
Optimizing the Crowdsourcing-based Bike Station
Rebalancing Scheme

Yubin Duan and Jie Wu
Dept. of Computer and Info. Sciences, Temple University

Temple University, USA

1. Introduction
l Rebalancing bike sharing systems (BSSs)

¡ Underflow station: lack of bikes, users cannot rent bikes
¡ Overflow station: full of bikes, users cannot return bikes

l Existing rebalance scheme:
¡ Truck-based approach[1]: hires trucks to transport bikes
¡ User-based approach[2]: offers users monetary incentives

[1] Rebalancing bike sharing systems: A multi-source data smart optimization (KDD ’16)
[2] Incentivizing users for balancing bike sharing systems (AAAI ’15)

overflow underflow

bike re-balancing

Motivation
l Crowdsourcing-based approach

¡ BSS operator posts rebalancing targets
¡ Recruits workers to move bikes

l Workers have their own sources and destinations
l Workers not only receive rewards but also save their travel time

User dynamics cause
bike imbalance

For a time slice, BSS
operator recruits
workers for rebalancing

· · ·

Time

minimize workers’
total detour distance

worker assignment
problem

BSS Operator

set rebalance targets
for each slice

overflow
station
underflow
station
worker’s
location
worker’s
destination

a single
slice

assign workers
to move bikes

Objective
l Try to minimize the overall worker detour

¡ A complex optimization problem in spatial & temporal domains

l Spatial domain: detour distances are related with worker assignment

l Temporal domain: number of moved bikes is related with length of
look-ahead time period

• solid lines: 4200m
• dashed lines: 4000m

!"

!"#!$#

1 3

2 4

after
rebalance

600 m600 m

700 m 700 m

700 m 700 m900 m 900 m

600 m 600 m

!$
bike
station

worker’s
dest.

1 3

2 4

capacity = 3

overflow overflow

underflowunderflow

occupied dock
empty dock

· · ·

Time

2. Problem Formulation
l Partition the complex problem

¡ Spatial domain: worker assignment problem (WAP)

¡ Temporal domain: configuration design problem (CDP)

WAP decides worker
movement in each slice

BSS operator CDP decides rebalance frequency
and configuration (i.e. number of
bikes to move at each station)

Worker assignment problem (WAP)
l Modeled by a flow graph

l Formulation
Minimize moving distance

Assignment constraint

Target constraint

Consistency constraint

Flow-rate constraint

n1

n2

n3

p1

p2

p3

worker’s
source

worker’s
destination

rent station

return station

s1

s2

s3

d1

d2

d3

… … …

Hardness of the WAP

l NP-hard in general weighted graphs
l Reduced from the weighted 3D matching problem

¡ Each assignment is equivalent to choosing a (worker, rent
station, return station) combination

n1

n2

n3

p1

p2

p3

worker’s
source

worker’s
destination

rent station

return station

s1

s2

s3

d1

d2

d3

… … …

Configuration design problem (CDP)
l Modeled by discretized time series

l Formulation
Minimize number of moved bikes

Capacity constraint
Matching constraint

Rebalancing-target constraint

!"(0) !"(1)
'"(0)

("(0)
!"()) !"(|+|)

'"())

("())

'"(1)

("(1)
⋯ ⋯

!"(0) !"(1)
'"(0) !"()′)

'"(1) !"). > 0" or
!"). < 0
without rebalancing⋯

3. Algorithm Design for WAP

l Two-Round Matching (TRM) algorithm
¡ first round: matching underflow and overflow stations
¡ second round: matching workers and paired stations

overflow
stations

underflow
stations

workers paired
stations

n1

n2

n3

p1

p2

p3

d2

n1 p2

n2 p3

n3 p1

w1
s1 d1

w2
s2

d3
w3

s3

Illustration of the TRM

overflow
stations

underflow
stations

workers paired
stations

n1

n2

n3

p1

p2

p3

!"

!#

1

2

4

3

!#$

!"$

700 m

700 m

900 m

900 m

stations have
1 extra bike
stations need
1 bike

d2

n1 p2

n2 p3

n3 p1

w1
s1 d1

w2
s2

d3
w3

s3

!"

!#

1

2

4

3

!#$

!"$

600 m

600 m

700 m

700 m

700 m

700 m

200 m

200 m

900 m

900 m

Performance analysis

l The TRM is a 3-approximation algorithm

l Proof sketch Optimality of the two rounds of matching:

Triangle inequality:

Combining:

d⇤w

sw

s⇤w

dw

n

p⇤

p

X

n2N

dis(n,p)
X

n2N

dis(n,p⇤)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>X

n2N

(dis(sw,n)+dis(p,dw))
X

n2N

(dis(s⇤w,n)+dis(p,d⇤w))
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

dis(p,d⇤w)dis(p,p⇤)+dis(p⇤,d⇤w)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

dis(p,p⇤)dis(n,p)+dis(n,p⇤)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

X

n2N

(dis(sw,n)+dis(n,p)+dis(p,dw))

X

n2N

((dis(s⇤w,n)+3dis(n,p⇤) + dis(p⇤,d⇤w))

3
X

n2N

(dis(s⇤w,n)+dis(n,p⇤)+dis(p⇤,d⇤w)) = 3OPT.

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

4. Algorithm Design for CDP

l k-slice Greedy Algorithm (kGA)
¡ k is chosen by the BSS operator
¡ Maybe infeasible when k is large

l Greedily Look Ahead (GLA)
¡ Insight: let BSS live as long as possible

l i.e. no overflow and underflow events

¡ Procedures:
l similar to kGA except k is greedily chosen by the algorithm
l i.e. choose the largest k such that the problem is feasible

Performance analysis
l In general, larger k implies better performance

¡ Ex: 2GA outperforming 1GA
¡ Slanted arrow lines representing bike re-balancing activities

between pairs of stations

l Exceptions: 1GA outperforming GLA
t t + 1

time

s1

s2

s3

t t + 1

s1

s2

s3

1

2

3

+1

�3

�2

1

1
1

4. Experiment

l NYC Citi Bike dataset

l Usage patterns (temporal imbalance)

weekdays weekends

Usage patterns

AM rush hours (8:00 - 10:00 AM) PM rush hours (5:00 - 7:00 PM)

Experiment Setup

l Comparison algorithms
¡ For WAP:

l Branch-and-bound (BB)
l Local Search (LS)
l TRM

l Settings:
¡ Station locations are extracted from the NYC dataset

¡ User demands are generated by the prediction algorithm[3]

¡ Time slice length is set to 20 min to make sure workers could
finish rebalancing tasks

¡ For CDP:
l 1-GA
l 2-GA
l GLA

[3] Rebalancing bike sharing systems: A multi-source data smart optimization (KDD ’16)

Performance comparison for WAP
l BB and LS are extremely time consuming, cannot be

applied in real-world applications

l TRM achieves near-optimal performance with
theatrical bound in shorter time

2 3 4
Number of workers

5 6

C
os

t

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500
BB
LS
TRM
Greedy

2 3 4
Number of workers

5 6

R
un

ni
ng

 T
im

e

10-2

10-1

100

101

102

103

BB
LS
Greedy
TRM

Performance comparison for CDP
l In terms of number of moved bikes, larger k usually

implies better performance
l Overall performance

¡ Run TRM under different station density to simulate sparse, regular
and density station distribution

¡ synthetic dataset that extracts real locations with different density

20 25 30 35 40 45 50
Number of stations

200

300

400

500

600

700

800

N
um

be
r o

f m
ov

ed
 b

ik
es

1-GA
2-GA
GLA

Number of users
40 50 60 70 80 90 100

To
ta

l d
is

ta
nc

e

200

300

400

500

600

700

800

900

10 stations
20 stations
40 stations

5. Summary
l Crowdsourcing-based incentive scheme

¡ Recruiting workers to rebalance BSSs

l Partition the complex optimization problem

¡ WAP in spatial domain and CDP in temporal domain

l Algorithmic solution

¡ A 3-approximate algorithm for WAP

¡ A greedy algorithm for CDP

l Experiments on real-world dataset
¡ Scalability and performance

Thank you
Q & A

