

A Privacy-Preserving Order Dispatch Scheme for Ride-Hailing Services

Yubin Duan, Guoju Gao, Mingjun Xiao, and Jie Wu Dept. of Computer and Info. Sciences Temple University

1. Introduction

Ride-hailing system

- Service Provider (SP): Uber and Didi
- Order dispatch: matching passengers (P) and drivers (D)

Privacy concerns

- Passenger locations are exposed to the SP
- SP could infer passengers' habits ^[1].

Motivation

- Cloaking region S_i (for privacy protection)
 - \circ Passenger p_i sends a fake location p'_i to SP
 - SP cannot infer passenger's exact location in S_i

- How to perform order dispatch (for different S_i)?
 - Let passengers choose the nearest driver ^[2], or
 - Let SP match in a centralized manner (this paper)

Privacy Attack

• Passenger choosing ^[2]

- Attack model^[2]
 - Voronoi graph:

- nearest driver
- + passenger location
- driver locations

[2] Khazbak, Y., Fan, J., Zhu, S. and Cao, G., Preserving location privacy in ride-hailing service (IEEE CNS'18)

Preventing Privacy Attack

- A probabilistic mechanism^[2]
 - Form and sort driver set D with k nearest drivers
 - $\,\circ\,$ Partition D into D1 and D2 based on distance
 - \circ Pick a driver from D₁ (D₂) with a higher (lower) probability
- Guarantee privacy (based on prior probabilities)^[2]
 - Problem: not optimize pick-up distances, locally nor globally

- chosen driver
- nearest driver
- + passenger location
- driver locations

Our Approach

- Optimize social welfare
 - Minimize the total pick-up distance (bipartite matching)
- Performance loss
 - Travel fares + privacy fares discount

Pick-up distance by matching : blue (based on p') > red (based on p)

2. Social Welfare Optimization

- Social welfare: $dis(p_i, d_j)$ (negation of pick-up distance)
- Privacy requirement: |S_i|

 $\max \quad W = -x_{ij} dis(p_i, d_j)$

Maximize social welfare

s.t. $\sum_{d_j} x_{ij} = 1, x_{ij} \in \{0, 1\}, \forall p_i$ $\sum_{p_i} x_{ij} \le 1, x_{ij} \in \{0, 1\}, \forall d_j$ $\|p_i - p'_i\|_{\infty} \le \sqrt{S_i}/2, \forall p_i$

All passengers matched

Not all drivers matched

Privacy constraint

Bounded Performance Loss

Theorem: actual pick-up distance $\sum_{p_i} \text{blue} \leq \sum_{p_i} (\text{red} + \sqrt{2S_i})$

Proof sketch

Optimality of bipartite matching:

$$\begin{split} \sum_{p_i} \text{black} &\leq \sum_{p_i} \text{green} \\ \text{Triangle inequality:} \\ \sum_{p_i} \text{blue} &\leq \sum_{p_i} (\text{black} + \text{grey}) \\ \sum_{p_i} \text{green} &\leq \sum_{p_i} (\text{red} + \text{grey}) \\ \text{Combining:} \end{split}$$

 $\sum_{p_i} \mathsf{blue} \leq \sum_{p_i} (\mathsf{red} + 2\mathsf{grey})$

3. Discount Allocation

- Profit distribution
 - o SP
 - Drivers in D (global)
 - Passengers in P (local + global)
- Local distance loss (for P)

- The difference between actual pick-up and nearest distance
- p₃ local loss: blue line yellow line (nearest)
- Global social welfare loss (for a party in P or D)
 - The difference between others' social welfare that <u>includes</u> and <u>excludes</u> this party ^[3]

Global Social Welfare Loss

Global social welfare (SW) loss for passengers/drivers based on VCG [3]

the SW loss of p_1 is the difference, i.e., -11-(-13) = 2

Passengers	Percentage
p ₁	2/5
p ₂	1/5
p ₃	2/5

-(5+6)-(-(4+8)) = 1

-(3+4)-(-(4+5)) = 2

Drivers	Percentage
d ₁	3/5
d ₂	1/5
d ₃	1/5

[3] Krishna, V. and Motty, P., Efficient mechanism design (Available at SSRN 64934,1998).

Discount Allocation Strategy

For drivers in D

Discount is based on global social welfare (SW) loss

For passengers in P

- 1. Discount is based on global SW loss;
- 2. Discount is based on local distance (LD) loss;
- 3. Combine 1) and 2), i.e.,

$$\lambda \times LD + (1 - \lambda) \times SW$$

4. Experiment

Synthetic and real-world dataset

• Synthetic: p_i, d_j (uniform distribution)

- Real-world (Didi passenger dataset):
 - p_i : Didi trace data in Chengdu; d_j : uniform distribution
- Privacy settings: $S_i \sim \mathcal{N}(\mu, \mu/3)$ (normal distribution)

Dataset statistics

Data Source	Didi's trajectory data
Time Span	11/1/2016 - 11/30/2016
Number of orders	$691,\!269$

[4] Identification of urban regions' functions in Chengdu, China, based on vehicle trajectory data (NCBI)

Experiment Results

Overall pick-up distance

- Greedy: each passenger greedily chooses the nearest driver
- Optimal: SP matches based on real passenger & driver locations

Experiment Results (1)

Impact of privacy requirement

settings: µ = 5 km for other passengers with uniform distributions

conclusion: the higher the privacy, the more the local distance loss.

settings: Privacy: |S_i|

Difference = Privacy - Discount 2

conclusion: the higher the privacy, the more the difference value.

Experiment Results (2)

Evaluation on three discount allocation strategies

settings: number of passengers = 75, total distributed profits = 75, uniform distribution

conclusion: the values of global social welfare loss for all passengers are smoother than that of their local distance loss.

5. Summary

- Privacy-preserving order dispatch scheme
 - SP matches passengers and drivers with privacy requirement
- The trade-off between performance and privacy
 - Derive the bound of performance loss
 - Propose to allocate discounts to make up the loss
- Experiments on real-world/synthetic datasets
 - Show the matching performance with different settings
 - Evaluate the fares and discount with different settings

Thank you Q&A

