A Privacy-Preserving Order Dispatch Scheme for Ride-Hailing Services

Yubin Duan, Guojun Gao, Mingjun Xiao, and Jie Wu
Dept. of Computer and Info. Sciences
Temple University
1. Introduction

- **Ride-hailing system**
 - *Service Provider* (SP): Uber and Didi
 - *Order dispatch*: matching *passengers* (P) and *drivers* (D)

- **Privacy concerns**
 - Passenger locations are exposed to the SP
 - SP could infer passengers’ habits \(^{[1]}\)

\(^{[1]}\) Shokri, R., Theodorakopoulos, G., Le Boudec, J. Y., and Hubaux, J. P., Quantifying Location Privacy (IEEE SSP '11)
Motivation

- **Cloaking region** S_i (for privacy protection)
 - Passenger p_i sends a fake location p_i' to SP
 - SP cannot infer passenger’s exact location in S_i

- **How to perform order dispatch** (for different S_i)?
 - Let passengers choose the nearest driver [2], or
 - Let SP match in a centralized manner (this paper)

Privacy Attack

- **Passenger choosing** [2]

- **Attack model** [2]
 - Voronoi graph:
 - nearest driver
 - passenger location
 - driver locations

Preventing Privacy Attack

- A probabilistic mechanism \[^{[2]}\]
 - Form and sort driver set \(D\) with \(k\) nearest drivers
 - Partition \(D\) into \(D_1\) and \(D_2\) based on distance
 - Pick a driver from \(D_1\) (\(D_2\)) with a higher (lower) probability

- Guarantee privacy (based on prior probabilities) \[^{[2]}\]
 - Problem: not optimize pick-up distances, locally nor globally

Our Approach

- Optimize social welfare
 - Minimize the total pick-up distance (bipartite matching)

- Performance loss
 - Travel fares + privacy fares - discount

Pick-up distance by matching: blue (based on p’) > red (based on p)
2. Social Welfare Optimization

- Social welfare: \(- dis(p_i, d_j)\) (negation of pick-up distance)
- Privacy requirement: \(|S_i|\)

\[
\begin{align*}
\text{max} \quad W &= -x_{ij} \text{dis}(p_i, d_j) \\
\text{s.t.} \quad \sum_{d_j} x_{ij} &= 1, \quad x_{ij} \in \{0, 1\}, \forall p_i \\
\sum_{p_i} x_{ij} &\leq 1, \quad x_{ij} \in \{0, 1\}, \forall d_j \\
\|p_i - p_i'\|_\infty &\leq \sqrt{S_i}/2, \forall p_i
\end{align*}
\]

Maximize social welfare

All passengers matched

Not all drivers matched

Privacy constraint
Theorem: actual pick-up distance

\[\sum_{p_i} \text{blue} \leq \sum_{p_i} (\text{red} + \sqrt{2S_i}) \]

- **Proof sketch**

 Optimality of bipartite matching:

 \[\sum_{p_i} \text{black} \leq \sum_{p_i} \text{green} \]

 Triangle inequality:

 \[\sum_{p_i} \text{blue} \leq \sum_{p_i} (\text{black} + \text{grey}) \]

 \[\sum_{p_i} \text{green} \leq \sum_{p_i} (\text{red} + \text{grey}) \]

 Combining:

 \[\sum_{p_i} \text{blue} \leq \sum_{p_i} (\text{red} + 2\text{grey}) \]
3. Discount Allocation

- **Profit distribution**
 - SP
 - Drivers in D (global)
 - Passengers in P (local + global)

- **Local distance loss** (for P)
 - The difference between actual pick-up and nearest distance
 - p_3 local loss: blue line - yellow line (nearest)

- **Global social welfare loss** (for a party in P or D)
 - The difference between others’ social welfare that includes and excludes this party \(^3\)

\(^3\) Krishna, V. and Motty, P., Efficient mechanism design (Available at SSRN 64934, 1998).
Global Social Welfare Loss

Global social welfare (SW) loss for passengers/drivers based on VCG [3]

<table>
<thead>
<tr>
<th>Passengers</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_1</td>
<td>2/5</td>
</tr>
<tr>
<td>p_2</td>
<td>1/5</td>
</tr>
<tr>
<td>p_3</td>
<td>2/5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1</td>
<td>3/5</td>
</tr>
<tr>
<td>d_2</td>
<td>1/5</td>
</tr>
<tr>
<td>d_3</td>
<td>1/5</td>
</tr>
</tbody>
</table>

social welfare for \(p_2\) and \(p_3\) is
\[-(5+8) = -13\]

social welfare for \(p_2\) and \(p_3\) is
\[-(4+7) = -11\]

the SW loss of \(p_2\) is
\[-(5+6)-(-(4+8)) = 1\]

the SW loss of \(p_3\) is
\[-(3+4)-(-(4+5)) = 2\]

the SW loss of \(p_1\) is the difference, i.e.,
\[-11-(-13) = 2\]

Discount Allocation Strategy

- For drivers in D
 - Discount is based on global social welfare (SW) loss

- For passengers in P
 1. Discount is based on global SW loss;
 2. Discount is based on local distance (LD) loss;
 3. Combine 1) and 2), i.e.,

\[\lambda \times LD + (1 - \lambda) \times SW \]
4. Experiment

- Synthetic and real-world dataset
 - Synthetic: p_i, d_j (uniform distribution)
 - Real-world (Didi passenger dataset):
 - p_i: Didi trace data in Chengdu; d_j: uniform distribution
 - Privacy settings: $S_i \sim \mathcal{N}(\mu, \mu/3)$ (normal distribution)

- Dataset statistics

<table>
<thead>
<tr>
<th>Data Source</th>
<th>Didi’s trajectory data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Span</td>
<td>11/1/2016 - 11/30/2016</td>
</tr>
<tr>
<td>Number of orders</td>
<td>691,269</td>
</tr>
</tbody>
</table>

[4] Identification of urban regions’ functions in Chengdu, China, based on vehicle trajectory data (NCBI)
Experiment Results

- Overall pick-up distance

- **Greedy**: each passenger greedily chooses the nearest driver
- **Optimal**: SP matches based on real passenger & driver locations

![Graphs showing comparison between Greedy, Optimal, and our scheme with different parameters for synthetic and Didi passenger datasets.](image-url)
Experiment Results (1)

- Impact of privacy requirement

settings: \(\mu = 5 \) km for other passengers with uniform distributions

conclusion: the higher the privacy, the more the local distance loss.

settings: Privacy: \(|S_i|\)
Difference = Privacy - Discount 2

conclusion: the higher the privacy, the more the difference value.
Experiment Results (2)

- Evaluation on three discount allocation strategies

settings: number of passengers = 75, total distributed profits = 75, uniform distribution

conclusion: the values of global social welfare loss for all passengers are smoother than that of their local distance loss.
5. Summary

- Privacy-preserving order dispatch scheme
 - SP matches passengers and drivers with privacy requirement

- The trade-off between performance and privacy
 - Derive the bound of performance loss
 - Propose to allocate discounts to make up the loss

- Experiments on real-world/synthetic datasets
 - Show the matching performance with different settings
 - Evaluate the fares and discount with different settings
Thank you

Q & A