Optimizing the Crowdsourcing-based Bike Station Rebalancing Scheme

Yubin Duan and Jie Wu Dept. of Computer and Info. Sciences, Temple University Temple University, USA



1. Introduction

Rebalancing bike sharing systems (BSSs)

- Underflow station: lack of bikes, users cannot rent bikes
- Overflow station: full of bikes, users cannot return bikes

Existing rebalance scheme:

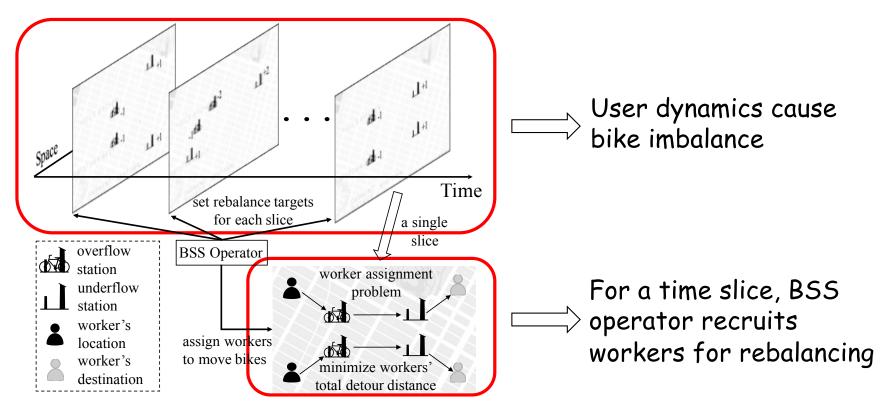
- Truck-based approach^[1]: hires trucks to transport bikes
- User-based approach^[2]: offers users monetary incentives

[1] Rebalancing bike sharing systems: A multi-source data smart optimization (KDD '16)[2] Incentivizing users for balancing bike sharing systems (AAAI '15)

Motivation

Crowdsourcing-based approach

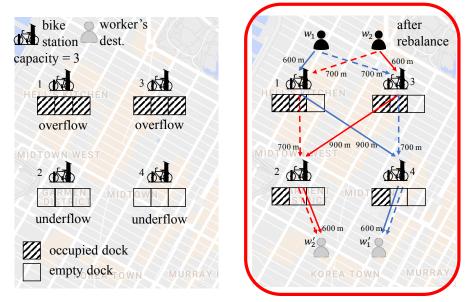
- BSS operator posts rebalancing targets
- Recruits workers to move bikes
 - Workers have their own sources and destinations
 - Workers not only receive rewards but also save their travel time



Objective

Try to minimize the overall worker detour

- A complex optimization problem in spatial & temporal domains
 - Spatial domain: detour distances are related with worker assignment



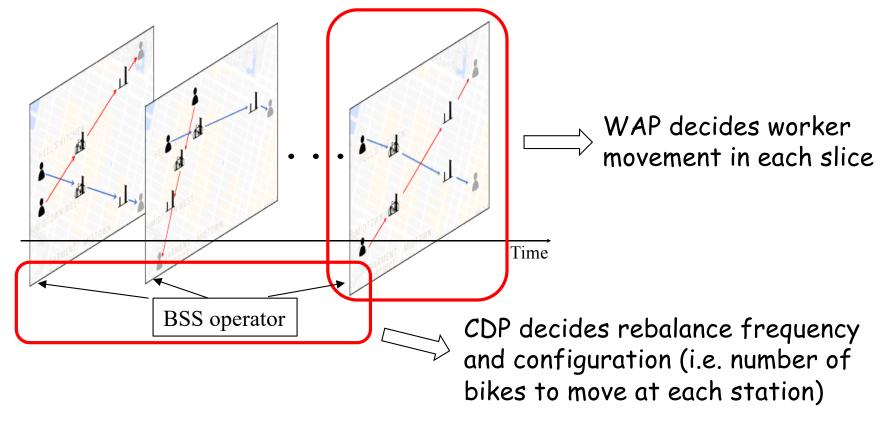
- solid lines: 4200m
- dashed lines: 4000m

 Temporal domain: number of moved bikes is related with length of look-ahead time period

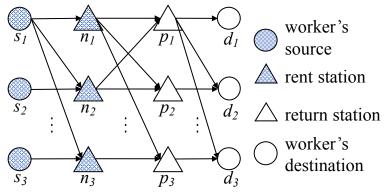
2. Problem Formulation

Partition the complex problem

- Spatial domain: worker assignment problem (WAP)
- Temporal domain: configuration design problem (CDP)



Worker assignment problem (WAP) Modeled by a flow graph



Formulation

$$\min \sum_{W,N,P} f(s_w,n) e(s_w,n) + f(n,p) e(n,p) + f(p,d_w) e(p,d_w)$$

Minimize moving distance

$$s.t.\sum_{N} f(s_w, n) = 1, \ \sum_{P} f(p, d_w) = 1, \forall w \in W$$
(1)

$$\sum_{W}^{N} f(s_{w}, n) = |\rho_{n}|, \sum_{W}^{N} f(p, d_{w}) = |\rho_{p}|, \forall n \in N, p \in P \quad (2)$$

$$f(n,p) = \sum_{W} (f(s_w,n) \cdot f(p,d_w)), \forall n \in N, p \in P$$

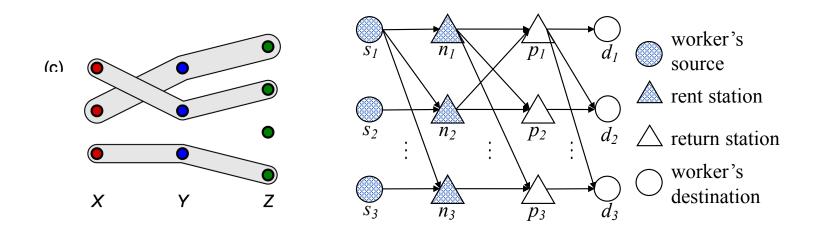
$$(3)$$

$$f(s_w, n), f(p, d_w) \in \{0, 1\}, f(n, p) \in \mathbb{N}$$
 (4)

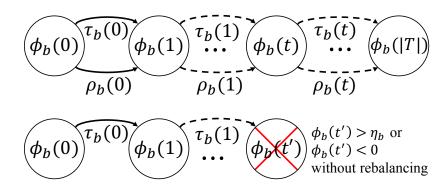
- Assignment constraint
- Target constraint
- Consistency constraint
- Flow-rate constraint

Hardness of the WAP

- NP-hard in general weighted graphs
- Reduced from the weighted 3D matching problem
 - Each assignment is equivalent to choosing a (worker, rent station, return station) combination



Configuration design problem (CDP) Modeled by discretized time series



Formulation

 $\min\sum_{t\in T}\sum_{b\in B}|\rho_b(t)|$

Minimize number of moved bikes

s.t. $0 \leq \phi_b(t) \leq \eta_b, \forall b \in B, \forall t \in T$ $\sum_{b \in B} \rho_b(t) = 0, \forall t \in T$ $\rho_b(t) \in \mathbb{N}, \forall b \in B, \forall t \in T$ Capacity constraint

Matching constraint

Rebalancing-target constraint

3. Algorithm Design for WAP

Two-Round Matching (TRM) algorithm

first round: matching underflow and overflow stations
 second round: matching workers and paired stations

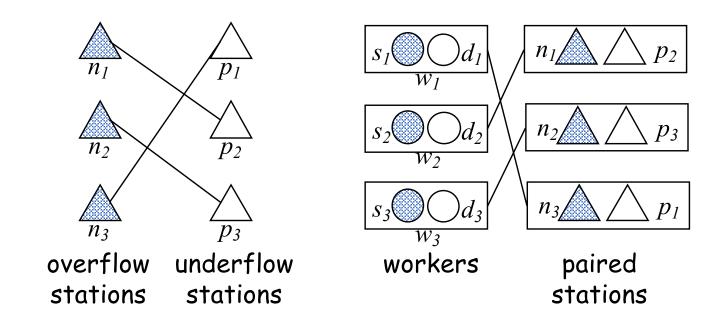
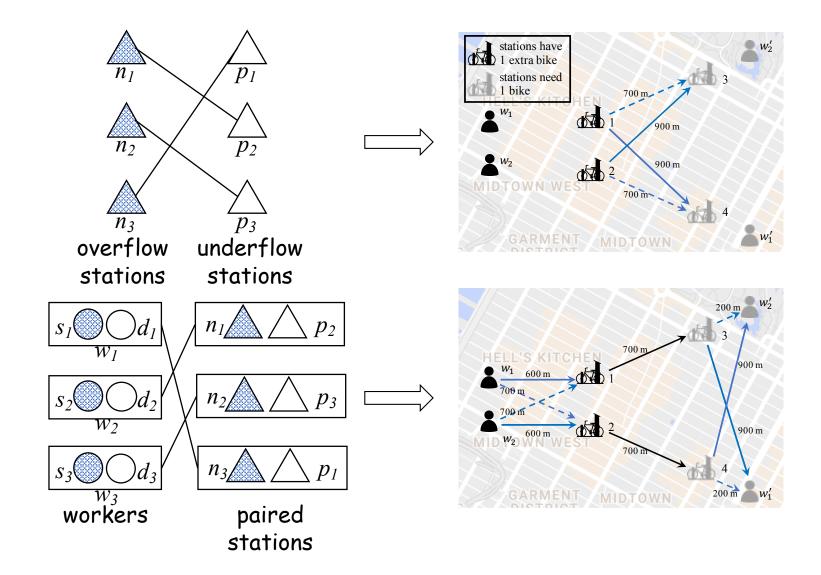


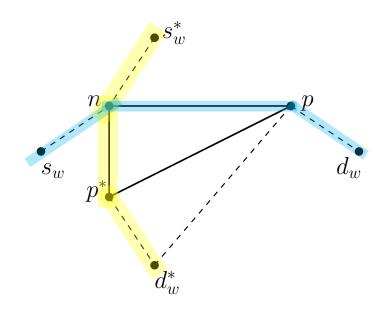
Illustration of the TRM



Performance analysis

The TRM is a 3-approximation algorithm

Proof sketch



Optimality of the two rounds of matching:

$$\sum_{n \in N} dis(n,p) \leq \sum_{n \in N} dis(n,p^*)$$
$$\sum_{n \in N} (dis(s_w,n) + dis(p,d_w)) \leq \sum_{n \in N} (dis(s_w^*,n) + dis(p,d_w^*))$$

Triangle inequality:

 $\begin{aligned} & dis(p, d_w^*) \le dis(p, p^*) + dis(p^*, d_w^*) \\ & dis(p, p^*) \le dis(n, p) + dis(n, p^*) \end{aligned}$

Combining:

$$\sum_{n \in N} (dis(s_w, n) + dis(n, p) + dis(p, d_w))$$

$$\leq \sum_{n \in N} ((dis(s_w^*, n) + 3dis(n, p^*) + dis(p^*, d_w^*)))$$

$$\leq 3\sum_{n \in N} (dis(s_w^*, n) + dis(n, p^*) + dis(p^*, d_w^*)) = 3OPT.$$

4. Algorithm Design for CDP

k-slice Greedy Algorithm (kGA)

- k is chosen by the BSS operator
- Maybe infeasible when k is large

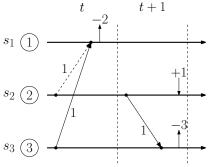
Greedily Look Ahead (GLA)

- Insight: let BSS live as long as possible
 - i.e. no overflow and underflow events
- o Procedures:
 - similar to kGA except k is greedily chosen by the algorithm
 - i.e. choose the largest k such that the problem is feasible

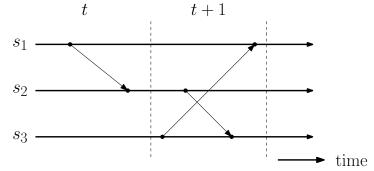
Performance analysis

• In general, larger k implies better performance

- Ex: 2GA outperforming 1GA
- Slanted arrow lines representing bike re-balancing activities between pairs of stations



Exceptions: 1GA outperforming GLA

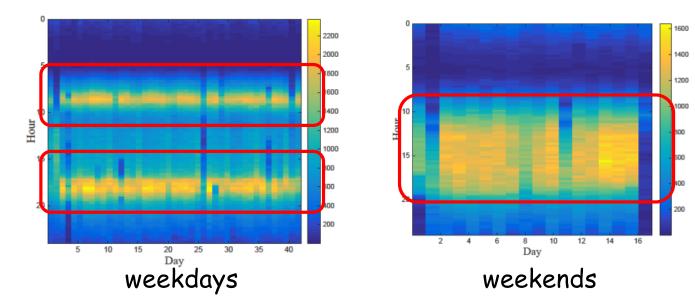


4. Experiment

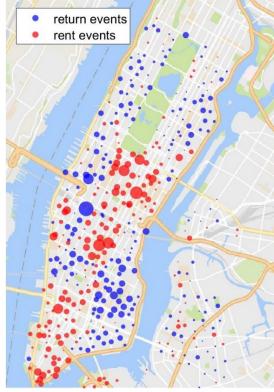
NYC Citi Bike dataset

Data Source	New York City	
Time Span	8/1/17 to 9/30/17	
Weekdays (Weekends)	43 (17) days	
Bike Data	# Stations	328
	# Bikes	6,000
	# Trips	1.5+ million

• Usage patterns (temporal imbalance)



Usage patterns



AM rush hours (8:00 - 10:00 AM) PM rush hours (5:00 - 7:00 PM)

Experiment Setup

Comparison algorithms

- For WAP:
 - Branch-and-bound (BB)
 - Local Search (LS)
 - TRM

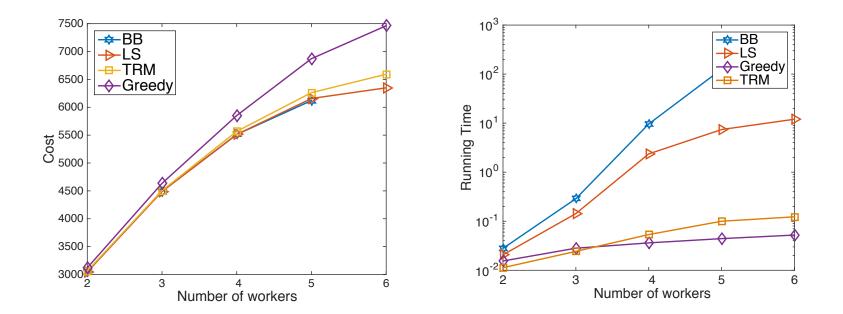
- For CDP:
 - 1-GA
 - 2-GA
 - GLA

Settings:

- Station locations are extracted from the NYC dataset
- User demands are generated by the prediction algorithm^[3]
- Time slice length is set to 20 min to make sure workers could finish rebalancing tasks

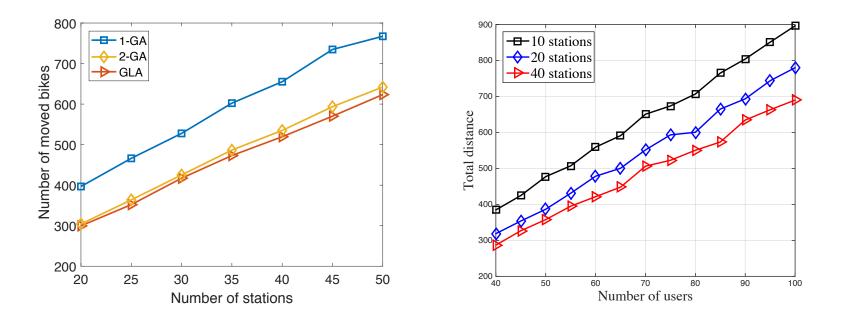
Performance comparison for WAP

- BB and LS are extremely time consuming, cannot be applied in real-world applications
- TRM achieves near-optimal performance with theatrical bound in shorter time



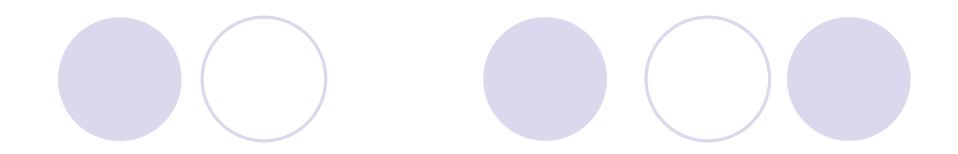
Performance comparison for CDP

- In terms of number of moved bikes, larger k usually implies better performance
- Overall performance
 - Run TRM under different station density to simulate sparse, regular and density station distribution
 - synthetic dataset that extracts real locations with different density



5. Summary

- Crowdsourcing-based incentive scheme
 - Recruiting workers to rebalance BSSs
- Partition the complex optimization problem
 - WAP in spatial domain and CDP in temporal domain
- Algorithmic solution
 - A 3-approximate algorithm for WAP
 - A greedy algorithm for CDP
- Experiments on real-world dataset
 - Scalability and performance



Thank you Q&A

