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1. Introduction
l Rebalancing bike sharing systems (BSSs)

¡ Underflow station: lack of bikes, users cannot rent bikes
¡ Overflow station: full of bikes, users cannot return bikes

l Existing rebalance scheme:
¡ Truck-based approach[1]: hires trucks to transport bikes 
¡ User-based approach[2]: offers users monetary incentives

[1] Rebalancing bike sharing systems: A multi-source data smart optimization (KDD ’16)
[2] Incentivizing users for balancing bike sharing systems (AAAI ’15)
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Motivation
l Crowdsourcing-based approach

¡ BSS operator posts rebalancing targets
¡ Recruits workers to move bikes

l Workers have their own sources and destinations
l Workers not only receive rewards but also save their travel time 
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Objective
l Try to minimize the overall worker detour

¡ A complex optimization problem in spatial & temporal domains

l Spatial domain: detour distances are related with worker assignment

l Temporal domain: number of moved bikes is related with length of 
look-ahead time period
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2. Problem Formulation
l Partition the complex problem 

¡ Spatial domain: worker assignment problem (WAP)

¡ Temporal domain: configuration design problem (CDP)

WAP decides worker 
movement in each slice

BSS operator CDP decides rebalance frequency 
and configuration (i.e. number of 
bikes to move at each station)



Worker assignment problem (WAP)
l Modeled by a flow graph

l Formulation
Minimize moving distance

Assignment constraint

Target constraint

Consistency constraint

Flow-rate constraint
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Hardness of the WAP

l NP-hard in general weighted graphs
l Reduced from the weighted 3D matching problem

¡ Each assignment is equivalent to choosing a (worker, rent 
station, return station) combination
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Configuration design problem (CDP) 
l Modeled by discretized time series 

l Formulation
Minimize number of moved bikes

Capacity constraint
Matching constraint

Rebalancing-target constraint
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3. Algorithm Design for WAP

l Two-Round Matching (TRM) algorithm
¡ first round: matching underflow and overflow stations
¡ second round: matching workers and paired stations
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Illustration of the TRM
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Performance analysis

l The TRM is a 3-approximation algorithm

l Proof sketch Optimality of the two rounds of matching:

Triangle inequality:

Combining:
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4. Algorithm Design for CDP

l k-slice Greedy Algorithm (kGA)
¡ k is chosen by the BSS operator
¡ Maybe infeasible when k is large

l Greedily Look Ahead (GLA)
¡ Insight: let BSS live as long as possible

l i.e. no overflow and underflow events

¡ Procedures: 
l similar to kGA except k is greedily chosen by the algorithm
l i.e. choose the largest k such that the problem is feasible 



Performance analysis
l In general, larger k implies better performance

¡ Ex: 2GA outperforming 1GA 
¡ Slanted arrow lines representing bike re-balancing activities 

between pairs of stations

l Exceptions: 1GA outperforming GLA
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4. Experiment

l NYC Citi Bike dataset

l Usage patterns (temporal imbalance)

weekdays weekends



Usage patterns 

AM rush hours (8:00 - 10:00 AM) PM rush hours (5:00 - 7:00 PM)



Experiment Setup

l Comparison algorithms
¡ For WAP:

l Branch-and-bound (BB)
l Local Search (LS)
l TRM

l Settings:
¡ Station locations are extracted from the NYC dataset

¡ User demands are generated by the prediction algorithm[3]

¡ Time slice length is set to 20 min to make sure workers could 
finish rebalancing tasks

¡ For CDP:
l 1-GA
l 2-GA
l GLA

[3] Rebalancing bike sharing systems: A multi-source data smart optimization (KDD ’16)



Performance comparison for WAP
l BB and LS are extremely time consuming, cannot be 

applied in real-world applications

l TRM achieves near-optimal performance with 
theatrical bound in shorter time
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Performance comparison for CDP
l In terms of number of moved bikes, larger k usually 

implies better performance
l Overall performance

¡ Run TRM under different station density to simulate sparse, regular 
and density station distribution 

¡ synthetic dataset that extracts real locations with different density
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5. Summary
l Crowdsourcing-based incentive scheme

¡ Recruiting workers to rebalance BSSs

l Partition the complex optimization problem

¡ WAP in spatial domain and CDP in temporal domain 

l Algorithmic solution

¡ A 3-approximate algorithm for WAP

¡ A greedy algorithm for CDP

l Experiments on real-world dataset 
¡ Scalability and performance



Thank you
Q & A


