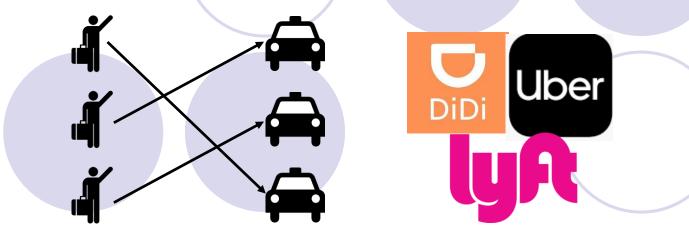
Optimizing Order Dispatch for Ride-sharing Systems

Yubin Duan , Ning Wang, and Jie Wu Dept. of Computer and Info. Sciences Temple University, USA


Road Map

- Introduction
- Problem Formulation
- Algorithm Design
- Experiment
- Summary

1. Introduction

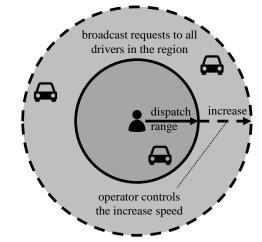
- Order dispatch in ride-sharing systems
 - passenger: send pickup locations to service provider
 - driver: share real-time locations
 - service provider (SP): dispatch passengers to drivers

- Existing order dispatch scheme:
 - System-assigning: SP chooses a specific driver for each passenger
 - Driver-grabbing: SP broadcasts passenger locations to drivers

Motivation

Flaws of existing dispatch scheme:

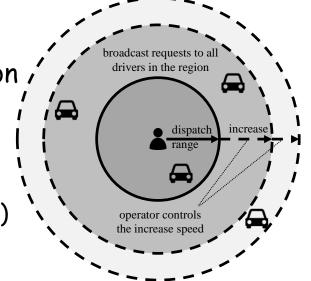
- System-assigning:
 - driver preferences ^[1] are ignored may increase the rejection rate
- Driver-grabbing:
 - "low-value" orders might take a long time to be accepted
- Combining these two approaches
 - Iteratively enlarge the broadcast region
 - Adaptively set increase ratio based on
 - driver density



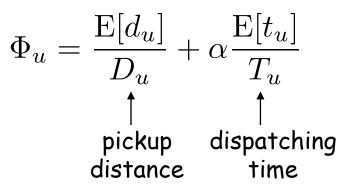
driver preference (accepting possibility)

Motivation

Flaws of existing dispatch scheme:

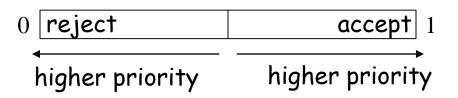

- System-assigning:
 - driver preferences are ignored may increase the rejection rate
- Driver-grabbing:
 - "low-value" orders might take a long time to be accepted
- Combining these two approaches
 - Iteratively enlarge the broadcast region
 - Adaptively set increase ratio based on
 - driver density
 - driver preference (accepting possibility)

Motivation


Flaws of existing dispatch scheme:

- System-assigning:
 - driver preferences are ignored may increase the rejection rate
- Driver-grabbing:
 - "low-value" orders might take a long time to be accepted
- Combining these two approaches
 - Iteratively enlarge the broadcast region ,
 - Adaptively set increase ratio based on
 - driver density
 - driver preference (accepting possibility)

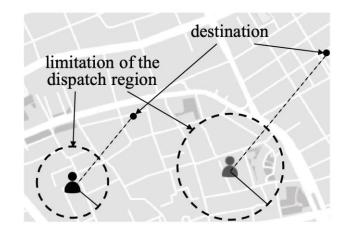
Objective


 Joint consider passenger's waiting time and driver's pickup distance

- Reducing pickup distance agrees with driver's interest
- Reducing dispatching time agrees with passenger's interest

2. Problem Formulation

- Pickup preference $p_{u,v}$
 - The probability that driver v accepts the order u
 - Can be learned from history data ^[1]
- Driver priority is modeled based on p
 - p=0.5: hesitate between accepting or rejecting (slower)
 - p=0 or 1: certainly reject or accept (faster)
 - Driver priority sorted based on value of |p-0.5|


[1] A taxi order dispatch model based on combinatorial optimization (KDD '17)

Probability Model

- Similar as the Geometric distribution
 - The accepting probability for each driver is different
 - The probability of an ordering being accepted $\prod_{i=1}^{n} (1-p_{u,i})p_{u,k}$
 - Decision sequence is sorted by driver priority

Expansion limitation

- Spatial: the largest region radius is proportional to trip length
- Temporal: num. of expansions is limited by the longest waiting time

Order Dispatch Problem

- Quantify the objective function
 - The utility function: $\Phi_u = \frac{\mathrm{E}[d_u]}{D_u} + \alpha \frac{\mathrm{E}[t_u]}{T_u}$

• Expected pickup distance: $E[d_u] = \sum_{k=1}^{|S_u|} dis(u, v'_k) \prod_{i=1}^{k-1} (1 - p_{u,i}) p_{u,k}$

 \circ Pickup distance limitation: D_u

Formulation

$$\begin{split} \min \sum \Phi_u \\ \sum_{k=1}^{|R_u|} r_{k,u} &\leq D_u, \ \forall u \in U \\ \Delta t |R_u| &\leq T_u, \ \forall u \in U \\ r_{k,u} &\in \{r | r = m\delta, m \in \mathbb{N}\}, \\ 1 &\leq k \leq |R_u|, \forall u \in U \end{split}$$

Minimize utility function

Dispatch region constraint

Waiting time constraint Step length constraint

3. Algorithm Design

Non-overlapping scenario

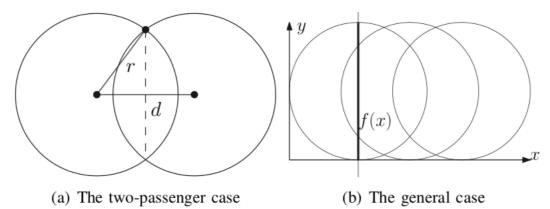
- Dispatch regions of different passengers would not overlap
- A Dynamic Programming Solution
 - state: f[i][j]
 - state transfer function

$$\begin{split} f[i][j] = \min_{1 \leq i \leq D, 1 \leq j \leq T} \{f[i-1][j-k] + \varphi(j-k,j), \forall 0 \leq k \leq j\} \\ \uparrow \qquad \uparrow \qquad \uparrow \\ \text{previous cost of} \\ \text{state expanding} \end{split}$$

• Time complexity: $O(M^2n^3)$, where $n = \max\{D, T\}$

Example

For non-overlapping scenario

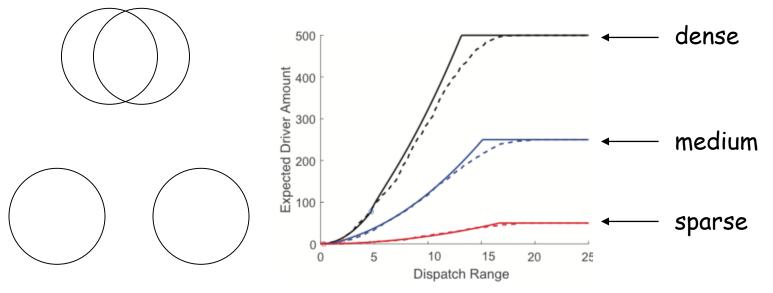

Driver #	1	2	3
Distance to user	0.5	1.5	2.5
Probability to accept the order	0.7	0.9	0.8

- one passenger request
- at most expand 3 times due to time limitation
- spatial step size is set as 1 unit

Expand ratio (# units/iter.)	Utility function value
1, 2, 0	0.486
1, 1, 1	0.490
2, 1, 0	0.651
3, 0, 0	

Overlapping scenario

- Overlapping scenario for multiple passengers
 - The impact of overlapping

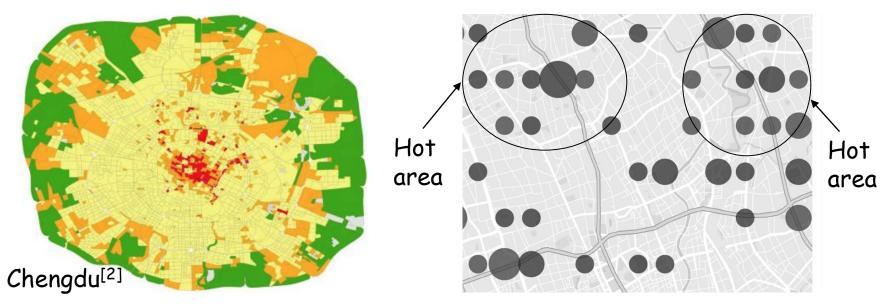


- Overlapping reduces driver density
 - size of overlapping can be calculated
 - for two passengers: $(2\pi \arccos \frac{d}{2r})r^2 + d\sqrt{r^2 \frac{d^2}{4}}$ (Geometric)
 - for more general case: $\int_{x}^{x+\Delta x} f(x) dx \approx \frac{\Delta x}{6} \left[f(x) + 4f\left(\frac{2x+\Delta x}{2}\right) + f(x+\Delta x) \right]$ (Calculus)

Impact of overlapping

Visualize the impact

- dash lines: overlapping case
- solid lines: non-overlapping case


more obvious on dense case

4. Experiment

The DIDI Dataset

Data Source	Didi's trajectory data in Chengdu City
Time Span	11/1/2016 - 11/30/2016
Number of orders	150,000
Average travel distance	8.43 km

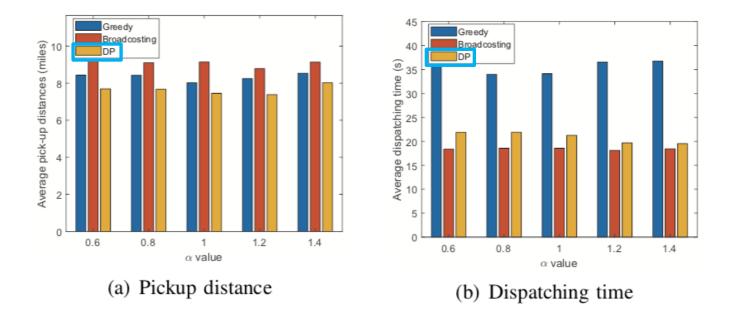
Pickup request distribution

[2] Identification of urban regions' functions in Chengdu, China, based on vehicle trajectory data (NCBI)

Experiment Setup

Comparison algorithms

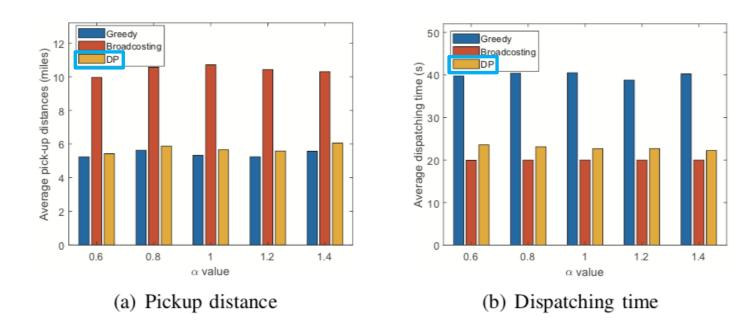
- Greedy: assigned orders to nearest driver
- Broadcasting: broadcast orders in the maximum region
- DP: our algorithm


Settings:

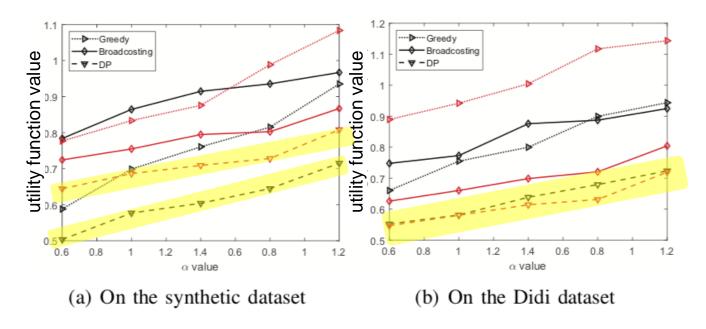
- The passenger requests are extracted from the Didi dataset
- Drivers' preferences is learned by the predictor
- $\circ \alpha$ in the utility function varies from 0.6 to 1.4.

Performance comparison

On sparse distribution dataset


- the ratio between the number of divers and the number of passengers is 5
- DP could balance pickup distance and time

Performance comparison


On dense distribution dataset

- the ratio between the number of divers and the number of passengers is 15
- Similarly, DP could balance pickup distance and time

Performance comparison

- Comparison on the utility function
 - In both synthetic and real-world dataset, DP could achieve the largest utility function value
 - Red lines: sparse distribution dataset
 - Black lines: dense distribution dataset

5. Summary

- Mixture order dispatch scheme
 - balancing drivers pickup distance and passengers waiting time
- Order dispatch problem
 - maximize the utility function
- Algorithmic solution
 - A dynamic programming algorithm for non-overlapping case
 - Investigate the impact of overlapping
- Experiments on synthetic and real-world dataset
 - Evaluate the performance in terms of the utility function value

Thank you Q & A

