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Abstract—The ride-hailing system has become popular around
the world. The Service Providers (SPs) such as Uber and Didi
dispatch passenger orders based on their location information.
However, one concern from the public is whether the SPs could
protect the location privacy of passengers. In this paper, we pro-
pose an order dispatch scheme that could preserve the location
privacy of passengers based on their requirements. Our scheme
uses cloaking regions in which the SPs cannot distinguish actual
locations of passengers. The trade-off is the loss of matching
performance or social welfare, i.e., the increase in the overall
pick-up distance. We formulate the problem as maximizing the
social welfare (or minimizing the overall pick-up distances) under
privacy requirements of passengers. A bipartite-matching-based
scheme is investigated, and we provide a theoretical bound on
the matching performance under specific privacy requirements.
Nevertheless, minimizing the overall pick-up distances does not
consider the interest of each individual passenger. Passengers
with low privacy requirements may be matched with drivers far
from them. Therefore, we further propose a pricing scheme that
could make up for the individual loss by allocating discounts on
their riding fares. Especially, three discount allocation strategies
are proposed in this paper. Experiments on both real-world and
synthetic datasets show the efficiency of our scheme.

Index Terms—order dispatch, pricing, privacy, ride-hailing

I. INTRODUCTION

Ride-hailing service has rapidly developed nowadays [1, 2].
Service Providers (SPs) such as Uber or Didi already have a
large number of registered users. Although the ride-hailing ser-
vices could bring travel convenience to users, they also carry
privacy risks. Specifically, the SP could easily gather millions
of travel traces per day. By digging in these travel records,
the SP could collect a large amount of private information of
passengers. For example, the SP could infer living or working
locations of passengers, or even their habits and interests [3, 4].
Exposing such information to unauthorized organizations may
bring location-based scams to passengers. It may further cause
economic or social reputation damage to passengers. Harmful
consequences of privacy leakage in ride-hailing systems has
been reported in [5]. Therefore, there is a strong need to protect
the location privacy of passengers in the ride-hailing systems.

Existing researches on ride-hailing are mainly based on
spatial cloaking [6, 7] and/or built on homomorphic encryption
[8–10]. In the spatial cloaking approaches, passengers report
cloaking regions to the SP and their actual locations are
indistinguishable in these regions. To match passengers with
drivers, existing researches propose to let each passenger
choose the nearest available driver. The SP sends locations
of nearby drivers to passengers without knowing their actual
locations. However, this approach does not consider the social
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welfare. That is, the overall pick-up distance is not optimized.
As a result, the efficiency of the ride-hailing system is not fully
used. In appraoches based on the homomorphic encryption, the
SP could attain some non-sensitive information, such as the
distance between a passenger’s source location and a driver’s
location. With such information, it is hard for the SP to
infer the actual locations of passengers or drivers. However,
homomorphic encryption requires additional communication
overheads between drivers and passengers, which brings dif-
ficulties for its real-world implementation.

An attacking model toward the simple spatial cloaking
approach is proposed in [11]. They assume the SP is honest but
curious. It means the SP would send accurate driver locations
to passengers but try to infer passenger locations. The Voronoi
diagram [12] is used in their attacking model, since the SP
knows that each passenger would choose the nearest available
driver. Although an enhanced dispatch scheme is proposed,
the social welfare is not considered in their work.

In this paper, we propose to optimize the social welfare
(or to minimize the overall pick-up distance) while ensuring
privacy requirements of passengers and maintaining a low
communication overhead. A privacy-preserving order dispatch
scheme based on spatial cloaking is introduced. The difference
is that our scheme lets the SP globally match passengers with
drivers based on pick-up distances in a centralized manner.
In this way, each passenger may no longer be matched with
the nearest available driver. Consequently, the SP cannot infer
the passenger locations by using the attacking model in [11].
The trade-off is that the performance of matching is affected,
since the SP only knows cloaking regions rather than actual
locations of passengers. To best of our knowledge, our paper
is the first one that investigates this trade-off and provides a
theoretical bound on the matching performance under given
privacy requirements.



On the other hand, minimizing the overall pick-up distance
does not consider the interest of each individual. For example,
passengers with low privacy requirements may be matched
with drivers who are far from them. We propose to make up the
loss of each individual, which has not been fully discussed in
previous researches. A pricing scheme is introduced. Specifi-
cally, the SP would first collect additional fees from passengers
for their privacy requirements, since the performance of the
matching is affected by these requirements. The additional fee
is positively correlated with the privacy requirement. Then,
the SP would allocate part of the collected fees as discounts
to make up individual losses. It is challenging to determine a
closed form equation to describe the relation between privacy
requirements and their side effects on matching performance.
The reason is that the performance of global matching is not
only determined by each passenger’s privacy requirement, but
also affected by other passengers’ settings. In this paper, three
discount allocation strategies are investigated.

An application scenario of our scheme is shown in Fig. 1.
Each passenger would send a cloaking region which contains
his/her actual location to the SP. The size of the cloaking
region is chosen by passengers based on their privacy re-
quirements. Instead of letting passengers choose drivers, the
SP would globally match drivers with passengers based on
locations of cloaking region centers and drivers. By using this
scheme, the SP could not infer actual locations of passengers
by using the Voronoi diagram. However, the trade-off is that
passengers cannot be matched with the optimal drivers in
terms of the social welfare or their own interests, since their
actual locations are unknown to the SP. After passengers report
their satisfaction, the SP could allocate discounts based on our
pricing scheme. Finally, passengers could contact the assigned
drivers on secure channels and start the riding.

The contributions of this paper are summarized as follows:
• We propose a privacy-preserving ride-hailing scheme

based on the global matching, in which passenger lo-
cations cannot be inferred by the attacking model in [11]
and no significant communication overhead is introduced.

• We evaluate the performance loss brought by using in-
accurate passenger locations in matching. A theoretical
bound on the loss is given.

• We investigate three discount strategies that could make
up for the performance loss in the matching process.

The remainder of the paper is organized as follows. Section
II reviews related works. Section III presents our system
model. Section IV shows the ride matching algorithm and
analyzes its performance and privacy-preserving properties.
Section V introduces our discount allocation strategies. Section
VI simulates our approaches on both synthetic and real-world
datasets. Finally, Section VII concludes the paper.

II. RELATED WORK

A. Location Privacy in Ride-Hailing System
Researches on the privacy in ride-hailing systems [11, 13–

18] mainly have two different approaches. One approach is
based on location cloaking [6, 7, 11]. The other approach

is based on homomorphic encryption [8–10]. In the location
cloaking approach, instead of uploading their actual locations
to the SP, passengers would report cloaking regions centered
at arbitrary fake locations within their nearby areas. Their
actual locations are not distinguishable within cloaking regions
[19]. The SP would send locations of all available drivers in
cloaking regions to passengers. Then, passengers can choose
drivers based on some metrics. [19] propose to let each
passenger choose the nearest driver. However, [11] points out
that the SP could infer actual passenger locations to a certain
degree by using Voronoi diagram [12]. To enhance the privacy
level, [11] proposes to choose relatively nearer drivers with
higher probability. Although the possibility of inferring actual
locations of passengers is decreased, the social welfare is not
considered. In this paper, besides caring about the privacy of
each passenger, we also aim to maximize the social welfare
with certain theoretical bound, and a global matching based
scheme is proposed. Although [2] proposes to optimize the
social welfare, the privacy issue is not considered.

B. Discount Allocation Problems
To the best of our knowledge, there is little research work

on the discount allocation algorithm (also called pricing for
privacy) for the ride-hailing systems. The authors in [20]
design a usage-based dynamic pricing scheme with privacy
preservation for smart grid, in which they enable the electricity
price to correspond to the electricity usage in real time. Zhuo
et al. in [21] study the tradeoff between the amount of traffic
being offloaded and the users’ satisfaction in 3G network, and
further propose a novel incentive framework to motivate users
to leverage their delay tolerance for 3G traffic offloading. Es-
sentially, the discount allocation algorithm is used to motivate
individuals to participate in the privacy-preserving ride-hailing
system by providing them some benefits (i.e., discount).

The most common incentive mechanism is the auction
model [22], such as generalized second-price auction [23],
Vickrey-Clarke-Groves (VCG) auction [24], etc. The VCG
auction is a type of sealed-bid auction of multiple items, in
which bidders submit bids that report their valuations for the
items, without knowing the bids of the other bidders. Then, the
auction system assigns the items in a socially optimal manner:
it charges each individual the harm they cause to other bidders.
It gives bidders an incentive to bid their true valuation, by
ensuring that the optimal strategy for each bidder is to bid
their true valuation of the items. In this paper, we adopt the
idea of payment determination in VCG auction while taking
the fairness of discount into consideration.

III. MODEL
A. Preliminaries

We first introduce the notations used in the paper. Let P
denote the set of passenger actual locations, and a passenger
location in the set is denoted as pi, 1 ≤ i ≤ |P|. Let D denote
the set of driver locations, and each driver location is denoted
as dj , 1 ≤ j ≤ |D|.

To protect the location privacy, each passenger would con-
struct a cloaking region based on his/her privacy requirement.
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Fig. 2. The illustration of the cloaking region.

The cloaking region [25] of a passenger is a geographical
region in which the passenger’s actual location is indistin-
guishable from other points within the region. The privacy of
each passenger is quantified by the area of the cloaking region.
By default, we assume that the shape of each cloaking region is
square as shown in Fig. 2(a). Actually, its shape could also be
circle as shown in Fig. 2(b), and the conclusions of our paper
can be easily extended. Formally, let Ri and Si denote the
cloaking region and the privacy requirement of passenger pi,
respectively. To generate the cloaking region Ri, the passenger
pi would randomly chose a location p′i as the center of Ri. To
ensure that the actual location pi is contained in the cloaking
region, p′i should be chosen from the choice region as shown
in Fig. 2. The area of the cloaking region Ri is Si, or the side
length of Ri is 2ri =

√
Si for square cloaking regions. The

choice region has the same size as the cloaking region. After
generating the cloaking region Ri, the passenger at pi would
send Ri instead of the actual location to the SP.

Due to the heterogeneous privacy requirements of passen-
gers, the performances of global matching would deteriorate.
For this reason, the passengers are required to pay additionally
for their riding fees. Let T denote the total additional payment
by passengers. Since both passengers and drivers may suffer
loss in the global matching process, the system should share
the profits T with them. The detailed allocation strategy among
individuals would be studied in Section V.

The performance of the ride matching scheme is evaluated
by the social welfare (or the overall pickup distance). Formally,
let dis(·, ·) : R2 7→ R denote the distance function. The pickup
distance for the passenger at pi is dis(pi, dj) where dj is the
driver matched with passenger pi. Correspondingly, the social
welfare is defined as W = −∑

pi∈P dis(pi, dj), which is the
negation of the overall pickup distance. It is because a longer
pickup distance corresponds to lower social welfare.

B. Problem formulation

In this paper, we aim to maximize the social welfare while
guaranteeing the privacy requirements of passengers. Formally,
our problem is defined as following:

max W = −xijdis(pi, dj) (1)

s.t.
∑

1≤j≤|D|
xij = 1,∀pi ∈ P (2)

‖pi − p′i‖∞ ≤
√
Si/2,∀pi ∈ P (3)

xij ∈ {0, 1},∀pi ∈ P,∀dj ∈ D (4)
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Fig. 3. The system framework.

where xij is the decision variable. xij = 1 if and only if the
passenger pi is matched with the driver dj . Eq. (1) represents
our objective which is to maximize social welfare, while the
value of p′i instead of pi is known. Eq. (2) is the matching
constraint that means each passenger should be paired with
one driver. Eq. (3) is the privacy constraint, which means that
actual location of each passenger pi should be contained in
the cloaking regions. ‖ · ‖∞ denotes the l∞-norm. Eq. (3)
represents that the p′i would be located within the square region
centered at pi with side length

√
Si. Eq. (4) is the binary

constraint for the decision variable.

IV. PRIVACY-PRESERVING DISPATCH PROCESS

A. System Framework
The framework of our dispatch system is shown in Fig.

3. In the first step, drivers need to upload their locations to
the SP, and passengers need to send their cloaking regions to
the SP. The privacy requirements of passengers is represented
by the sizes of cloaking regions. Then, in the second step,
the SP would match passengers with drivers by using the
weighted bipartite matching algorithm [2]. Details of the
matching process are introduced in Section IV-B. This step
aims to maximize social welfare or to minimize the overall
pick-up distance. Then in the third step, the SP would send
the matching results to passengers along with locations of
drivers around the cloaking regions. The SP broadcasts driver
locations with the purpose of letting passengers evaluate their
satisfaction with the matching results. In the fourth step,
passengers would report their satisfactions to the SP and the SP
applies the discount allocation strategies (which is introduced
in Section V) to make up for the individual loss in the
fifth step. After receiving the discount, each passenger could
contact the matched driver in a private communication channel
and share his/her actual location to the driver. Procedures of
our order dispatch scheme is shown in Algorithm 1.

B. Matching with Cloaking Regions
In our scheme, to protect the location privacy of pas-

sengers in the ride-hailing systems, they upload cloaking
regions instead of their precise locations to the SP. In our
matching process, we propose to use centers of the cloaking
regions as obfuscated locations of passengers. Then, we apply
the weighted bipartite matching algorithm with obfuscated



Algorithm 1 The order dispatch scheme
Input: Passenger reported locations P ′, driver locations D
Output: Dispatch results for passengers

1: Construct a weighted bipartite matching graph G =
(V,E). V = P ′⋃D, E = −dis(P ′ ×D).

2: M ← weighted bipartite matching on G.
3: send corresponding matching result M to each passengers

along with locations of drivers near the cloaking region.
4: receive satisfactions from passengers.
5: Pricing for passengers ← Discount Allocation Algorithm.
6: return M

locations of passengers and driver locations. Although the
matching result is not optimal with respect to passenger actual
locations, we show that there is a theoretical upper bound for
its difference from the optimal value.

In the matching process, the SP first constructs a bipartite
matching graph. Specifically, the matching graph G = (V,E),
where V = P ′ ∪D and E = −dis(P ′×D). It means that the
matching graph is bipartite. One side contains elements in set
P ′ and the other side contains elements in set D. Weight of
the edge between a p′ ∈ P ′ and a d ∈ D is the negation of
the geographical distance between the obfuscated location p′

and driver’s location d. We use the negation of the distance as
the edge weight, since the social welfare decreases if the total
distances increase. Our objective is to maximize the social
welfare, which is equivalent to maximizing the negative of
sum distance between passengers and drivers.

An example of our dispatch scheme is shown in Fig. 4
and 5. In Fig. 4, the blue solid line represents the optimal
weighed bipartite matching founded by our scheme and the red
dashed line represents the optimal weighted bipartite matching
between passenger actual locations and drivers. The distance
between the locations used in the example is given in Fig.
5. In this example, we can find out that the overall pick-
up distance of matching with obfuscated locations is not
optimal since the actual passenger locations are unknown in
the matching process. Specifically, passengers p1, p2 and p3
should be matched with the drivers d1, d2 and d3 respectively
if their actual locations are used in the matching process. The
optimal overall pick-up distance is dis(p1, d1)+dis(p2, d2)+
dis(p3, d3)= 2

√
2+1+2 = 5.83. However, p1, p2 and p3 are

matched with d3, d1 and d2 respectively by applying our ride
matching scheme. The corresponding overall pick-up distance
is dis(p1, d3)+dis(p2, d1)+dis(p3, d2)=

√
10+1+

√
5 = 7.40.

Note that we should use the actual locations rather than
obfuscated locations when calculating the overall pick-up
distance of our scheme, although the matching is based on
obfuscated locations. The reason is that drivers need to pick
up passengers at their actual locations instead of obfuscated
locations. From the example, we can find out that the overall
pick-up distance increases and the social welfare decreases
when matching with obfuscated locations. The extra pick-up
distances for drivers are wasted, and we show an upper bound
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Fig. 4. The effect of cloaking regions in the matching process.
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(b) Distance between reported lo-
cations and drivers.

Fig. 5. The distance table of the example.

of this waste in the following subsection.

C. Analysis of Matching Performance and Privacy
We first analyze the performance of our ride matching

scheme. Let OPT denote the optimal overall pick-up distance.
It can be calculated by using the weighted bipartite matching
on actual locations of passengers and locations of drivers.
Formally, OPT =

∑
pi∈P dis(pi, dj), where dj is the driver

matched with pi by using passenger’s actual locations in
the bipartite matching. In our scheme, the SP could only
perform the bipartite matching based on obfuscated locations
of passengers. Let M denote the overall distance between
obfuscated locations of passengers and locations of drivers
matched by our scheme (i.e., based on passengers’ obfuscated
locations). Formally, M =

∑
pi∈P dis(p

′
i, d
′
j), where d′j is

the driver matched with p′i by applying our scheme. Note
that M is not the overall pick-up distance if our scheme is
used. The reason is that drivers should pick up passengers at
their actual locations rather than obfuscated locations. Let M ′

denote the overall pick-up distance of our scheme, i.e., the
sum of distance between passengers’ actual locations pi and
locations of drivers d′j . Formally, M ′ =

∑
pi∈P dis(pi, d

′
j).

Fig. 6 illustrates the meaning of these notations.
Theorem 1: Our matching scheme guarantees that M ′<

OPT+
√

2
∑

pi∈P
√
Si, where Si is the privacy setting.

Proof: The theorem is proved by using the triangle in-
equality and the optimal property of the weighted bipartite
matching. We illustrate the proof in Fig. 6.

By definition, we have OPT =
∑

pi∈P dis(pi, dj), M =∑
pi∈P dis(p

′
i, d
′
j), and M ′ =

∑
pi∈P dis(pi, d

′
j). Since the

obfuscated location of each passenger must be located within
the cloaking region, we have that dis(pi, p′i) ≤

√
2ri.

Based on the triangle inequality, we have that

M ′=
∑

pi∈P
dis(pi, d

′
j)



√
2ri

OPT

M

pi

p′i

dj

d′j

M ′

auxiliary lines

Fig. 6. The illustration of the proof. OPT means matching with actual
locations, M represents the matching with obfuscated locations, and M ′

shows the pick-up distance (picking up at passengers’ actual locations).

≤
∑

pi∈P
[dis(p′i, d

′
j)+dis(pi, p

′
i)]=M+

∑

pi∈P
dis(pi, p

′
i).

Similarly,
∑

pi∈P dis(p
′
i, dj) ≤ OPT +

∑
pi∈P dis(pi, p

′
i).

Based on the optimal property of the weighted bipartite
matching, we have that M ≤∑

pi∈P dis(p
′
i, dj).

Above all, we have

M ′≤M+
∑

pi∈P
dis(pi, p

′
i)≤

∑

pi∈P
dis(p′i, dj)+

∑

pi∈P
dis(pi, p

′
i)

≤OPT+2
∑

pi∈P
dis(pi, p

′
i) ≤OPT +2

∑

pi∈P

√
2ri.

Note that ri =
√
Si/2, then M ′<OPT+

√
2
∑

pi∈P
√
Si. �

Then, we analyze the privacy related property.
Lemma 1: Our scheme could achieve the strong privacy for

actual locations of passengers defined in [11].
Proof: The strong privacy holds since the SP could not infer

the passenger locations by knowing the locations of matched
drivers. Following the proof in [11], we could conclude that
the strong privacy holds. �

V. DISCOUNT ALLOCATION STRATEGIES

As we have mentioned before, the proposed privacy-
preserving order-dispatch system concentrates on maximizing
the social welfare, i.e., minimizing the total pick-up distances.
To achieve this goal, we adopt the optimal matching algorithm
during the order-dispatch process. In fact, each individual user
in the system is rational and selfish. This means that each
passenger always prefers the driver closest to him, and each
driver wants to pick up the closest passenger. Although the
proposed algorithm can obtain fine global performances, the
individual users including passengers and drivers may suffer
some losses. Therefore, in order to stimulate individual users
to participate in the privacy-preserving order-dispatch system,
each participant should receive a certain incentive (called
discount in this paper).

We first let T denote the total additional payment by
passengers for their privacy requirements, and then introduce
the percentage parameters 0 < γ, κ < 1. After that, T will
be divided into three shares, as shown in Table I. Here, the
specific values of γ and κ are determined after three-party
(i.e., system, passengers, and drivers) negotiation.

Next, the problem is how to allocate the shared profits (i.e.,
discount allocation) to each individual. We propose three allo-
cation strategies in the following, that is, individual-loss-based
discount allocation strategy, individual-contribution-based dis-
count allocation strategy, and joint discount allocation strategy.

Here, since the exact locations of passengers are unknown to
drivers, the individual-loss-based and joint discount allocation
strategies cannot be applied for drivers.

A. Individual-Loss-Based Discount Allocation
We first design a discount allocation strategy from the

perspective of individual loss. Compared to the previous free-
choice-based ride-hailing models, our algorithm based on
perfect/optimal matching can achieve excellent global perfor-
mances. However, some individual users may suffer certain
losses. These individual users may be unwilling to participate
in the system if they cannot receive certain compensations.
Note that the total discounts for all passengers are determined,
i.e., γ×T , and we need to allocate γ×T to each individual
passenger efficiently. To this end, we design an individual-
loss-based discount strategy for passengers as follows.

In our privacy-preserving order-dispatch system, the loca-
tions of drivers are not protected. For the passenger pi ∈ P ,
his/her distance to the nearest driver is known. After pi is
assigned to driver d′j which is not the nearest driver, the
distance between the true location of pi and d′j can be
calculated. Thus, it is easy to compute the difference (i.e.,
individual loss) between the actual distance and the nearest
distance for pi, denoted as ∆li. Note that ∆li here is a
non-negative value, i.e., ∆li ≥ 0. This is true because the
best assignment result for pi is its nearest driver and now
∆li = 0; In other cases, we always have ∆li > 0. Moreover,
the larger ∆li indicates the more loss for pi. Also, the system
must compensate more money for the passengers with the
larger loss. Based on this observation, we design the discount
allocation strategy as follows.

For each passenger pi∈P , the allocated discount, denoted
as ti, is proportional to its loss ∆li, i.e.,

ti = γ × T × ∆li∑
pk∈P ∆lk

. (5)

This intuition-based allocation strategy can ensure the fair-
ness for passengers. Here, we introduce the concept of “fair-
ness”. In this system, each passenger pi∈P has an additional
expense, denoted as ∆i. When there is no allocated discount,
the additional expense is equal to its loss, i.e., ∆i =∆li. When
each passenger pi receives a discount ti, the additional expense
is ∆i =∆li−ρ · ti where ρ denotes the balanced parameter.

Definition 1: Let σ denote the variance of the additional
expense {∆i|pi ∈ P}, that is, σ2 =

∑
pi∈P(∆i − ∆)2/|P|,

in which ∆ =
∑

pi∈P ∆i/|P| means the average value of
the additional expense. Here, the small σ indicates that the
additional expense of passengers has little difference. Thus,
the smaller σ, the fairer this system.

In the individual-loss-based discount allocation strategy,
the passengers with larger loss will receive more discount.
Obviously, the variance of ∆li − ρ · ti is smaller than that
of ∆li. Thus, we can prove that the individual-loss-based
discount allocation strategy is fair. Moreover, we will evaluate
the metric of fairness in the simulation section to verify the
efficiency of the discount allocation strategy.



TABLE I
PROFITS SHARE.

Total Profits Passengers Drivers System
T γ×T (1−γ)κ×T (1−γ)(1−κ)×T

B. Individual-Contribution-Based Discount Allocation
In fact, the individual-loss-based discount allocation strat-

egy only concerns the individual loss without considering
global performances. In other words, the passengers with
large individual loss may have little effect on the global
performances, while other passengers with a small individual
loss might have an important impact. For example, there
is such a passenger in this system, whose individual loss
is small. If we make discount allocations without involving
this passenger, the achieved overall social welfare may be
lowered drastically. Therefore, the discount allocated to a
passenger depends on not only its individual loss but also
its contributions. The contribution of a passenger means the
increased social welfare after involving this corresponding
passenger. In this subsection, we will introduce the individual-
contribution-based discount allocation strategy.

The contribution of a passenger is calculated based on
the difference between the social welfare value that includes
this passenger and one that excludes this passenger. Actually,
the idea of individual-contribution-based discount strategy is
similar to the payment determination method used in Vickrey-
Clarke-Groves (VCG) auction mechanism [24]. Here, the total
profit shared by the system to all passengers is determined as
before, i.e., γ×T . In our problem, we give each passenger the
discount proportional to its contribution. For simplicity, let Ci

denote the contribution of pi∈P . To acquire the value of Ci,
we need to compute the original social welfare based on all
passengers, which is denoted as W . Then, we let W−pi denote
the social welfare based on the passengers excluding pi ∈P .
Note that here W ≥ W−pi

for ∀pi ∈ P . According to this,
we can calculate the contribution of pi as Ci = W −W−pi

.
Since the discount of a passenger pi∈P is proportional to its
contribution, we have:

ti =
(γ × T )× Ci∑

pk∈P Ck
=

(γ × T )× (W−W−pi)

W × |P| −∑
pk∈PW−pk

. (6)

Furthermore, the individual-contribution-based discount al-
location strategy can also be applied to drivers. As we in-
troduce before, the total profits allocated to all drivers are
determined, i.e., (1 − γ) × κ × T . At the same time, the
individual contribution for one driver (i.e., dj), denoted as Gj ,
can be calculated as the process for passengers. The original
social welfare based on all drivers is denoted as W , and we
denote W−tj as the newly obtained social welfare value after
excluding dj ∈D. Similarly, we use Gj =W−W−tj to denote
the contribution of dj ∈D. Since the total profits enjoyed by
all drivers are (1−γ)×κ×T , we provide each individual driver
dj with the following discount:

tj =
(1−γ) · κ · T×Gj∑

dx∈D Gx
=

(1−γ) · κ · T × (W−W−dj
)

W × |D| −∑
dx∈DW−dx

. (7)

Algorithm 2 Discount Allocation Algorithm for Passengers
Input: P , D, γ, κ, λ, T
Output: ti for ∀pi ∈ P .

1: Initialization: ti = 0 for ∀pi ∈ P;
2: Platform computes the total social welfare, i.e., W ;
3: for pi ∈ P do
4: pi calculates its individual loss, i.e., ∆li,

and then sends the value to the system platform;
5: Platform re-matches passengers P/{pi} and drivers D,

and further computes the new social welfare, i.e., W−pi
;

6: Platform computes the contribution, i.e., Ci =W−W−pi
;

7: for pi ∈ P do
8: Platform calculates the discount for pi, denoted as ti,

ti =





γT∆li∑
pk∈P ∆lk

, Eq. (5) : individual loss;

γTCi∑
pk∈P Ck

, Eq. (6) : individual contribution;

γT (
λ∆li∑

pk∈P ∆lk
+

(1− λ)Ci∑
pk∈P Ck

), Eq. (8) : joint;

9: return ti for ∀pi ∈ P in three strategies;

C. Joint Discount Allocation
By combining the individual-loss-based strategy and the

individual-contribution-based strategy, we propose a new dis-
count allocation strategy for passengers, called joint discount
allocation strategy. To find the balance between the two strate-
gies, we first introduce a parameter, denoted as λ∈ [0, 1]. That
is, the allocated discount of a passenger pi∈P is proportional
to the balanced value between its loss and contribution, i.e.,

ti = γ × T × (λ
∆li∑

pk∈P ∆lk
+ (1− λ)

Ci∑
pk∈P Ck

). (8)

Since the individual-loss-based discount allocation strategy
is only suitable for passengers, the joint strategy is also only
applicable to passengers. By controlling the balanced param-
eter λ, the passengers with high contribution and large loss
will receive large discount, and they will further participate in
the privacy-preserving ride-hailing system, so that the system
is long-term profitable.

D. The Detailed Algorithms
Based on the above strategies, we design the discount

allocation algorithms for passengers and drivers, respectively,
as shown in Algorithms 2 and 3. First, we introduce Algorithm
2. We initialize the discount values for all passengers and
compute the social welfare value of the existing assignment
results in Steps 1-2. Then, each passenger (e.g., pi) calculates
its individual loss and sends it to the platform in Steps 3-4. At
the same time, the platform re-conducts the matching between
drivers and passengers excluding pi and then gets a new social
welfare value in Step 5. Based on this, the contribution of this
passenger pi can be obtained in Step 6. Next, the allocated
discount for each passenger pi is determined in Step 8. Here,
we present the allocated discount values based on the three



Algorithm 3 Discount Allocation Algorithm for Drivers
Input: P , D, γ, κ, T
Output: tj for ∀dj ∈ D.

1: Initialization: tj = 0 for ∀dj ∈ D;
2: Platform computes the total social welfare, i.e., W ;
3: for dj ∈ D do
4: Platform re-matches passengers P and drivers D/{dj},

and further computes the new social welfare, i.e., W−dj
;

5: Platform computes the contribution Gj =W−W−dj
;

6: for dj ∈ D do
7: Platform calculates the discount for dj based on Eq.(7);
8: return tj for ∀dj ∈ D;

proposed strategies. We finally output the discount results for
passengers in Step 9.

Second, we introduce the discount allocation algorithm for
drivers, i.e., Algorithm 3. Similar to Algorithm 2, in Steps
1-2, we first initialize the algorithm and meanwhile compute
the social welfare based on the already assigned results. Next,
for each driver dj ∈ D, we remove dj and re-conduct the
matching between drivers D/{dj} and passengers P in Step
4. After calculating the contribution of each driver in Step 5,
we obtain the corresponding discount according to Eq. (7), in
Steps 6-7. At last, we output the results in Step 8.

E. Example
To better understand the discount allocation strategies, we

use an example shown in Table II to illustrate the allocation
procedure. Same as the former example in Section IV, we
suppose 3 passengers and 3 drivers in the system. Here, the
true and false locations of passengers are included, as shown
in Fig. 4. Moreover, the distance values between drivers and
passengers are shown in Fig. 5. Then, the discount allocation
procedure is conducted as follows.

Note that the locations of drivers in the system are public
to passengers. For a passenger (e.g., p1) in the example, it
can calculate the distance between him and the closest driver
(i.e., d1) which equals 2

√
2. However, its actually assigned

driver is d3, and the corresponding distance equals
√

10. So
the individual loss for p1 is calculated by

√
10−2

√
2≈0.33.

In the same way, we can compute the individual loss for other
passengers, as shown in Table II. Note that here the total profits
that will be allocated to all passengers are determined, i.e., γT .
Thus, we calculate the allocated discount for each passenger
according to Eq. (5), and display the results in Table II.

On the other hand, we also analyze the results in the
individual-contribution-based allocation strategy. In the sys-
tem, the social welfare is reversely proportional to the total
distance, so we use the opposite of total distances to de-
note the social welfare. Note that the individual-contribution-
based allocation strategy works according to the false lo-
cations of passengers. This means that the computation of
an individual contribution is always based on Fig. 4(b). We
first calculate the total social welfare based on all users,
i.e., W = (−2) + (−

√
2) + (−

√
5) ≈ −5.65. Then, for the

passenger p1, we re-conduct the optimal matching based on

TABLE II
THE EXAMPLE OF DISCOUNT ALLOCATION STRATEGIES.

Passengers
Individual-loss-based
discount allocation

Individual-contribution-based
discount allocation

loss discount contribution discount
p1 0.33 0.21λT 2 0.35λT
p2 1 0.64λT 1.41 0.25λT
p3 0.24 0.15λT 2.24 0.4λT

all passengers excluding p1, and get the new assignment result
{〈p2, d1〉, 〈p3, d2〉}. Based on this, we re-calculate the social
welfare, i.e., W−p1

= (−
√

2)+(−
√

5)≈−3.65. In this case,
the contribution of p1, defined as the difference between the
social welfare values including p1 and excluding p1, can be
determined as Cp1 = |W −W−p1 |= 2. In the same way, the
contribution of p2 and p3 is calculated, as shown in Table
II. Next, according to Eq. (6), the discount allocated to each
individual user is determined.

Additionally, based on the above two strategies, it is easy
to compute the discount in the joint allocation strategy. The
specific discount value of each passenger depends on the bal-
ance parameter λ. Moreover, we can also calculate the discount
values for all drivers based on Eq. (7), by using the individual-
contribution-based allocation strategy. The procedure is the
same as the discount allocation for passengers in the example,
so we will omit the detailed calculation here.

VI. EXPERIMENT

In this section, we evaluate the performances of the pro-
posed algorithms. We conduct the simulations on a computer
with Inter(R) Core(TM) i7-8700 CPU @3.20GHz and 32GB
RAM under a Windows platform. Moreover, all simulations
are implemented in Matlab.

A. Experiment setup
In the experiment, we use both synthetic and real-world

datasets. In the synthetic dataset, the locations of passengers
and drivers are randomly generated with uniform distribution.
Specifically, we first generate a planar size in 30×30. Then, we
generate driver and passenger locations in the area, where each
location is represented by a 2D coordinate. The distributions
of the coordinate values are uniform. In the real-world dataset,
these locations are extracted from the order and trace data in
Chengdu, China from Didi Inc. The dataset is available at
[26]. To best of our knowledge, there is no available dataset
that contains privacy requirements of passengers. Therefore,
we assume the privacy requirements obey normal distribution.
The mean of the distribution is denoted as µ, and the standard
deviation is set as µ/3, which could guarantee that 99.7% of
the generated privacy requirement is positive by expectation.
If a negative privacy requirement is generated, we manually
adjust it to 0. In both datasets, we set the number of drivers
to the same as that of passengers.

In the first group of experiments, we investigate the match-
ing performance of our scheme on both datasets. We first
compare our bipartite-matching based scheme with the simple
spatial cloaking approach in which each passenger greedily
chooses the nearest available driver. The comparison algorithm
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(b) Results on the real-world dataset
Fig. 7. Comparison on the overall pick-up distance.

is denoted as greedy. We also compare our scheme with the
optimal solution in which the actual locations of passengers
are used in the matching.

Then, we simulate the discount allocation strategies. Note
that the location information of drivers is public to the passen-
gers, so the loss of each passenger is calculated easily. Then,
the individual-contribution-based allocations for drivers and
passengers are computed according to two matching results.
In the joint discount allocation algorithm, we set the parameter
λ from {0.3, 0.5, 0.7}, and the default λ is set as 0.5. In
addition, the total discounts allocated to drivers or passengers
are proportional to the number of drivers or passengers.

B. Simulation Results

Fig. 7 shows the comparison of different algorithms on
the overall pick-up distances. Fig. 7(a) illustrates simulation
results on the synthetic dataset. From the figure, we can
find out that our ride matching algorithm outperforms the
simple spatial cloaking approach (denoted as greedy). The
reason is that each driver could only be chosen once, and the
global matching based algorithms could coordinate between
passengers and minimize the overall pick-up distance. If actual
locations of passengers are known, the bipartite matching
algorithm should achieve the optimal value as the black
solid line shown in the figure. When the passenger locations
are protected by cloaking regions, the matching performance
decreases as the red and blue lines shown in the figure. By
comparing the red line and blue line, we can verify that larger
privacy requirements would result in larger overall pick-up
distance. Fig. 7(b) illustrates simulation results on the real-
world dataset. It shares similar trends with the results on the
synthetic dataset. The difference is that the effect of privacy
requirements is more obvious. When changing the value of µ
from 1 to 2, the relative difference between the red line and the
blue line is larger in Fig. 7(b) than that in Fig. 7(a). Although
the effect of the value of µ is more obvious, our scheme still
outperforms the simple spatial cloaking approach.

Fig. 8 shows the comparison of different algorithms on
the pick-up distance distribution. Fig. 8(a) and (b) plot the
cumulative distribution function of the pick-up distances. From
Fig. 8(a), we can find out that 60% of the pick-up distances
are less than 4.4km when the simple spatial cloaking approach
is used. The corresponding value of our scheme is 4.9km
when µ = 3, which is larger. In contrast, when investigating
the 80% of the pick-up distances, they are less than 8.4km
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Fig. 8. Comparison on the pick-up distance distribution.

when the simple spatial cloaking approach is used, and the
corresponding value of our scheme is 6.4km when µ = 3. This
shows that letting passengers choose the neatest driver could
benefit some passengers whose pick-up distance is relatively
small, while it also makes negative effects on the pick-up
distances of some other passengers. When using our scheme,
the pick-up distances are more concentrated compared with the
simple spatial cloaking approach. We can find out the similar
conclusion from Fig. 8(b).

We evaluate the allocated discount for each passenger
based on three allocation algorithms, as shown in Fig. 9
(a). We see that the allocated discount differences among all
passengers in the individual-loss-based algorithm are larger
than those of other algorithms, and the discount differences
in the individual-contribution-based algorithm are smallest.
This means that the loss of each passenger dominates in the
joint discount allocation algorithm. Moreover, we present the
cumulative probability distribution of the allocated discount
for three algorithms in Fig. 9 (b). We also show the discount
results when changing the parameter λ. We find that in the
individual-loss-based allocation algorithm, the largest discount
value for one passenger is about 5.5 and there are about
40% passengers who get no discount. While in the individual-
contribution-based algorithm, the differences in the allocated
discounts for passengers are small. When we change the
parameter λ, all passengers will get certain discounts.

Also, we show the variance of the additional expense in
Definition 1 in Fig. 10 (a). We find that the individual-
loss-based algorithm always achieves the minimum variance
value while the individual-contribution-based algorithm gets
the maximum variance value. When we increase the number
of passengers and drivers, the variance values of all algorithms
will decrease. This is because the global matching result
will get better when more passengers and drivers join. These
simulations are consistent with our theoretical analysis. On the
other hand, we also evaluate the discount allocation for each
driver in Fig. 10 (b). Since the true locations of passengers are
not invisible to drivers, only the individual-contribution-based
algorithm can be applied for drivers. We thus find that the
allocated discount values for each passenger change a little.

VII. CONCLUSION
In this paper, we introduce a privacy-preserving order

dispatch system for ride-hailing services. Different from the
previous approaches that let passengers choose the desired
drivers, we investigate the approach that lets the service
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provider match passengers and drivers in a centralized way.
Our approach can not only prevent the location inference
attacks introduced in [11], but also avoid the large commu-
nication overhead introduced by encryption. Based on our
approach, we propose to maximize the social welfare (or
minimize the overall pick-up distance) of the matching. Under
the privacy requirement Si, we show that the overall pick-
up distance of our matching result is upper bounded by
OPT +

√
2
∑

pi∈P
√
Si, while the strong privacy defined in

[11] is kept. In addition, we introduce three discount allocation
schemes to make up for the loss of all individuals caused by
global matching. Experiments on both synthetic and real-world
datasets show the efficiency of our scheme.
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