
Optimizing Order Dispatch for Ride-sharing
Systems

Yubin Duan∗, Ning Wang† and Jie Wu∗
∗Department of Computer and Information Sciences, Temple University,Philadelphia, USA

† Department of Computer Science, Rowan University, Glassboro, USA
Email: yubin.duan@temple.edu, wangn@rowan.edu, jiewu@temple.edu

Abstract—Ride-sharing companies such as Didi and Uber have
served billions of passenger requests from all over the world. The
efficiency of the ride-sharing is highly depended on the order
dispatch system which assigns passenger requests to idle drivers.
However, designing such a dispatch system is challenging because
of the spatial-temporal dynamic of passenger requests, and the
trade-off between the benefits for passengers and drivers. Existing
order dispatch systems use either a system-assigning approach
or a driver-grabbing approach. However, either approach has its
own flaws. In this paper, we propose to combine the two existing
approaches and jointly considers both passengers’ and drivers’
interest. In our approach, a passenger request is broadcast to
the drivers in a dispatch region chosen by the system. The
size of the dispatch region could iteratively increase until the
request is accepted. We formulate an optimization problem to
determine the increase speed of the dispatch region. Drivers’
idle driving distances and passengers’ waiting time are jointly
considered. We propose a dynamic programming algorithm to
optimally solve the increase ratio of the size of the dispatch region
for a case that different dispatch regions are not overlapped.
We further investigate the overlapped case and modify the
dynamic programming algorithm correspondingly. We provide a
discussion on the effect of the overlapping in a spatial case, where
the driver and passenger locations are uniformly distributed.
Experiments are conducted based on the synthetic dataset and the
real-world dataset from Didi Inc. Results show that our approach
can effectively reduce the expected driver pickup distance and
keep the dispatching time short, which balances both passengers’
and drivers’ interests.

Index Terms—dynamic programming, order dispatch, ride
sharing, urban computing.

I. INTRODUCTION

Nowadays, ride-sharing companies such as Uber, Lyft, or
Didi have rapidly developed worldwide. A report [1] shows
that the monthly number of Uber users around the world
is forecasted to reach 100 million. With a large number of
users, one critical challenge to these companies occurs in
the order dispatch. Order dispatch is the process of matching
passengers with drivers. By leveraging mobile networks and
global positioning systems, the Service Provider (SP) can
gather the locations of passengers and drivers, and therefore
has a potential ability to optimize matching in a centralized
way. An efficient dispatch scheme can not only increase
passenger and driver satisfaction, but also raise the revenue
of SPs. Therefore, optimizing the order dispatch system is an
important problem for SPs.

�������	

����

��������

��������
��������

�	�
��������
�����

���������
��������
��

���
�������
��
�	�
�����

t = Δt

t = 2Δt

t = 0

Fig. 1. An illustration of our dispatch scheme.

To the best of our knowledge, two approaches are widely
used in dispatch scheme designing. One is system-assigning
approach and the other one is the driver-grabbing approach.

The system-assigning approach is widely used by Uber.
In this approach, the SP gathers passenger requests and then
assigns each request to a specific driver chosen by the system.
Specifically, the dispatch process contains three steps [2].
Firstly, the SP grades the match between passengers and
drivers based on their locations, history data, profile data,
etc. Then, the SP sets weights to optimization factors based
on identified user preferences. Finally, the SP can distribute
passenger requests to drivers based on optimization scores.
Each driver is informed with the pickup location, and the
rating of the assigned passenger. The information about order
values, such as destinations and travel lengths, would be
blocked from drivers. Based on this information, each driver
has approximately 20s to decide whether to accept the order.
If the driver rejects, the order would be assigned to the next
driver chosen by SP. The system-assigning approach tends
to benefit passengers. Considering that it is passengers who
directly pay SP, the SP usually weighs the optimization factor
based on a passenger’s preference. In contrast, the interests of
drivers are usually ignored. Therefore, the system-assigning
approach tends to benefit passengers and might underestimate
the importance of drivers.

The driver-grabbing approach was implemented in Didi. In
this approach, the SP broadcasts passenger requests (including
their pickup locations, ratings, and destinations) and their

978-1-7281-1856-7/19/$31.00 ©2019 IEEE

ratings to nearby drivers, and lets the drivers make decisions.
Drivers need to send back their decisions to SP for confir-
mation. It is possible that several drivers are interested in the
same request. In this case, the first driver who sends a positive
response (i.e. accepts the request) to the SP wins the order.
In this approach, drivers tend to make decisions that benefit
them the most. Therefore, the driver-grabbing approach brings
more benefits to drivers.

Both the system-assigning and driver-grabbing approaches
have weaknesses. In the system-assigning approach, driver
preferences are ignored. Consequently, drivers may be not
satisfied with the requests assigned to them, which could
increase their rejection rate. Also, if a driver rejects an order,
the corresponding passenger needs to wait for another driver’s
decision, which increases the waiting time for the passenger.
In the driver-grabbing approach, drivers can simultaneously
evaluate their interest in a request. On average, the waiting
time for passengers might be reduced. However, some “low-
value” requests might take a long time to be accepted. In
addition, passengers may be not satisfied with the drivers
assigned to them. For example, a driver might be relatively far
from the passenger. Therefore, we propose to combine these
two approaches and avoid these shortages.

In this paper, we propose an order dispatch scheme that
takes advantage of both approaches. After gathering location
information from passengers and drivers, the SP first chooses
a set of drivers and broadcasts passenger requests to these
drivers. Each request contains a pickup location and the rating
of the passenger. Information related to the order value is
blocked. In this way, multiple drivers can evaluate a request
simultaneously, which helps to reduce passenger waiting time.
If there is no driver who accepts the order, the system picks
another set of drivers and broadcasts the request. This process
repeats until the request is accepted by a driver or there are
no more available drivers. In our scheme, the driver set is
determined based on the distance between the drivers and
the pickup location of the passenger. As shown in Fig. 1, all
drivers in a circle region make up a driver set. The dispatch
range is used to control the size of the circle (also the size
of the driver set), and it could iteratively increase until the
request is accepted by a driver.

A problem arises in our dispatch scheme when determining
the size of the dispatch range. If the initial dispatch range is
large, then there will be more drivers who can receive the
request information. It increases the probability of the request
being accepted and reduces the waiting time for passengers.
However, the request might be accepted by the driver who
is relatively far from the passenger. It increases the pickup
distance between the passenger and the driver. Therefore,
there is a trade-off between pickup distance and acceptance
probability (or passenger waiting time). We propose a dynamic
programming algorithm to adaptively adjust the size of the
dispatch range.

Our contributions can be summarized as follows:
• We propose an order dispatch scheme for ride-sharing

systems, which combines existing dispatch models and

TABLE I
KEY NOTATIONS

Notations Description
U, |U | = N The passenger set, and its cardinality is N

V, |V | = M The driver set, and its cardinality is M

pu,v The pickup probability of driver v to passenger u
Φ The utility function
ϕ The changes of the utility function
d, D The pickup distance and its limitation
t, T The dispatching time and its limitation
α The adjust parameter in the utility function
dis(·, ·) The distance function

jointly considers benefits for drivers and passengers.
• We observe a trade-off between the pickup distance and

passenger awaiting time. We propose to jointly optimize
these factors and introduce an utility function.

• We first investigate a case in which different dispatch
regions would not overlap, and propose an dynamic
programming algorithm to optimize the utility function.

• We further consider the overlapping case, and modify
the dynamic programming algorithm. In addition, we
investigate the effect of overlapping.

The remainder of the paper is organized as follows. Section
II introduces the notations and model used for our dispatch
scheme. Section III describes our dynamic programming so-
lution for the non-overlapping scenario. Section IV extends our
solution to the overlapping scenario. Section V illustrates the
experiment details. Section VI reviews the existing order dis-
patch schemes and how they are different from our approach.
Finally, Section VII concludes the paper.

II. MODEL

A. Overview of our dispatch scheme

In our order dispatch scheme, the Service Provider (SP)
continuously gathers passenger request information and avail-
able drivers’ locations. In our model, the passenger (or user)
set is denoted as U = {ui | 1 ≤ i ≤ N}, where N is the
total number of passengers. We use V to denote the set of
drivers and V = {vj | 1 ≤ j ≤ M}, where M is the
number of available drivers. The pickup location requested
by ui is denoted as li and the corresponding destination is
denoted as l′i. The location of the driver vj when he/she
accepts the order is denoted as oj . In addition, we define
a distance function dis(·, ·) : R

2 × R
2 → R that maps a

tuple containing two locations into a real number representing
the geometric distance between the locations. For example,
dis(oj , li) represents the distance between a driver’s location
oj and a user’s pickup location li. The distance between user
ui and driver vj is denoted by dij = dis(ui, vj).

After acquiring location information, the SP starts the order
dispatch process. As a combination of system-assigning and
driver-grabbing approaches, the SP chooses a set of drivers
and broadcast passenger requests to these drivers. In this
way, multiple drivers can evaluate a request based on their

preferences at the same time. It also helps to reduce passenger
waiting time. Therefore, it benefits both driver and passenger
interests. The driver set is determined based on the distances
between drivers and the passenger’s pickup location. The
distance is denoted as dispatch range and the corresponding
circle area is denoted as dispatch region. If the request is
not accepted by any driver within a time interval Δt, the
system chooses another set of drivers to broadcast the request.
This process is denoted as dispatch region expansion. The
expansion repeats until the request is accepted by a driver
or temporal/spatial limitation is reached. As shown in Fig.
2, SP sets a limitation Du for passenger u’s dispatch region
to avoid relatively long pickup distances. Specifically, the
limitation Du is proportional to the passenger’s travel distance
with a factor c set by SP. In addition, the duration of the
order dispatch process should not exceed the limitation T ,
considering passengers have limited patience.

Different from the driver-grabbing approach, information re-
lated to order values such as passenger destinations is blocked
to drivers. This is to prevent cases in which drivers only
choose high-value orders. Although drivers cannot acquire a
passenger’s intended destination, they can set a service range
(e.g. within 10 miles or 20 miles far from current locations).
This is used to protect driver interests, considering that some
drivers may only interested in short-distance orders.

Notice that even though the order value related information
is blocked from drivers, they will still have different prefer-
ences for passenger request. For example, some drivers might
prefer to pickup passengers at their familiar areas, considering
it is easier to find pickup locations. Driver preferences are
modeled as possibilities of accepting passenger requests.

Formally, the driver v’s pickup preference on request from
u is defined as follows:

Definition 1 (Pickup preference): The driver v’s pickup
preference toward u is defined as the possibility that v will
accept the request from passenger u. The probability indicates
the driver v’s interest toward passenger u’s order.

The probability can be learned from historical data by linear
regression [3]:

pu,v = p(y = 1|xu,v)

where xvu denotes the features that are used in the prediction
and y denotes whether accept the order. More details can be
found in [3].

B. Problem formulation
The problem arises when the SP ties to determine the size

of dispatch region and its expansion speed. On one hand, if
the expansion speed is too fast, then a driver who is far from
a passenger may get the order. The expected pickup distance
(or the driver’s idle distance) increases, which decreases the
efficiency of the ride-sharing system. On the other hand, if the
expansion speed is too slow, then very few drivers are informed
in each round of expansion. It might take a long time before
a request is accepted. Therefore, there is a trade-off between
the driver’s idle driving distance and the passenger’s waiting
time.

����������	�
	���	
�������	������

����������

Fig. 2. An illustration of the limitation of dispatch region.

We propose to jointly optimize the idle driving distance and
waiting time, and introduce a utility function to quantify the
joint benefit.

Definition 2 (Utility function): The cost of dispatching the
order for passenger u is quantified by a utility function, which
is defined as follows

Φu =

E[du]

Du
+ α

E[tu]

Tu
=

TuE[du] + αDuE[tu]

DuTu
(1)

where the first term is the ratio between expected pickup
distances for drivers E[du] and the maximum pickup distance
Du. It represents driver’s idle driving distances. The second
term is the ratio between dispatch time tu and user’s maximum
waiting time Tu, which represents passenger’s waiting time. α
is the parameter used to adjust the weights between two parts.

For simplicity, we introduce a notation ϕ(i, j) to denote the
changes of the utility function when expanding the region from
i · δ to j · δ in radius. To calculate the expected distance, we
define a default sequence of drivers to make a decision when
they receive a user’s order at the same time. By default, we
assume the driver with the higher pickup probability makes a
decision first. This is based on the assumption that the driver
with the higher pickup probability also has higher interest in
the order, and is therefore more likely to make decisions faster.

Let rk,u denote the increase value of u’s dispatch range in
the k-th expansion. The dispatch range after k expansions is∑k

i=1 rk,u. The value of E[du] and E[tu] are determined by
the choices of rk,u. Our problem is to find out a set of values
for rk,u such that the utility function is maximized. Formally,
the problem can be formulated as follows:

min
∑
u

Φu

|Ru|∑
k=1

rk,u ≤ Du, ∀u ∈ U (2)

Δt|Ru| ≤ Tu, ∀u ∈ U (3)
rk,u∈{r|r=mδ,m∈N}, 1≤k≤|Ru|,∀u∈U (4)

The objection is to minimize the overall utility function∑
u Φu. Eq. (2) is the constraint of the maximum dispatch

region, i.e, the dispatch range after k expansions should not
exceed Du. Eq. (3) is the constraint on temporal domain,
which indicates that the expansion process should be finished

(0.8, 2.5km)

(0.9, 1.5km)(0.7, 0.5km)

User

Driver

(a) The non-overlapping case (b) The overlapping case

Fig. 3. The non-overlapping case and the overlapping case.

within time Tu. Eq. (4) is the discrete constraint, which
indicates that the spatial step length is δ.

III. THE NON-OVERLAPPING SCENARIO

We first consider a simple case in which the passengers’
maximum dispatch regions do not overlap. In this case, we can
focus on the increase ratio of the dispatch region for a single
passenger. We propose a dynamic programming solution for
increase ratio calculation.

First, we introduce how to calculate E(du). Specifically,
rk,u determines drivers’ order of making decisions on the
request u. If multiple drivers are informed at the same time,
the sequence is assigned based on the driver’s certainty about
his decision. The certainty is quantified by |p − 0.5|, where
p is the probability of the driver accepting the order. The
meaning behind the assumption is that a driver with p = 0.5
is more likely to hesitate and is slower to make a decision,
while the driver with p ≈ 1 (or p ≈ 0) is certain to accept (or
reject) the order. Drivers who are informed earlier can make
decisions first. We use Su to denote the sequence of drivers for
passenger u. For example, if the three drivers listed in Table
II are informed of the request at the same time, the sequence
would be Su = {v2, v3, v1}. It represents that the driver v2
first decides whether to pickup u, then the driver v3 can make
a choose, and at last, v1 can decide. For simplification, let v′iu
denote the i-th driver in Su. In our example, v′1 = v2, v

′
2 = v3,

and v′3 = v1. Their corresponding preference on u are denoted
as pu,i. Then the value of E[du] can be calculated by the
following equation:

E[du] =

|Su|∑
k=1

dis(u, v′k)
k−1∏
i=1

(1− pu,i)pu,k

We propose a dynamic programming approach to optimally
solve the discretized single user’s dispatch problem. Firstly, the
state of the DP can be defined as f [i][j], which is the optimal
utility value that can be achieved if the temporal limitation is
i ·Δt and the spatial limitation is j · δ. For example, f [6][3]
is the optimal utility value if the dispatch region can expand
6 times and the maximum radius does not exceed 3δ, where
δ represents the granularity of the discretized spatial domain.
The state transfer function is defined as:

f [i][j]= min

1≤i≤D,1≤j≤T
{f [i−1][j−k]+ϕ(j−k, j), ∀0≤k≤j} (5)

Algorithm 1 The Dynamic Programming Solution.
Input: Single user request ui, available driver set V , driv-

er’s pickup probability set P , maximum dispatch time
T , expansion interval Δt, maximum dispatch range D,
expansion step δ

Output: Dispatch ration increase for each time-slot
1: T ← T/Δt
2: D ← D/δ
3: f ← (T+1)-by-(D+1) zero matrix
4: for 0 ≤ i ≤ T do
5: for 1 ≤ j ≤ D do
6: f [i][j] ← +∞
7: for 1 ≤ i ≤ T do
8: for 1 ≤ j ≤ D do
9: for 1 ≤ k ≤ j do

10: f [i][j]=min{f [i−1][j−k]+ϕ(j−k, j), f [i][j]}
11: return f [T][D]

TABLE II
DRIVER INFORMATION

Driver # 1 2 3
Distance to user 0.5 1.5 2.5
Probability to accept the order 0.7 0.9 0.8

We use the example shown in Fig. 3(a) to illustrate the
procedure for the proposed solution. There are 3 drivers in
the figure. The 2-tuples on the figure indicate the probability
of the driver accepting the order (which can be learned form
historical data) and the distance to the user’s pickup location.
This information is summarized in Table 1. The maximum
dispatch range is 3km in radius and the smallest increase step
is 1km in radius. The initial dispatch range is 0km in radius,
and the range can expand once for each Δt = 20s. The user’s
maximum waiting time is 2 min, which means the number
of expansions is limited by T =2min/20s = 6 in the temporal
domain. In the example, α is set to 1, which means the driver’s
interests and user’s interests are equally important.

Based on the example, we illustrate how to calculate the
utility function. Assume we choose to directly expand the
dispatch range from 0 to 3km. In this case, the user’s order
is broadcast to drivers 1, 2, and 3 simultaneously during
the first time interval. The expected driver pickup distance
E[d] = 0.9·1.5+(1−0.9)0.8·2.5+(1−0.9)(1−0.8)0.7·0.5 =

1.557. The first term in the equation means driver 2 has a
0.9 probability to win the order. The second term refers to
the expected pickup distance of driver 3, where (1 − 0.9)
represents driver 2 rejecting the order and 0.8 represents
driver 3 accepting the order. The third term represents driver
1. The maximum pickup distance D is 3. In addition, in
this example, we only expand the region once. Therefore
E[t] = (1 − (1−0.9)(1−0.8)(1−0.7)) · 1 = 0.994, where
(1−(1−0.9)(1−0.8)(1−0.7)) is the probability of that the order
is accepted. The probability of that the order is rejected by all
drivers is constant for every possible dispatch. Therefore, it

d

r

(a) The two-passenger case

f (x)

x

y

(b) The general case

Fig. 4. Calculating the expected number of drivers.

is not included in the utility function. After plugging these
values into the utility function and set α = 1, we then have
Φ = 1.557/3 + 1 · 0.994/6 = 0.685.

By plugging those values into state transfer equations and
setting alpha = 1, we can conclude that the optimal strategy
is first expanding the radius of the dispatch range by 1km,
then expanding the radius again by 2km, and then the range
reaches the spatial limitation. In total, there are 2 expansions
and the overall utility function is 0.486. As an examination,
the values of the overall utility function of other expansion
plans are tested. If we expand the radius by 1km 3 times, the
utility value is 0.490. If we first expand the radius by 2km
and then by 1km, then the utility value is 0.651. Therefore, it
can be examined that the DP generates the optimal expansion
plan.

The proposed dynamic programming approach can adap-
tively adjust the expansion ratio based on density distribution
of drivers. Our algorithm provides the dispatch system with
the ability to address changing environments and varying user
densities. In areas where the driver distribution is dense, the
passenger request is more likely to be accepted by a driver
even if the dispatch region grows slowly. In contrast, in the
areas where the number of drivers is relatively small, the
dispatch region should grow more aggressively. Otherwise,
the request may remain unanswered after several rounds of
expansions. Our DP algorithm can adjust the growth rate
adaptively based on investigating the trade-off between the
expected pickup distance and the probability of the order being
accepted.

Theorem 1: The time complexity of the dynamic program-
ming is O(M2n3

), where n = max{D,T}.
Proof: The state function f [i][j] has two dimensions, which
represent temporal and spatial boundaries of dispatch regions.
In the state transfer function, the spatial state has to be
traversed once in each round of expansion. The reason for this
is that the increase ratio of the dispatch region is unlimited.
Therefore, at most, O(n3

) rounds are needed to finish the DP
process. In addition, in each round, the calculation of E(d) and
E(t) needs at most O(M2

) times of adds or multiplications.
Therefore, the overall time complexity is O(M2n3

) �

IV. THE OVERLAPPING SCENARIO

In this section, we discuss a more realistic scenario in
which the maximum dispatch regions of passengers may
be overlapped with each other, which brings challenges in

pickup distance estimation. We propose to extend the dynamic
programming solution and evaluate its differences with the
non-overlapping case.

A. The extension of dynamic programming

In this scenario, the dispatch regions of different passengers
could be overlapped as shown in Fig.3(b). As shown in
Fig.3(b), the dispatch regions of two users are overlapped.
The 3 drivers in the overlapped area belong to both dis-
patch regions of two users. For simplification, we propose to
synchronize the expansions of dispatch regions. Specifically,
after the system gathers enough passenger requests, it starts
the expansion process for these requests simultaneously. In
addition, expansions of all requests share the same frequency
and increase rate, which aims to reduce the number of decision
parameters. The remaining analysis in this section is based on
these assumptions.

A challenge arises when calculating drivers’ preferences
for each request. If a driver is located in the intersection
of several dispatch regions, the driver can receive more than
one request at the same time. We denote these requests
received by the driver as potential requests. The driver can
accept at most one potential request. Although the driver’s
preference toward each potential request is known, it is hard
to quantify the joint possibility distribution w.r.t the driver’s
preference for all potential requests. For example, assume that
there are two potential requests, and the driver has a p1,
and p2 probability to accept each corresponding request if
it is evaluated independently. Calculating the possibility of
accepting each request is not simple. The driver’s decisions
on potential requests are not mutually independent since the
driver can accept at most one request.

Before extending the dynamic programming solution, we
first deal with the challenge of the preference estimation.
The reason that we cannot assume the driver’s decisions
are independent is that the driver could at most accept one
request. The probability of rejecting all request should be
the same as the case where independence holds. Under this
assumption, in the example given above, the probability of
rejecting both requests is (1 − p1)(1 − p2). It is reasonable
since the driver’s decision to reject all requests is not affected
by the constraint that at most one request can be chosen.
As for the possibility of accepting each potential request, we
assume they are weighted based on the driver’s independent
preferences. We use the aforementioned example to illustrate
the idea. In the example, the probability of accepting a request
is p+ = 1 − (1 − p1)(1 − p2). We assume the probability
of accepting the first request is p1/(p1 + p2) · p+ and the
probability of accepting the first request is p2/(p1 + p2) · p+.
In this way, the sum of the probabilities of all events (accepting
the first request, accepting the second request, and rejecting
all) is 1. Based on this model, the drivers’ preferences for each
request can be calculated with linear time complexity.

After establishing the probability model, the DP solution
can be extended to the case where overlapping is considered.
The skeleton of the DP remains the same, the difference is

Algorithm 2 The Extended DP Solution.
Input: Single user request ui, available driver set V , driv-

er’s pickup probability set P , maximum dispatch time W ,
expansion internal length Δt, maximum dispatch range D

Output: Dispatch ration increase for each time-slot
1: Similar as Algorithm 1, except the line 10:
2: f [i][j]=min{f [i−1][j−k]+

∑
u ϕu(j−k, j), f [i][j]}

that the calculation of the ϕ function is modified to take
multiple passengers into account. Let ϕu denote the utility
function of passenger u. Then, we have ϕ =

∑
u ϕu. With

this modification, the DP could be used for the overlapping
case.

B. Evaluating the affect of overlapping

In the overlapping case, the drivers in the dispatch region
might receive multiple passenger requests, and the probability
of accepting a specific request is reduced compared to the
non-overlapping case. We evaluate the gap between these two
cases under an ideal distribution. In the evaluation, we assume
locations of drivers and passengers are uniformly distributed
and drivers and passengers are homogeneous. Specifically,
drivers have the same preferences for passengers, i.e. share the
same acceptance probability. In this spatial case, the difference
between the two cases can be revealed by the average number
of drivers in each dispatch region.

Considering that drivers are uniformly distributed, the num-
ber of drivers is proportional to the area of the dispatch region.
For the non-overlapping case, the dispatch region is a circle
and the area of the circle can be easily calculated. For the
overlapping case, the dispatch region is the union of circles.
Fig. 4 shows the overlapping of two passengers. For this two-
passenger overlapping case, the area of the dispatch region has
a closed form expression. Formally, let d denote the distance
between two passengers and let r denote the radius of each
passenger’s dispatch circle. Then, the size of the union of these
two circles is:

S = (2π − arccos

d

2r
)r2 + d

√
r2 − d2

4

(6)

The number of drivers in the region is proportional to the
region size. To examine the equation, we compare the numer-
ical results with the Monte Carlo simulation [4]. The Monte
Carlo simulation repeats random sampling to obtain numerical
results. The simulation results validates the equation.

From the equation, we can find out that S = O(r2), which
is the same order as the area of a circle. This result indicates
that the overlapping will not affect the order of the number of
drivers in the dispatch region, for the two-passenger case.

If there are more than two passengers, it is hard to have a
closed form expression on the combined area of overlapping
dispatch regions. Therefore, we use the adaptive Simpson’s
method [5] to calculate the numerical integration. To use the
numerical method, we could build a coordinate system such

� � �� ���� ��
���	
�

�

���

���

���

��

���

��
���

��
��
�
��

	�

Fig. 5. The non-overlapping case (in solid lines) vs. the overlapping case (in
dashed lines).

that the dispatch region lies in the first quadrant, as shown
in Fig. 4(b). Let function f(x0) denote the length of the
intersection between x = x0 and the dispatch region. Then, the
area of the dispatch region is R =

∫ +∞
−∞ f(x)dx. Although the

closed form expression of R is hard to obtain, we could use
the Simpson’s rule [6] to calculate the numerical integration.
The Simpson’s rule can be expressed as following:∫ x+Δx

x

f(x)dx≈Δx

6

[
f(x)+4f

(
2x+Δx

2

)
+f(x+Δx)

]
(7)

It can be used to estimate the numerical integration value
when Δx is small. The adaptive Simpson’s method [5] is based
on the same idea, and could adaptively set the value of Δx
for speedup.

To evaluate the effect of overlapping, we compare the
number of drivers covered in the dispatch region. In Fig. 5, we
use solid lines to indicate the number of drivers in the dispatch
region when there is no overlapping, and use dashed lines
to represent the number of drivers when overlapping occurs.
The line color is used to indicate the density of drivers. The
black, blue, and red lines represent dense, medium, and sparse
driver distributions, respectively. We set the maximum number
of drivers in the evaluation. Therefore, all lines are eventually
stable. From the figure, we can find out that the overlapping
reduces the number of drivers covered in the dispatch region,
while the effect is limited. The evolution of the number of
drivers in both overlapping and non-overlapping cases has the
same trend and increase order.

In summary, we discussed the multiple-passenger case (or
the overlapping case) in this section, and proposed a method
to extend the dynamic programming solution to this case. In
addition, the effect of overlapping is evaluated in a spatial
case, where the driver locations and passenger requests are
uniformly distributed. By analyzing the expected number of
drivers in the dispatch region, we find out that the overlapping
will not change the order of drivers covered in the dispatch
region.

V. EXPERIMENT

A. Pickup probability prediction

Predicting the probability that a driver accepts each request
is crucial to our scheme. It provides the basis for calculating

TABLE III
THE DIDI DATASET

Data Source Didi’s trajectory data in Chengdu City
Time Span 11/1/2016 - 11/30/2016

Number of orders 150,000
Average travel distance 8.43 km

our utility function. Zhang et. al have studied this prediction
problem in [3]. They propose to use either linear regression
or a gradient boosted decision tree to build the predictor. Both
these two models are attempted in our experiment. However,
we use fewer features to train our predictor since some factors
they used are not contained in our dataset.

Specifically, the features we used are listed as follows:
Spatial domain features: the driver’s pickup distance, the

pickup location’s POI (business area, airport, shopping mall,
etc.), number of drivers and requests in nearby regions, and a
driver’s historical order acceptance rate in the area.

Temporal domain features: time of a day, day of a week,
the driver’s recent order acceptance rate, and the driver’s long-
term order acceptance rate.

B. Dataset setup

The dataset we used in our experiment is obtained from
Didi’s GAIA open data program [7]. It contains the trajectory
data and passenger request data in Chengdu city from Nov.
1 - Nov. 30, 2016. We extract the trajectory and request data
of one day to conduct our experiment. The original dataset
is large, and we extract partial records from the dataset to
build the Didi dataset. The statistics of the data used in the
experiment are shown in Table III.

Originally, the dataset did not contain information about
each driver’s rejected requests. However, it is importan-
t ground-truth data used for the predictor. To reveal such
information, we build a simulator based on the given dataset.
Besides, the maximum acceptable dispatching time is not in-
cluded in the dataset. We simply assume that each passenger’s
maximum acceptable dispatching time is proportional to the
travel time that is recorded in the dataset. In the experiment,
we assume the rate is 0.1. For example, if a passenger’s travel
time is 30 min, then we assume the maximum acceptable
dispatching time of the corresponding passenger is 3 min.

In the simulator, we assume each passenger’s order is
broadcasted to all idle drivers in the nearby regions. The
nearby region used in our experiment consists of the locations
within a 5km range of the request’s origin location. Since
both passenger requests and driver states are contained in
the dataset, the information about the requests rejected by
a driver can be simulated. Using a simulator to reveal this
information is not as precise as using real-world data, so this
information is only used to feed the predictor. It can be used
to demonstrate the time complexity and optimality of our
proposed scheme. All companion algorithms are run on the
same dataset. Therefore, the performance companion results
are still meaningful. Besides the original dataset, to reduce the
density of the drivers, we also randomly choose some driver

locations from the Didi dataset. The chosen driver locations
form a sparse Didi dataset.

We also set up a synthetic dataset, where the locations of
passenger requests and drivers are uniformly distributed. In
the dataset, the distribution region of drivers and passenger
requests is 0 - 15 miles in both longitude and latitude. The
density of drivers in the dataset is controlled by the number
of drivers. In the dense and sparse datasets, the ratio between
the number of divers and the number of passengers are 15 and
5, respectively.

C. Experiment setup

Unlike directly assigning user requests to drivers or just
broadcasting the request to all nearby drivers, our scheme
combines these two approaches. To compare our scheme with
these approaches, we apply several comparison algorithms in
our experiment. To simulate the scheme that directly assigns
requests to drivers, we introduce a greedy approach.

In the greedy approach, the dispatch center simply sorts
drivers based on their distances to the passenger, and then
assigns requests to drivers following the distance sequence,
i.e., the nearer driver has a higher priority. Similarly, the driver
can choose whether to accept the order. The rejected request
is inserted to the request queue and would be assigned in the
following round.

In the broadcasting scheme, passenger requests are broad-
casted to all idle drivers in the nearby region. The order goes
to the first driver who gives a positive response to the request.

To compare these dispatch schemes, we build a test platfor-
m. In the platform, the passenger requests are extracted from
the Didi dataset. Drivers’ preferences for different requests are
modeled by the pickup probability learned by the predictor.
For assigning approaches, each driver has Δt time interval to
make a decision. If the driver does not respond to the request
in the given time interval, the order is treated as rejected by
default.

In each set of experiment, we vary the value of alpha from
0.6 to 1.4. As defined in Eq. (1), the α value adjusts the
importance between the pickup distance and the dispatching
time. When α = 1, these two factors share the same weight.

In our experiment, we compare different schemes on av-
erage driver pickup distance, average dispatching time and
average utility function value. The pickup distance is the
distance between each passenger’s location and the assigned
driver’s location. The dispatching time is the time interval
between a passenger starting a request and the request being
accepted. The utility value is calculated based on Eq. (1).

D. Results

Experiment results are shown in Fig. 6, Fig. 7, and Fig.
8. Each result shown is the average outcome of 50 repeated
experiments.

Results in Fig. 6 illustrate the comparison between pickup
distance and dispatching time, which represents the interest of
passengers and drivers correspondingly. From the results we
can determine that the greedy approach can reduce the pickup

��� ��� � ��� ��
������

�

�

�

�

��

��

��
��
�

��
��
��
��
��
��
 �
�	

��
 �
!�

���
 "

#����$
%������ ��	

�&

(a) Pickup distance

��� ��� � ��� ��
������

�

��

��

��

�

��

��
��
�

��
��
 �

��
�'

�	

�
���

��
!
"

#����$
%������ ��	

�&

(b) Dispatching time

Fig. 6. Performance comparison on the dense distribution dataset.

distance when comparing with the other two approaches.
However, the dispatching time is larger than those of other
algorithms. The reason is that the greedy approach first assigns
orders to nearest drivers, but ignores the pickup probability of
these drivers. In contrast, the broadcasting approach achieves
the smallest dispatching time, but its performance on pickup
distance is worse than others. It is because more drivers can
start grabbing orders once the passengers submit their requests.
These drivers can make decisions in parallel and therefore have
the same dispatching time, while the drivers nearby do not
have any priority. Our approach can balance the performance
with respect to pickup distance and dispatching time. It can
be shown more clearly by comparing the algorithm outcomes
on the utility value as shown in Fig. 8. In Fig. 7, we show
the comparison result on the sparse distribution dataset, where
the ratio between the number of drivers and the number of
passengers is reduced to 5. Comparing the result shown in
Fig. 6, we can find out that the pickup distances are increased
when dispatching with our DP scheme and the greedy scheme.
It is because the distance between the passenger and the
nearest driver is increased. The pickup distances calculated
with the broadcasting scheme remains, since the limitation of
the dispatch region is unchanged. Finally, we can also find out
that our DP scheme could balance the performance in terms
of pickup distance and dispatch time.

Fig. 8 shows the algorithm comparison results on the utility
function value. Fig. 8(a) shows the simulation results on the
synthetic dataset where the drivers are uniformly distributed.
Fig. 8(b) illustrates the simulation results on the Didi dataset.
In both figures, lines in black indicate the results of the dense
distribution dataset and lines in red indicates the results of the
sparse distribution dataset. From both cases, we can find out
that our DP scheme achieves the best performances, i,e, the
smallest utility values.

Through the experimental results, we can find out that our
scheme jointly considers the benefits of passengers and drivers.
When measuring the dispatch system performance in terms
of the utility function value, our DP algorithm achieves the
smallest utility value and outperforms other comparisons.

VI. RELATED WORK

Taxi or car-sharing dispatch schemes have been widely
studied from different perspectives [3, 8–15]. Some researches
start from the passengers’ perspective and aim to increase

��� ��� � ��� ��
������

�

�

�

�

��

��
��
�

��
��
��

��
��
��
 �
�	

��
 �
!�

���
 "

#����$
%������ ��	

�&

(a) Pickup distance

��� ��� � ��� ��
������

�

�

��

��

��

��

��

��

�

�

��
��
�

��
��
 �

��
�'

�	

�
���

��
!
"

#����$
%������ ��	

�&

(b) Dispatching time

Fig. 7. Performance comparison on the sparse distribution dataset.

��� ��� � ��� �� ��� ��� � ���
������

���

���

��(

���

��)

�

���

��
��
�

��
��
��
��
��
��
 �
�	

��
 �
!�

���
 "

#����$
%������ ��	

�&

(a) On the synthetic dataset

��� ��� � ��� �� ��� ��� � ���
������

���

���

��(

���

��)

�

���

���

��
��
�

��
��
��

��
��
��
 �
�	

��
 �
!�

���
 "

#����$
%������ ��	

�&

(b) On the Didi dataset

Fig. 8. Performance comparison in terms of the utility value.

their satisfaction, while some others focus on drivers’ interests,
and propose to help idle drivers to efficiently find potential
passengers. What’s more, schemes in [16] propose to jointly
consider the interests of both passengers and drivers.

Order dispatch schemes in [3, 8, 10] focus on optimizing
customers’ interests. Their dispatch scheme aims to increase
passengers’ satisfaction and minimize their waiting time. A-
mong them, [8, 10] propose to minimize a passenger’s waiting
time. [10] sequentially assigns a passenger’s request to the
nearest driver based on GPS data. [8] aims to globally mini-
mize the pickup distance. The dispatch scheme in [3] proposes
a HillClimbing algorithm to enhance the user’s experience by
maximizing the global success rate of passenger requests. [15]
also aims to improve user satisfaction; it pays more attention
to the platforms’ incomes by weighing each request by its
order value. The long-term gross merchandise volume of the
platfrom is maximized by their offline learning and online
matching approach.

In addition, schemes in [11–13] mainly consider drivers’
benefits. Their schemes guide idle drivers to find new passen-
gers. [11] aims to reduce drivers’ idle driving distance and
to maintain the quality of service. A receding horizon control
framework is proposed. [12] proposes a route recommendation
system for taxi drivers, and the goal is to maximize a driver’s
profit by reducing their driving time before finding a passen-
ger. [13] minimizes the distance to the anticipated passenger
through the Monte Carlo tree search. These schemes only
consider drivers’ benefits and ignores a passenger’s waiting
time. It may be worthwhile to dispatch a driver to pick up a
passenger who is not near to the driver but has waited for a
long time. Different from their dispatch schemes, our scheme
jointly considers the interests of both passengers and drivers.

Besides considering the benefit of either passengers or
drivers, [16] also proposes to jointly consider the interests of
two groups. [16] introduces an utility function that contains a
passenger’s waiting time and a driver’s idle drive distance to
quantify the joint benefit. The dispatch center has knowledge
of both idle driver locations and passenger requests. Based
on this information, a weighted bipartite graph between user
requests and drivers can be established. The utility function is
maximized based on the idea of Kuhn-Munkres algorithm [17].
However, their scheme assigns each passenger’s request to a
specific driver chosen by the algorithm. Our dispatch scheme
broadcasts each request to multiple drivers and the order goes
to the driver who accepts the request first. In our scheme, the
responding time for each request can be reduced since multiple
drivers can make their decisions simultaneously.

Other research topics are related to taxi/car sharing, in-
cluding passenger request demand prediction [18, 19], routing
scheme designs for carpooling [20–24], etc. The efficiency of
the order dispatch scheme may be further improved by taking
into account request locations and/or carpooling.

VII. CONCLUSION

In this paper, we focus on the order dispatch problem for
ride-sharing systems. The existing driver-grabbing approach
may lead to a high un-service ratio for low-profit orders.
The system-assigning approach may reduce the time efficiency
of the dispatching system, and increase passenger waiting
time. In this paper, we propose a new dispatch scheme to
overcome the flaws of the two existing approaches. The
passenger request is broadcast in the dispatch region, and the
size of dispatch region increases in each time slot. In the
scheme design, we consider to jointly optimize benefits of
passengers and drivers. To quantify the joint benefit, a utility
function is proposed. Based on the trade-off between time
efficiency and pickup distance, we first propose a dynamic
programming algorithm to optimize the utility function for the
non-overlapping case. For the overlapping case, we propose a
model to evaluate the preference of drivers in the overlapped
area, and then extend the DP solution. Experiments on a real-
world dataset show that our scheme can efficiently balance
the passenger’s waiting time for dispatching and the driver’s
pickup distance. Our DP algorithm outperforms comparison
algorithms in terms of utility function values.

ACKNOWLEDGEMENT

This research was supported in part by NSF grants CNS
1824440, CNS 1828363, CNS 1757533, CNS 1629746, CNS
1651947, and CNS 1564128.

REFERENCES

[1] Monthly number of uber’s active users worldwide from 2016
to 2018. [Online]. Available: https://www.statista.com/statistics/
833743/us-users-ride-sharing-services/

[2] M. Truong, D. Purdy, and R. Mawas, “Dispatch system for
matching drivers and users,” Jan. 12 2017, US Patent App.
14/793,593.

[3] L. Zhang, T. Hu, Y. Min, G. Wu, J. Zhang, P. Feng, P. Gong,
and J. Ye, “A taxi order dispatch model based on combinatorial
optimization,” in ACM SIGKDD, 2017, pp. 2151–2159.

[4] D. P. Kroese, T. Taimre, and Z. I. Botev, Handbook of monte
carlo methods. John Wiley & Sons, 2013, vol. 706.

[5] G. F. Kuncir, “Algorithm 103: Simpson’s rule integrator,” Com-
munications of the ACM, vol. 5, no. 6, p. 347, 1962.

[6] E. Süli and D. F. Mayers, An introduction to numerical analysis.
Cambridge university press, 2003.

[7] Data source: Didi chuxing gaia open dataset initiative. [Online].
Available: https://gaia.didichuxing.com

[8] K. T. Seow, N. H. Dang, and D. H. Lee, “A collaborative multi-
agent taxi-dispatch system,” IEEE Transactions on Automation
Science & Engineering, vol. 7, no. 3, pp. 607–616, 2010.

[9] Z. Liao, “Real-time taxi dispatching using global positioning
systems,” Communications of the ACM, vol. 46, no. 5, pp. pgs.
81–83, 2003.

[10] D.-H. Lee, H. Wang, R. L. Cheu, and S. H. Teo, “Taxi
dispatch system based on current demands and real-time traffic
conditions,” Transportation Research Record, vol. 1882, no. 1,
pp. 193–200, 2004.

[11] F. Miao, S. Han, S. Lin, J. A. Stankovic, D. Zhang, S. Munir,
H. Huang, T. He, and G. J. Pappas, “Taxi dispatch with real-
time sensing data in metropolitan areas: A receding horizon
control approach,” IEEE Transactions on Automation Science
and Engineering, vol. 13, no. 2, pp. 463–478, 2016.

[12] M. Qu, H. Zhu, J. Liu, G. Liu, and H. Xiong, “A cost-effective
recommender system for taxi drivers,” in ACM SIGKDD, 2014.

[13] N. Garg and S. Ranu, “Route recommendations for idle taxi
drivers: Find me the shortest route to a customer!” in ACM
SIGKDD, 2018, pp. 1425–1434.

[14] Y. Duan, J. Wu, and H. Zheng, “A greedy approach for carpool
scheduling optimisation in smart cities,” International Journal
of Parallel, Emergent and Distributed Systems, pp. 1–15, 2018.

[15] K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale
fleet management via multi-agent deep reinforcement learning,”
arXiv preprint arXiv:1802.06444, 2018.

[16] G. Gao, M. Xiao, and Z. Zhao, “Optimal multi-taxi dispatch for
mobile taxi-hailing systems,” in IEEE ICPP, 2016, pp. 294–303.

[17] J. Munkres, “Algorithms for the assignment and transportation
problems,” Journal of The Society for Industrial and Applied
Mathematics, vol. 5, no. 1, pp. 32–38, 1957.

[18] Y. Tong, Y. Chen, Z. Zhou, L. Chen, J. Wang, Q. Yang, J. Ye,
and W. Lv, “The simpler the better: A unified approach to
predicting original taxi demands based on large-scale online
platforms,” in ACM SIGKDD, 2017, pp. 1653–1662.

[19] L. Moreiramatias, J. Gama, M. Ferreira, J. Mendesmoreira, and
L. Damas, “Predicting taxipassenger demand using streaming
data,” IEEE Transactions on Intelligent Transportation Systems,
vol. 14, no. 3, pp. 1393–1402, 2013.

[20] S. Ma, Y. Zheng, and O. Wolfson, “Real-time city-scale taxi
ridesharing,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 27, no. 7, pp. 1782–1795, 2015.

[21] J. Alonsomora, S. Samaranayake, A. Wallar, E. Frazzoli, and
D. Rus, “On-demand high-capacity ride-sharing via dynamic
trip-vehicle assignment.” Proceedings of PNAS, vol. 114, no. 3,
pp. 462–467, 2017.

[22] I. Jindal, Z. Qin, X. Chen, M. Nokleby, and J. Ye, “Optimizing
taxi carpool policies via reinforcement learning and spatio-
temporal mining,” arXiv preprint arXiv:1811.04345, 2018.

[23] D. Zhang, T. He, Y. Liu, S. Lin, and J. A. Stankovic, “A
carpooling recommendation system for taxicab services,” IEEE
Transactions on Emerging Topics in Computing, vol. 2, no. 3,
pp. 254–266, 2014.

[24] Y. Duan, T. Mosharraf, J. Wu, and H. Zheng, “Optimizing
carpool scheduling algorithm through partition merging,” in
IEEE ICC, 2018, pp. 1–6.

