentive architecture is shown in Fig. 3.

B. Incentive Scheme Model
We first describe our incentive scheme. Both temporal and

spatial domains are discretized. The BSS operator provides
different source and/or destination incentive prices for each
region at each time-slot. Specifically, each day is separated
into m time-slots, denoted by T = {t1, t2, . . . , tm}. A city H
is divided into n square regions, i.e., H = {h1, h2, . . . , hn}.
The neighbors of a region hi are defined as the four regions
directly adjacent to hi, and the set of neighbor regions for hi
is denoted as N(hi). Users to the BSS system are denoted by
U = {u1, u2, . . . uo}. Although the actual user demands vary
in temporal and spatial domains, the patterns on their demands
in both domains provide basis for our incentive scheme. Our



statistic on traces data from Mobike shows the existence of
rush hour and demand hot spots. The number of users’ rent
events and return events at region hi during time-slot t is
modeled as random variables Di(t) and Λi(t) respectively.
The number of bikes in hi at the beginning of time-slot t is
denoted as ϕi(t).

To deal with the imbalance of the BSS, we assume that the
provider can provide a budget B for user incentive, including a
source incentive budget B+ and a destination incentive budget
B−. Our incentive scheme is used to decide the different price
of source incentive p+i (t) and destination incentive p−i (t) for
each region hi at each time-slot t. If a user rents bikes at a
neighborhood region hi of his/her source region during time-
slot t, he/she can obtain an incentive p+i (t). Each neighbor
region may contain more than one bike, and the bikes in
the same region have the same incentive price. Similarly,
destination incentive p−i (t) is given to users who return bikes
to hi that is adjacent to users’ destination region during time-
slot t. Different from the source incentive, we assume that
each region only contains one potential return location which
is the center of the region. This simplification can reduce the
complexity of the model.

C. Environment Model
The environment mainly models user dynamics and pro-

vides feedback to the incentive scheme. Based on the source
and destination incentive price vectors generated by the
scheme, the environment simulates each user’s choice of
accepting the incentive or not.

We assume users know the source and destination incentive
prices of all regions, and have costs when walking from their
sources to rent locations (source detour) and walking from
return locations to their destinations (destination detour). The
user would accept the source incentive if the source incentive
price is larger than the source detour cost. It is symmetric for
the destination incentive. Both source and destination detour
costs share the same model, which is built based on the model
in [3, 4]. In our model, a user uk has an initial cost C for
either source or destination detour. Besides, the cost is also
relevant to the detour distance δ. Specifically, let ck(hi, hj , δ)
and c′k(hi, hj , δ

′) denote the source and destination detour cost
respectively. hi and hj represent regions where uk rent and re-
turn a bike respectively. δ and δ′ are the corresponding source
and destination detour distance. If the user uk rents (or returns)
a bike at a region which is the neighbor of his/her source (or
destination), his/her source detour cost ck(hi, hj , δ) = C+ηδ2

(or destination detour cost c′k(hi, hj , δ
′) = C + ηδ′2), where

η is a constant coefficient. We assume users are not willing to
rent or return bikes at regions further than neighbor regions,
and the cost of renting or returning bikes in these regions
is infinity. If the user uk rent (or return) bikes in the same
region as his/her source (or destination), there is no cost.
Note that if a user detours at both source and destination,
he/she will receive two Cs as an incentive to conduct source
and destination detour, which helps to resolve overflow and
underflow problem of the BSS, in one trip.
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Fig. 4. An illustration of the destination incentive.

D. Problem Formulation
Based on the system and environment models, the Dock-

less BSS Rebalancing (DBR) problem is proposed. In DBR,
we aim to maximize the service level of a BSS in a one-day
service circle. In each service circle, the BSS operator provides
budget B+ and B− for source and destination incentives, and
B+ +B− = B. Formally, our problem can be expressed as:

max
∑m
t=1

∑n
i,j=1 τij(t) (1)

s.t.
∑m
t=1

∑n
i=1 p

+
i (t) < B −B− (2)∑m

t=1

∑n
i=1 p

−
i (t) ≤ B− (3)∑n

j=1 τji(t)−
∑n
j=1 τij(t) ≤ ϕi(t),∀i, t (4)

ϕi(t+ 1)=ϕi(t)+
∑n
j=1(τji(t)−τij(t))∀i, t. (5)

Note that the difference with the existing price scheme can
be found in Eq. (6) and (7), where we consider two kinds
of incentives. The overall budget of source and destination
incentive remains as B. The difference is that some part of
the budget B− is assigned for destination incentive.

III. HYBRID INCENTIVE SCHEME

A. An Existing Pricing Scheme for Source Incentive

A pricing algorithm for source incentive is proposed by Pan
et. al [3]. Their pricing scheme is based on a Markov Decision
Process (MDP) and is optimized by using a reinforcement
learning approach inspired by the hierarchical reinforcement
learning [5–7] and Deep Deterministic Policy Gradient algo-
rithm [8]. The pricing algorithm is briefly stated in the section
and our adaptive incentive scheme is built upon it.

The MDP is used to model the interaction between the
pricing scheme and the environment. Specifically, the MDP is
a 5-tuple (S,A, P, r, γ), where S is the set of states {st}, A is
the set of actions {at}, P describes the transition possibility
between states under an action, r denotes the immediate
reward and γ is the discount factor. The weights of future
rewards and the present reward are determined by the discount
factor γ ∈ [0, 1]. γ = 1 represents that future rewards share
the same importance as the present reward, i.e. the overall
reward is the additive sum of the reward from each time-
slot. The pricing scheme treats source incentive prices for all
regions as an action and the number of satisfied users as a
reward. The MDP ends when the budget B is used up. The
pricing scheme finds a policy πθ, which maps states to actions,
through optimizing the MDP based on reinforcement learning.
The number of bikes rented from hi and returned to hj during
time slot t is denoted by τij(t).



Algorithm 1 The source (or destination) incentive schema.
Input: The source (or destination) of user uk
Output: Alternative bike b to rent (or location b′) to return

1: hi (or hj) ← index of the region of location uk (or u′k)
2: N(hi) (or N(hj)) ← neighboring regions of hi (or hj)
3: Incentives set I = (p+i (t), p−i (t)) ← the pricing scheme

learned by the actor-critic network
4: for all bikes in N(hi) (or return locations in N(hj)) do
5: uk calculates the net profit of source detour (or desti-

nation detour), i.e., incentive price minus detour cost
6: uk chooses the bike b (or return location b′) with maxi-

mum net profit which is denoted as pmax
7: if pmax < 0 then
8: uk refuses source incentive and leave the system, (or

uk returns bike to the original destination u′k)
9: else

10: return b (or b′) as the target

B. A Hybrid Incentive Scheme
Either source incentive or destination incentive has its

shortage of certain user dynamics. Therefore, besides only
considering the source or destination incentive, we propose
to combine these two kinds of incentives and build a hybrid
incentive scheme. The hybrid incentive scheme could adap-
tively adjust the proportion between the source and destination
incentive based on different imbalance situations.

In the hybrid incentive scheme, the system shows the source
(or destination) incentive price for each nearby bike when
users try to rent (or return) a bike. We assume users’ decisions
are made based on the pricing model. The state and action
spaces in the MDP are enlarged because of the destination
detour budget B− and incentive price p−. Specifically, a
state vector st is constructed by

∑
hi
ϕi(t),

∑
hi
Di(t − 1),∑

hi
Λi(t−1), B+−

∑
hi,t

p+i (t), B−−
∑
hi,t

p−i (t) and out-
of-service events in previous time-slots. The first term repre-
sents the number of unused bikes over the city at the beginning
of t. The total amount of bikes over the city is constant, but
the number of unused bikes may vary over time because of the
fluctuated usage of users. The

∑
hi
Di(t−1) and

∑
hi

Λi(t−1)
represent the total number of rent and return events over the
city, which captures the temporal bike usage information to
the MDP. The B+ −

∑
hi,t

p+i (t) is the remaining budget for
the source incentive, and B− −

∑
hi,t

p−i (t) is the remaining
budget for the destination incentive. The MDP ends either
when t reaches the time-slot upper bound or the remaining
budgets for both source and destination incentives are empty.

An action vector at for time-slot t contains the source
incentive price (p+i (t), i = 1, . . . , n) and the destination
incentive price (p−i (t), i = 1, . . . , n). The state transmission
can be simulated via our environment model. The reward r of
the incentive is constructed by rewards from source incentive
r+(st, p

+) and destination incentive r−(st, p
−).

Because of the modification to the MDP, we extend the
actor-critic framework in [3]. The size of the actor network is
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Fig. 5. Adaptively adjusting the maximum source and destination detour
distance.

enlarged as shown in Fig. 6. The actor network 1 is used to
learn the source incentive prices p+(t), and the actor network
2 is used to learn the destination incentive prices p−(t). As for
the critic network, the sub-Q-value of each region hi at step t is
evaluated based on (p+i (t), p−i (t)) instead of just considering
p+i (t), and the estimation of Q-value changes correspondingly.

C. Adaptively Adjusting Source and Destination Incentives
Besides adjusting the learning framework, we also propose

two ways to adjust the ratio of source and destination incentive
price. One way is the budget division whose definition is
shown as follows.

Definition 1 (Budget division): Assume the total budget
available is B, and the budget division ratio is ρ. Then the
budget appointed to source incentive is ρB and the remaining
(1− ρ)B is used for the destination incentive.
Under this scheme, the remaining budget of the source and
destination incentive at the initial state s0 becomes:

B+ = ρB, B− = (1− ρ)B

The overall reward during a day under policy πθ becomes:

Jπθ = E[

∞∑
k=0

γk(r+(ak, sk) + r−(ak, sk))|πθ, s0]

The other way is to adjust the ratio between detour distances
of the source and destination incentives. It is achieved by
adding the maximum source and destination detour constraints
to users in the environment model. Let l denote the maximum
detour distance that a user can accept, including source and
destination detours. The value of l can be extracted from a
user survey when applying the scheme in the real world. l can
be split into two parts: ls and ld which represent the maximum
source and destination detour correspondingly. Let α denote
the adjust parameter between ls and ld.

Definition 2 (Detour distance division): Given the maxi-
mum detour distance l of each user and parameter α, maxi-
mum detour under source incentive is ls = αl and the detour
under destination incentive is ld = (1− α)l.

We assume the user rejects to detouring either when his/her
detour distance exceeds the limitation or he/she cannot gain
profit from the detour. By setting source and destination detour
distance limitation, we try to limit the source and destination
incentive price.

Formally, based on α, we attempt to limit the source and
destination incentives as:
p+i (t) < C + ηαl2 and p−i (t) < C + η((1− α)l)2 ∀t ∈ T
The budget division strictly imposes restrictions on budgets of
source and destination incentives, while the detour distance
division restricts the source and destination incentive price
on estimation. Either kind of incentive is adaptive among
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Fig. 6. The learning framework for the hybrid incentive scheme.

regions, and the sum of incentive prices cannot exceed the
corresponding budget. The budget division is applied to the
initial state of the MDP. The detour distance division is applied
to the environment, the incentive greater than the limitation
cannot bring benefits to the scheme.

IV. EXPERIMENT
A. Experiment Setup

We use the data published by Mobike to construct our real-
world dataset. We use a set of one-month history trip data from
8/1/2016 to 9/1/2016. Our Mobike dataset contains more than
100k trip records of Shanghai. The record of each trip includes
trip duration (in seconds), trip start (end) time and date, start
(end) latitude and longitude, etc.

In our experiment, the environment model is built on
OpenAI Gym, a toolkit for comparing reinforcement learning
algorithms. Specifically, a day is temporally divided into 24
time-slots and the Shanghai city is spatially divided into
20 × 40 regions. The effective area of the city is bounded
by [30.841◦N, 31.477◦N] and [120.486◦E 121.971◦E]. Users’
request time, locations and destinations are extracted from the
Mobike trace data. Through the statistic of unique bike ID,
totally there are 79,063 bikes used in the dataset. Considering
the retirement of broken bikes, the actual number of bikes may
be less than that amount.

When training the hybrid incentive scheme, the Adam al-
gorithm [9] is used to optimize both actor and critic networks.
The learning rates for training both parts are set as 10−4. In
each step, to explore the more action space, Gaussian noise
is added to each action generated from the actor network.
Although [8] proposed to add Uhlenbeck-Ornstein noise to
actions, the Gaussian noise is used for simplicity. The discount
factor γ in the MDP is chosen as 0.99.

In the first set of experiments, we compare the performance
of our algorithm with others under different budgets. In the
experiment, the budget is varied from 1,000 to 2,000 and
the performance is quantified by the Decreased Unserviced
Ratio (DUR) defined in [3]. The number of unserviced user
increases by one if a user cannot find a bike and he/she is not
satisfied with any source incentives offered by the system. Let
N1 denote the number of unsatisfied users without incentive,
and N2 denote the number of unsatisfied users with incentive.
Then, the corresponding DUR is defined as (N1 −N2)/N1.

The second set of experiments focus on the number of
satisfied users under different budgets. We assume the BSS
operator gets a reward of 1 for each user who rents the bike.
The cost of users is bounded by 5 by setting C and η in the
cost model. The profit of the operator can be calculated by
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Fig. 7. Illustration of combining the source and destination incentives.

subtracting the budget spent for the incentive from the overall
income of a day. We also conducted a set of experiment to
test the influence of initial bike amount. If the initial bikes
are sufficient enough, then each user can find a bike without a
detour and the maximum service level is achieved. However,
the number of bikes are limited in each region. Therefore,
wisely spending the budget to achieve a better service level is
important. The last set of experiment is focus on the rebalance
performance across multiple days.

We first compare our approach with the source incentive
scheme proposed in [3], and their approach is denoted as HRL.
The second comparison algorithm is the DBP-UCB proposed
in [4], which is one of the state-of-the-art bike rebalancing
approaches based on user incentive. A randomized inventive
scheme is used as a baseline.

B. Results

The decreased unserviced ratio under different budgets
is shown in Fig. 8(a). From the figure, we can conclude
that the performance of our hybrid approach achieves better
performance than others. Comparing with the HRL that just
considers the source incentive, we can conclude that adap-
tively allocating incentive on source detour and destination
detour can bring additional benefits to the service level. It
is reasonable since the source and destination incentives are
included in the action spaces of the hybrid incentive scheme.
By comparing HRL and DBP-UCB we can conclude that using
the reinforcement learning can greatly improve the service
level since it considers further reward when choosing the
action for each state. The performance trend of all approaches
shows that more user requests can be satisfied with a higher
budget, even for the randomized policy.

The additional profit brought by the incentive is illustrated
in Fig. 8(b). As stated in [3], the HRL can bring additional
benefits to the BSS operator when the budget is not too
large. The hybrid incentive scheme also can gain profits from
the incentive which is arguably one of the most important
features to BSS operators. However, when budgets increase,
the profit decreases. It illustrates that the number of satisfied
users increases more slowly with the increasing budget. That is
to say, it is not necessary for BSS operators to fully rebalance
the system. The totally rebalanced system means that all user
requests can be satisfied. The DBP-UCB and randomized
scheme can bring additional profits to the system with a budget
less than 1,000 in our test.
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Fig. 8. Comparison on DUR and additional profit with of varying budget.

Fig. 9(a) shows the influence of the initial bike amount.
With more bikes placed in the city, incentive schemes are
more likely to achieve better performance. The increase ratio
in the figure is not significant. The reason could be that
the additional bikes are uniformly distributed among the city.
Adding bikes to regions with nearly no user request may cause
the waste of bikes. If the distribution of the initial bike could fit
user request distribution, increasing initial bike amounts may
greatly decrease the unservice ratio.

Fig. 9(b) shows the rebalance performance over multiple
days. We count the number of reduced unservice events. The
difference between the HRL and the hybrid incentive scheme
increases when the number of days increases. It shows that
the hybrid incentive scheme can keep a better bike distribution
than the HRL. As we show in previous sections, the destination
incentive scheme is more likely to place bikes on regions with
more requests. These bikes are more likely to be used when
the number of time-slots increases. It may explain that the
advantage of the hybrid scheme is more obvious when the
number of time-slots is larger.

Although our algorithm has better performance on the
selected Mobike dataset, its benefits in the real world dock-
less BSS is still untested. [3] shows the possibility of applying
the HRL algorithm to deal with the high dynamics of the
system and makes it feasible to learn the incentive price
on dockless BSSs. We further enhance their framework by
considering both source and destination incentives and provide
more flexibility to the system. We show the benefit brought by
the destination incentive as well as its combination with source
incentive. Although we cannot be certain that the performance
of combination always performs better than source incentive
only or destination incentive only, it gives the BSS operator
a chance to adjust the incentive policy in a different area
according to the specific user dynamic in the area.

V. RELATED WORK

With the booming of the bike sharing, more and more
researchers have devoted their effort to related issues includ-
ing user demand prediction [10–12], bike rebalance strategy
[4, 13, 14], station location optimization [15, 16], bike lane
planning [17], suggestion of user’s journeys [18, 19]. We focus
on the studies that have been conducted on rebalance strategy,
which are closely related to our work.

Rebalancing strategies designed for docked BSSs are have
been widely studied. Typically, there are two major approaches
which are the truck-based and the user-based approach. The
truck-based approach such as [20, 21] means the BSS operator
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Fig. 9. Cumulative density function and long-term performance comparison.

hires a fleet of trucks to transport bikes from overflow stations
to underflow stations. Liu et al. [14] proposed a method that
first clusters bike stations according to geographic information
and station status, and then assigns a truck to each cluster. The
routing for each truck used in rebalancing is modeled as an
integer programming problem.

As for user-based approach like [4, 22], the BSS operator
gives incentive to users and encourages them to rent or return
bikes at certain stations. User-based approaches expect that
the BSS can achieve self-balance. They improve the overall
service level by controlling user’s dynamics through incentive.
Designing the pricing mechanism is the key problem in
these approaches. However, these approaches are focused on
rebalancing docked BSSs and cannot be directly used in our
dock-less BSSs rebalancing problem.

As for dock-less BSS, besides the source incentive scheme
based on reinforcement learning proposed by Pan et. al [3].
Caggiani et. al [23] proposed a dynamic bike rebalance method
including a prediction scheme of the number and position of
bikes and a relocation decision system. Our hybrid scheme
is a end-to-end system and the incentive price can be given
without demand prediction.

VI. CONCLUSION

In this paper, we show the underflows and overflows caused
by imbalanced bike distribution in the dock-less BSS, which
may decrease the service level of BSSs or bring congestions
to the city. To avoid the negative impacts, we propose to rebal-
ance the dock-less BSS via adaptive source and destination in-
centives with an objective that maximizes the service level over
a day. The problem is modeled by a Markov decision process,
and we adapt the deep reinforcement learning framework in [3]
which only considers the source incentive. The combination
of source and destination detours provide the system operator
with a more flexible approach to rebalance the dock-less BSSs
according to varied user dynamics across different areas. The
experiments are conducted based on real-world trace data
extracted from Mobike dataset. The experiments show that
our adaptive approach can achieve a higher service level in
comparison with the state-of-the-art approaches including the
original one that only considers the source incentive.
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