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1. Introduction
Rebalancing bike sharing systems (BSSs)

Underflow station: lack of bikes, users cannot rent bikes
Overflow station: full of bikes, users cannot return bikes

overflow

bike re-balancing

Existing rebalance scheme:
Truck-based approachl!l: hires trucks to transport bikes

User-based approach!®l: offers users monetary incentives

[1] Rebalancing bike sharing systems: A multi-source data smart optimization (KDD '16)
[2] Incentivizing users for balancing bike sharing systems (AAAI '15)



Motivation

Crowdsourcing-based approach

BSS operator posts rebalancing targets

Recruits workers to move bikes
Workers have their own sources and destinations
Workers not only receive rewards but also save their travel time
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Objective
Try to minimize the overall worker detour

A complex optimization problem in spatial & temporal domains

Spatial domain: detour distances are related with worker assignment
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Temporal domain: number of moved bikes is related with length of
look-ahead time period



2. Problem Formulation
Partition the complex problem

Spatial domain: worker assignment problem (WAP)

Temporal domain: configuration design problem (CDP)

; WAP decides worker
movement in each slice

1'% Time

BSS operator

J ey CDP decides rebalance frequency
and configuration (i.e. number of
bikes to move at each station)




Worker assignment problem (WAP)
Modeled by a flow gr'aph
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Hardness of the WAP

NP-hard in general weighted graphs
Reduced from the weighted 3D matching problem

Each assignment is equivalent to choosing a (worker, rent
station, return station) combination
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Configuration design problem (CDP)

Modeled by discretized time series
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3. Algorithm Design for WAP

Two-Round Matching (TRM) algorithm

first round: matching underflow and overflow stations
second round: matching workers and paired stations

A D>

£ A DI

n P3
overflow underflow workers paired
stations  stations stations



Tllustration of the TRM
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Performance analysis

The TRM is a 3-approximation algorithm

Proof sketch

Optimality of the two rounds of matching:
Z dis(n,p) < Z dis(n,p™)
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Triangle inequality:
dis(p,d;)) <dis(p,p*)+dis(p*,d})
dis(p,p*) <dis(n,p)+dis(n,p*)

Combining:
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4. Algorithm Design for CDP

k-slice Greedy Algorithm (kGA)

k is chosen by the BSS operator
Maybe infeasible when k is large

Greedily Look Ahead (GLA)
Insight: let BSS live as long as possible

i.e. no overflow and underflow events

Procedures:
similar to kGA except k is greedily chosen by the algorithm
i.e. choose the largest k such that the problem is feasible



Performance analysis

In general, larger k implies better performance
Ex: 2GA outperforming 1GA

Slanted arrow lines representing bike re-balancing activities
between pairs of stations
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4. Experiment

NYC Citi Bike dataset

Data Source New York City
Time Span 8/1/17 to 9/30/17
Weekdays (Weekends) 43 (17) days
# Stations 328
Bike Data # Bikes 6.000
# Trips 1.5+ million

Usage patterns (femporal imbalance)
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Usage patterns
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Experiment Setup

Comparison algorithms

For WAP: For CDP:
Branch-and-bound (BB) 1-GA
Local Search (LS) 2-GA
TRM GLA
Settings:

Station locations are extracted from the NYC dataset

User demands are generated by the prediction algorithm(3]

Time slice length is set to 20 min to make sure workers could
finish rebalancing tasks

[3] Rebalancing bike sharing systems: A multi-source data smart optimization (KDD '16)



Performance comparison for WAP

BB and LS are extremely time consuming, cannot be
applied in real-world applications

TRM achieves near-optimal performance with
theatrical bound in shorter time
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Performance comparison for CDP

In terms of number of moved bikes, larger k usually
implies better performance

Overall performance

Run TRM under different station density to simulate sparse, regular
and density station distribution

synthetic dataset that extracts real locations with different density
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5. Summary

Crowdsourcing-based incentive scheme

Recruiting workers to rebalance BSSs

Partition the complex optimization problem

WAP in spatial domain and CDP in temporal domain

Algorithmic solution
A 3-approximate algorithm for WAP

A greedy algorithm for CDP

Experiments on real-world dataset

Scalability and performance
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