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Abstract—User dynamics in both spatial and temporal domains
bring uncertainty to bike-sharing systems (BSSs) and usually
lead to bike imbalance. This may generate out-of-service events
due to bike underflow or overflow, at a bike station. In this
paper, we recruit workers through crowdsourcing to rebalance
loads among bike stations. We assume that workers have their
individual sources and destinations, and assign them to move
bikes from overflow stations to underflow stations. We partition
the complex spatial and temporal problem into a sequence of
slices with a fixed duration in the temporal domain. In each
slice, we focus on the spatial domain and allocate a pair of
overflow/underflow stations to a worker such that the summation
of detour cost among workers is minimized. The hardness of
finding the min-cost allocation is shown by a reduction from a 3-
dimensional matching problem (i.e., matching among workers,
overflow stations, and underflow stations). We propose a 3-
approximation algorithm for the problem when the detour cost
is proportional to the detour distances. Then, the configuration
dynamic in the sequence of slices is captured by carefully
determining the rebalancing frequency and target for each
rebalancing operation. We investigate heuristic approaches to
decide rebalancing frequencies and targets over a sequence of
slices in order to minimize the total number of bike movements
(i.e., the total number of workers), and hence to derive the
average total detours per slice. We simulate our algorithms
on both real-world and synthetic datasets based on different
time-slice granularities. The experiment results show that our
approaches can reduce the average total detour per slice.

Index Terms—Bike sharing system, bike rebalancing scheme,
matching problem, urban computing.

I. INTRODUCTION

Nowadays, bike-sharing systems (BSSs) are earning increas-
ing attention and have been widely adopted in major cities
[1–3]. Recent research has shown that deploying BSSs in
cities not only benefits the environment but also increases
the welfare of the economy. Accessibility and affordability
of BSSs greatly motivates users to ditch their cars for bikes.
Besides, the social benefits brought by the development of
BSSs also include transport flexibility, reduced congestion and
fuel consumption, as well as financial savings for individuals.
Although the benefits brought by BSSs are great and attractive,
maintaining the sustainability of the system is challenging.

The development of BSSs heavily depends on the sustain-
ability of the system. However, the dynamics of user mobility
often lead to an unbalanced bike distribution among stations.
Specifically, overflow or underflow stations may occur under
an unbalanced distribution, i.e., users cannot rent bikes from
underflow stations and cannot return bikes to overflow stations.
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Fig. 1. A crowdsourcing-based rebalancing scheme.

Potential users can also be missed due to such Out-of-Service
(OoS) events. Therefore, it is necessary for the BSS operator
to rebalance the bike distribution among these overflow and
underflow stations to maintain good user experience.

We propose a crowdsourcing-based rebalancing scheme that
rebalances the BSS across both spatial and temporal domains.
When overflow or underflow occurs, the BSS operator can
determine the rebalancing target (i.e. the number of bikes to
move in/out) for each station and recruit workers to rent/return
bikes from overflow stations to underflow stations and re-
balance the system. Notice that the workers have their own
source and destination locations. Recruiting workers to ride
bikes between certain stations can not only rebalance bikes in
the BSS but also give workers opportunities to earn monetary
rewards (e.g., a free ride) with a slight detour.

Spatial and temporal domains are decoupled into a sequence
of slices with a fixed duration in the temporal domain (as
shown in Fig. 1). In each slice, we focus on recruiting
workers to meet the rebalancing targets in the spatial domain
in a particular time slice such that the overall detour cost is
minimized. In the temporal domain over a sequence of slices,
we decide on the rebalancing frequency (i.e. the time interval
between rebalancing operations) and its corresponding target
to minimize bike movements in rebalancing (and hence the
number of workers needed) in an effort to minimize the total
detour over multiple slides.

The Worker Assignment Problem (WAP) is proposed for
each slice. Given the rebalancing target as well as the sources
and destinations of workers, we aim to assign a pair of
stations, one from overflow stations and one from underflow
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Fig. 2. A user assignment problem scenario in time slice t.

stations, to each worker to minimize the detour cost of all
workers. Besides, the rebalance frequencies and targets for
multiple slices should be determined by the system operator.
We propose to minimize the number of workers needed for
rebalancing. Also, the targets for each slice should be self-
balanced, i.e., the total number of bikes moved in and out
should be the same.

Designing such a scheme is still challenging after we
decouple the original problem in spatial and temporal domains.
The challenge in the spatial domain is minimizing the overall
detour cost. Assigning workers to overflow/underflow stations
is a 3D matching problem (i.e., matching among workers, rent
stations, and return stations) which is NP-hard. Determining
the rebalance frequency and targets for different slices that
minimize bike movements across multiple slices poses chal-
lenges in the temporal domain. Even if the future user demand
can be precisely predicted, it is hard to decide the number of
time slices that the system should look ahead.

We use a toy example in Fig. 2 to illustrate these challenges.
The left sub-figure shows the OoS events and the right one
shows a rebalancing plan to avoid such OoS events. The
capacity of each bike station is 5. At time slice t, the states
(i.e. inventory levels) of stations are 4, 2, 3, and 1. Following
the demand during slice t (i.e. time duration [t, t+ 1)) listed
in the figure, OoS events occur at every station. Among them,
stations 1 and 3 suffer from overflow. No more bikes can be
returned to these stations. In contrast, stations 2 and 4 face
underflow, and users cannot rent any more bikes. Recruiting
workers to move bikes from overflow stations to underflow
stations before time t can help the BSS avoid these OoS events.

In the spatial domain, suppose two workers are located at
w1 and w2 with the corresponding destination w′1 and w′2.
The BSS operator hopes that the states of the stations at time
t+ 1 are (5, 0, 5, 0), as shown in the right sub-figure, in order
to avoid having overflow and underflow stations. Then, the
rebalance target is to move one bike each from stations 1 and 3
to stations 2 and 4. Assume that the detour cost is proportional
to the detour distance. If we simply assign workers to rent
bikes from the station nearest to their source and return at
the station nearest to their destination (as following the solid
line in Fig. 2), their total moving distance is 4, 200m. The
optimal value is 4, 000m and can be achieved by following the

dashed line in Fig. 2. It shows that finding an assignment for
workers to minimize their total detour distance is not trivial.
The challenge in the temporal domain occurs when we decide
the rebalancing target for slice t. Actually, the target used in
the example may not be good. If the demand of station 1
during slice t + 1 is ‘return 1’, then an OoS event occurs
again at station 1, since the station is full after time slice t.
Under such a scenario, removing 2 bikes from station 1 before
time slice t may be a better choice. The number of time slices
that the system should look ahead is uncertain.

In this paper, we propose a 3-approximation algorithm
toward the WAP. Generally, our algorithm consists of two
rounds of matching. It first finds the optimal match between
rent and return stations, and then matches workers to paired
stations. We investigate two heuristic approaches that consider
different rebalance frequency granularities. One considers a
fixed number of slices when deciding targets. The other one
is inspired by [2] which greedily chooses the number of time
slices to look ahead.

Our main contributions are summarized as follows:
• We propose a crowdsourcing-based scheme for hiring

workers to rebalance BSSs. In the scheme, the uncertainty
of the system in the temporal and spatial domains is
decoupled by slicing the problem in the temporal domain.

• We formulate the general WAP to minimize workers’ total
detour cost in a time slice, show its NP-hardness, and
propose a 3-approximation algorithm for the WAP when
the detour cost is proportional to the detour distance.

• To determine the application frequency and target of the
WAP in multiple slices, we investigate greedy heuristics
rather than directly applying the method in [2].

• We simulate our algorithm on both real-world and syn-
thetic datasets, and compare the performances of our al-
gorithms and previous approaches in terms of the average
total detour per slice.

II. RELATED WORK

With the rapid development of bike sharing, more and more
researchers have devoted their effort to related issues including
user demand prediction [3–8] , bike rebalancing strategies
[2, 9, 10], station location optimization [11, 12], bike lane
planning [13], and suggestion for users’ journeys [14, 15].
We review researches on demand prediction and rebalancing
strategy design in this section.

A. Demand prediction

The success of our scheme strongly relies on the precise
prediction of user demands. Researches on demand prediction
can be categorized as station level prediction and cluster level
prediction. The earlier demand prediction approach focuses on
predicting the number of bikes at each station, such as [4, 5].
However, the station-level prediction does not take contextual
information into account and may not always generate an
accurate prediction [6]. Clustering similar stations is one way
to address this problem. For example, Li et al. [6] proposed
a hierarchical model that clusters stations based on their



locations and transition patterns first, and then predicts the
number of bikes rented from and returned to each station
cluster. Chen et al. [7] further proposed a dynamic cluster-
based scheme for over-demand prediction by considering
opportunistic contextual factors such as social and traffic
events. By utilizing demand prediction, our approach aims to
minimize the number of bikes moved during rebalancing.

B. Rebalancing strategy design

Two major approaches in the design of rebalancing strate-
gies for BSSs are truck-based approaches [2, 16–18] and user-
based approaches [9, 19–21].

In the truck-based approach, the BSS operator hires a fleet
of trucks to transport bikes from overflow stations to underflow
stations. In static models, the target inventory level for stations
is constant. Liu et al. [2] proposed a method that first clusters
bike stations according to geographic information and station
status, and then assigns a truck to each cluster. The routing
for each truck is modeled as an integer programming problem.
For the dynamic model, Ghosh et al. [17] proposed an online
rebalancing approach to minimize the occurrence of OoS
events while considering the uncertainty in future demand.
They turned the problem into an iterative game between the
BSS operator and the environment to compute a strategy.

In the user-based approach, the BSS operator offers users
monetary incentives and motivates them to rent/return bikes at
certain stations [9, 19]. It is expected to achieve a self-balanced
system to improve the overall service level by controlling
the user’s dynamics. Designing the pricing mechanism is
challenging since the user cost is unknown. Waserhole [19]
presented a dynamic pricing mechanism that incentivizes users
to redistribute bikes by providing alternate rental prices. Singla
et al. [9] proposed a crowdsourcing pricing mechanism to in-
centivize users based on the multi-armed bandit model. How-
ever, these approaches do not consider the spatial imbalance of
BSS. Pan et al. [20] studied the rebalancing problem in dock-
less bike sharing systems and proposed a deep reinforcement
learning algorithm for deciding the incentive price. The goal of
the user-based approach is to achieve self-sustaining systems
by controlling user dynamics instead of hiring workers to
maintain the sustainability of the system.

III. SYSTEM MODEL

In our work, we propose a crowdsourcing-based bike sta-
tion rebalancing scheme. The BSS operator conducts several
rounds of rebalancing among bike stations at predefined inter-
vals during the rebalancing period. In each round of rebalanc-
ing, the operator recruits a set of workers to move bikes from
overflow stations to underflow stations. The rebalancing targets
(number of bikes to move) for each round and the length of
the interval between two rounds are decided based on states
and demand predictions of stations in the BSS.

The BSS operator needs to gather sources and destina-
tions of workers, before it can generate an assignment for
each worker. A worker is denoted by w, and the worker
set is denoted by W . Each worker has his/her source sw

TABLE I
TABLE OF NOTATIONS

Notations Description
W,S,D the set of workers, their sources, and destinations
w, sw, dw a worker and his/her source, and destination
B,N, P the set of bike stations, rent, and return stations
b, n, p a bike station, a rent station, and a return station
ηb the capacity of station b
ηB the capacity vector for all stations in B
T, t the set of time slices, and a time slice
φb(t), the state of station b at the beginning of slice t
τb(t),ρb(t) the demand and rebalancing target of b during t
τB(t),ρB(t) the demand and rebalancing target vector of B

and destination dw. The sets of sw and dw are denoted by
S = {sw|w ∈W} and D = {dw|w ∈W}, respectively.

The states and user demand predictions for bike stations are
also necessary. A bike station is denoted by b, and the set of
bike stations is denoted by B. The number of bike stations is
|B|, where | · | represents the cardinality of a set. Each station
b has a capacity ηb and can store at most ηb bikes. Capacities
of different stations can be different. For simplicity, we slice
the rebalancing period in the temporal domain. The set of
time slices is denoted by T , and each time slice is t ∈ T .
The state of station b for slice t is defined as the number of
on-dock bikes at the beginning of each time slice t, and it is
an non-negative integer denoted by φb(t). The demand of b
during time slice t is an integer denoted by τb(t), and it comes
from usage predictors, such as [2, 7]. The demand τb(t) can
be either positive or negative. A positive demand means that
more bikes are returned to the station and the number of on-
dock bikes increases during time slice t. A negative demand
has the opposite meaning.

Based on the state and demand information, the operator can
determine a rebalancing target ρb(t) for each station b during
t. A positive ρb(t) means that the station b needs ρb(t) bikes,
and a negative ρb(t) means |ρb(t)| bikes shall be removed
from the station.

∑
b∈B ρb(t) should be 0 since the rebalancing

operation does not affect the number of bikes in the system. In
each time slice t, bike stations with negative targets can form a
rent station set N , and stations with positive targets can form
a return station set P . Formally, N = {b ∈ B|ρb(t) < 0}
and P = {b ∈ B|ρb(t) > 0}. Elements in sets N and P are
denoted as n and p, respectively.

In the paper, we assume the number of workers who can be
recruited is large enough. If not, the BSS operator could use
trucks for rebalancing. Truck-based rebalancing strategies are
reviewed in section II. After recruiting a sufficient amount
of workers, the operator needs to determine a rebalancing
assignment (w, n, p)∈W×N×P for each worker, meaning
that the worker w should rent a bike from station n and
return it to station p. The corresponding detour distance
of worker w is denoted by a real number δw. Formally,
δw = dis(sw, n) + dis(n, p) + dis(p, dw) − dis(sw, dw) ,
where dis(·, ·) is the distance function used to calculate the
geographical distance between two locations.

The assignment for workers is modeled by the assignment
graph G=(V,E) shown in Fig. 3. The vertex set is constructed
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Fig. 3. An illustration of an assignment graph.

by workers’ sources, destinations, and bike stations, i.e. V =
S∪N ∪P ∪D. The directed weighted edges have three types,
including edges from S to N , edges from N to P , and edges
from P to N . Formally, E=(S×N)∪(N×P )∪(P×D). We
use the function e : V 2 7→R to denote the edge weights. The
weight is quantified by the geographical distance. For example,
the weight of an edge from sw to n is the the corresponding
distance, i.e., e(sw, n) = dis(sw, n). A flow from sw to dw is
equivalent to an assignment for w. The sum weight of edges
on the flow is w’s moving distance, and is used to quantify
w’s detour since the distance between sw and dw is constant.

The time evolution of the state of a station is modeled by
discretized time series. As shown in Fig. 4, the state φb(t+1)
is determined by the state φb(t), the demand τb(t), and the
rebalance operation ρb(t) during time slice t. Formally, φb(t+
1) = φb(t)+τb(t)+ρb(t). Without the rebalancing operation
ρb(t), an OoS event may occur- either an overflow event with
φb(t

′)>ηb, or an underflow event with φb(t′) < 0.

IV. PROBLEM FORMULATION AND ANALYSIS

A. Worker assignment problem
In a fixed time slice, we propose the Worker Assignment

Problem (WAP). Given rebalancing targets of stations, sources
and destinations of the workers, the WAP aims to find out an
optimal assignment for workers that minimizes their overall
detours when workers are moving bikes between stations.

The WAP can be seen as finding a minimum cost flow from
S to D. Based on the assignment graph, an assignment for
worker w is equivalent to a flow from sw to dw. As shown in
Fig. 3, a flow from sw to dw passing through a node n and a
node p represents a worker w rents a bike from n and returns
to p. Our WAP problem is to minimize the total cost of the
k flows. We use f(·, ·) to denote the flow rate, which is an
integer, between two vertices.

This problem can be formulated by a Integer Programming
model, which can be described as:

min
∑
W,N,P

f(sw,n)e(sw,n)+f(n,p)e(n,p)+f(p,dw)e(p,dw)

s.t.
∑
N

f(sw,n)=1,
∑
P

f(p,dw)=1,∀w∈W (1)∑
W

f(sw,n)= |ρn|,
∑
W

f(p,dw)= |ρp|,∀n∈N, p∈P (2)

f(n,p)=
∑
W

(f(sw,n)·f(p,dw)),∀n∈N, p∈P (3)

f(sw,n),f(p,dw)∈{0,1}, f(n,p) ∈ N (4)

Our objective is to minimize the total weight of the flow. For
the WAP in a Euclidean plane, it is the overall detour distances.
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Fig. 4. Station state evolution in discretized time.

In a more general version, which is denoted as the general
WAP, the edge weight could be any kind of detour cost, such
as traveling time. Eq. (1) is the assignment constraint, which
means that each worker should be assigned to a rent station
in N and a return station in P . Eq. (2) is the target constraint.
It means that each station’s positive or negative targets should
be satisfied. Eq. (3) is the consistency constraint. If there is a
flow from sw to n and from p to dw (i.e., the worker w rents
a bike from n and returns to p), there should be a flow from
n to p. Eq. (4) is the flow-rate constraint. The rates of flows
from S to N and flows from P to D can be either 0 or 1. The
rates of flows from N to P should be a non-negative integer.

B. Configuration design problem

In this subsection, we formulate the Configuration Design
Problem (CDP) for multiple time slices. Given the demand
prediction of each time slice, CDP aims to design a set of
rebalancing targets which can minimize the number of bike
movements over multiple time slices. We choose this objective
as an effort to minimize workers’ total detour over multiple
slices. Formally, given the initial state vector φB(0) and the
demand vectors τB(t) for all time slices t ∈ T . The objective
is to find the rebalancing target vector ρB(t) for each time
slice t, and minimize the total amount of moved bikes.

min
∑
t∈T

∑
b∈B

|ρb(t)|

s.t. 0 ≤ φb(t) ≤ ηb, ∀ b∈B, ∀ t∈T (5)∑
b∈B

ρb(t) = 0, ∀ t∈T (6)

ρb(t) ∈ N, ∀ b∈B, ∀ t∈T (7)

Note that
∑
t∈T

∑
b∈B |ρb(t)| is actually twice the number

of moved bikes, since moving a bike from a rent station to a
return station can simultaneously fulfill a positive target and
a negative target. Eq. (5) is the capacity constraint , which
ensures that the number of bikes at each station cannot be
lower than 0 or higher than the station capacity. Eq. (6) is the
matching constraint which requires the sum of rebalancing
targets among all stations at each time slice to be 0. This is
because the total number of bikes should remain unchanged
during rebalancing. Eq. (7) indicates that rebalancing targets
are non-negative integers.

C. Problem hardness

Theorem 1: The general WAP for a time slice is NP-hard.
Proof: The proof shows that our optimization problem can be
reduced from a weighted 3D matching problem. The decision
problem of 3D matching is known to be one of Karp’s 21



Algorithm 1 Two-Round Matching Algorithm - Stage 1
Input: positive station set P as well as the corresponding

demand set {ρP }, and negative station set N as well as
the corresponding demands {ρN}

Output: rent/return station pairs which are used for worker
allocation in the next stage

1: for each n ∈ N and ρn < −1 do
2: Copy station n (|ρn| − 1) times in N .
3: for each p ∈ P and ρp > 1 do
4: Copy station p (ρp − 1) times in P .
5: V ← N ∪ p, E ← ∅
6: for n ∈ N , p ∈ P do
7: E ← E ∪ (n, p), e(n, p)← dis(n, p)
8: X ← min-cost perfect matching of G(V, E).
9: return X as the rent/return station pair

NP-complete problems [22], and the weighted 3D matching
problem belongs to the NP-hard problem class.

The general WAP can be reduced from a maximum 3D
matching problem if we let tripartite sets denote the set W ,
P , and N . A 3D matching M with |M | = |W | is a legal
assignment for bike rebalancing. That is, a triple (w, n, p)
in M represents that worker w should move a bike from
station n to station p. The weight of each triple is equal to a
large positive constant minus the cost of the corresponding
journey (i.e. the sum of the costs from sw to n, then to
p, and finally to dw). A maximum matching maximizes the
sum of negations of journey costs. Therefore, it minimizes the
sum of journey costs. The assignment is optimal for workers
because it minimizes workers’ total detour costs. An instance
of the maximum 3D matching is therefore corresponding to
an instance of the general WAP. �

V. FIXED TIME SLICE OPTIMIZATION

A. Overview

In this section, we introduce a 3-approximation algorithm to
solve the WAP in a Euclidean plane. Our algorithm is based
on two stages of matchings. In the first round of matching,
we only consider the bike movement between stations and
ignore workers’ sources and destinations. This generates the
rent/return station pairs, i.e., a bike rented from a station in N
should be returned to the corresponding station in P . In the
second round of matching, the algorithm considers another
bipartite graph containing set W and N ×P which is used to
match workers with rent/return station pairs. An illustration of
the algorithm procedure is shown in Fig. 5.

B. Two-Round Matching algorithm

In the Two-Round Matching (TRM) algorithm, we we first
apply the weighted bipartite matching algorithm on the bipar-
tite graph constructed by N and P . The weighted match found
by the algorithm indicates the optimal combination of rent
and return stations which can achieve the minimum moving
distance. The procedure of the first round of matching is shown
in Algorithm 1. Lines 1-4 in the algorithm are to construct the

Algorithm 2 Two Round Matching Algorithm - Stage 2
Input: worker set W , rent/return station pair set X
Output: rent and return allocation for each user, and work-

ers’ total travel distance C
1: V ′ ←W ∪X, E′ ← ∅
2: for w ∈W, (n, p) ∈ X do
3: E′ = E′ ∪ (w, (n, p)),

e(w, (n, p))← dis(sw, n) + dis(n, p) + dis(p, dw)
4: M ← min-cost perfect matching of G′(V ′, E′).
5: return M as the rent and return allocation for workers,

and ||M || as workers’ total travel distance.
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Fig. 5. The procedures of Two-Round Matching algorithm.

bipartite matching graph. In the weighted matching algorithm,
a vertex can only be matched once. Therefore, we duplicate
the stations based on their rebalancing targets to guarantee that
the target of each vertex in set N (or P ) is −1 (or 1). The
vertex set is initialized in line 5 and the edge set is initialized
in lines 6-7. We apply weighted matching on the bipartite
graph in line 8. Notice that the weighted matching algorithms
are designed for maximization. To find the non-zero minimum
perfect matching, we modify the edge weight when using the
maximum weighted matching algorithm. The modified weight
is calculated by subtracting the original weight from a large
number. It is e′ = LC − e, where LC is a large constant
number and e′ is the modified edge weight.

The second round of matching generates the assignments
for workers, which is also a bipartite matching problem. We
construct another bipartite graph where one part of the graph
represents workers W and the other part represents rent/return
station pairs N × P . The weighted edge between a worker
w and a combination (n, p) equals the total moving distance
of w if he/she rents a bike at station n and returns it at
p. Notice that we use the workers’ total moving distance
instead of their overall detour as the edge weight. Actually, the
detour reaches the minimum when the total moving distance
is minimized, because the total length of workers’ original
journeys is constant. The procedure of the second round of
matching is shown in Algorithm 2. Line 1 initializes the vertex
set V ′ = W ∪X and edge set E′ = ∅. The weight edges are
added to E in lines 2-3. Similarly, as in Algorithm 1, we
modify the edge weights and apply the maximum weighted
matching algorithm in line 5. Finally, an edge set M is
calculated, and it constitutes the assignments for workers. The
workers’ overall moving distance is the sum weight of edges
in M , and is denoted by ‖M‖.
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We apply the TRM algorithm to the example in Fig. 6. We
first match rent and return stations. The dashed and solid line
in Fig. 6(a) show 2 possible matches, and the total distance
of the match indicated by dashed line is smaller. Therefore,
the extra bikes in station 1 should be delivered to station 3
and the bikes in station 2 should be moved to 4, as shown
by the dashed line. The second round of matching works to
assign each worker to a proper pair of matched stations. Fig.
6(b) shows all possible assignments. The dashed blue line
represents an assignment {(w1, (2, 4)), (w2, (1, 3))}. It means
that worker w1 is assigned to rent a bike from station 2 and
then return it at station 4, and that worker w2 is assigned to
rent at station 1 and return at station 3. In this assignment, the
total moving distance of workers is 3200m. The solid blue line
represents the assignment {(w1, (1, 3)), (w2, (2, 4))}. Here,
the overall moving distance is 4400m. Therefore, the algorithm
picks {(w1, (2, 4)), (w2, (1, 3))} as the final assignment. In
comparison, the assignment generated by the simple greedy
algorithm, which assigns each user to rent and return at the
station nearest to his/her origin and destination respectively,
is {(w1, (1, 4)), (w2, (2, 3))}. The total movement distance is
3400m, which is larger than the distance found by the TRM.

Our algorithm can find a better assignment than the simple
greedy algorithm because our algorithm checks more situa-
tions in the search space compared to the simple greedy algo-
rithm. The search space represents all the possible combina-
tions of workers, rent stations, and return stations. Clearly, the
size of the search space is extremely large (i.e., O((|B|!)2)),
and cannot be traversed in polynomial time. Our algorithm
can efficiently reduce the size of the search space by ignoring
the combinations whose total moving distance between rent
and return stations is not minimized. Although the optimal
solution may be ignored in these reductions, we prove our
algorithm has a 3 approximation ratio. Our algorithm balances
the algorithm optimality and time complexity, and can be
applied in large BSSs with hundreds of stations.

Theorem 2: The time complexity of TRM is O(|W |3).
Proof: The time complexity of a maximum weighted bipartite
matching algorithm can be O(|V |2 log |V | + |V | · |E|) when
using the Fibonacci heap [23]. We construct a complete
bipartite graph with O(|W |) nodes and O(|W |2) edges, and
the time consumption of two rounds of matching is O(|W |3).
The consumption of the remaining steps is O(|W |). Therefore,
the overall time consumption of our algorithm is O(|W |3). �

Theorem 3: The TRM is a 3-approximation algorithm for

d∗w

sw

s∗w

dw

n

p∗

p

Fig. 7. The relation between the TRM output and the OPT.

the WAP in the Euclidean space.
Proof: The calculation of the 3-approximation ratio is based
on the triangle inequality and the optimality of each matching
stage of TRM. For each negative station n ∈ N , there is a
corresponding positive station p ∈ P which is assigned in
the first round of TRM. In addition, the station pair (n, p)
is matched to a worker w with source sw and destination
dw in the second round of TRM. We assume that in the
optimal solution, the station n should be paired with station
p∗, and the station pair (n, p∗) should be balanced by the
worker w∗ whose source and destination are s∗w and d∗w
respectively. The relation among these nodes is shown in Fig.
7, which is a geometric graph in the Euclidean space. The
total moving distance of workers generated by our algorithm
is

∑
n∈N (dis(sw,n)+dis(n,p)+dis(p,dw)), and the optimal

value is
∑
n∈N (dis(s∗w,n)+dis(n,p∗)+dis(p∗,d∗w)).

Based on the triangle inequality, we can conclude that
dis(p,p∗)≤dis(n,p)+dis(n,p∗) and dis(p,d∗w)≤dis(p,p∗)+
dis(p∗,d∗w) for each n ∈ N . According to the op-
timality of the first round of matching, we can con-
clude that

∑
n∈N dis(n,p) ≤

∑
n∈N dis(n,p

∗). Besides,
the optimality of the second round of matching guarantees
that

∑
n∈N (dis(sw,n) + dis(p,dw)) ≤ ∑

n∈N (dis(s∗w,n) +
dis(p,d∗w)). Combining these inequity relationships, we have:∑
n∈N

(dis(sw,n) + dis(p,dw))≤
∑
n∈N

(dis(s∗w,n) + dis(p,d∗w))

≤
∑
n∈N

(dis(s∗w,n) + dis(p,p∗) + dis(p∗,d∗w))

≤
∑
n∈N

(dis(s∗w,n) + dis(n,p) + dis(n,p∗) + dis(p∗,d∗w))

≤
∑
n∈N

((dis(s∗w,n) + 2dis(n,p∗) + dis(p∗,d∗w)).

Therefore,∑
n∈N

(dis(sw,n)+dis(n,p)+dis(p,dw))

=
∑
n∈N

(dis(sw,n) + dis(p,dw))+
∑
n∈N

dis(n,p)

≤
∑
n∈N

((dis(s∗w,n)+2dis(n,p∗) + dis(p∗,d∗w))+
∑
n∈N

dis(n,p∗)

≤3
∑
n∈N

(dis(s∗w,n)+dis(n,p∗)+dis(p∗,d∗w)) = 3OPT.

The 3-approximation holds. �

VI. MULTIPLE SLICE OPTIMIZATION

Although the future demand of the system can be predicted,
it is hard to decide how many time slices the scheme should



Algorithm 3 k-slice Greedy Algorithm.
Input: station capacity vector ηB , current station state

vector φB(t0), the demand prediction {τB(t)}(t0 ≤ t ≤
t0 + k) of following time slices

Output: rebalancing target vector ρB(t0)

1: αb←ηb−(φb(t0)+max[
∑t0
l=t0

τb(l), · · ·,
∑t0+k
l=t0

τb(l)]), βb←
0− (φb(t0)+min[

∑t0
l=t0

τb(l), · · ·,
∑t0+k
l=t0

τb(l)]), ∀b∈B
2: positive target vector ρ+ ← find(βB > 0), negative target

vector ρ− ← find(αB < 0), ρ← ρ− + ρ+

3: if sum(ρ+,ρ−) > 0 then
4: Iteratively decrease ρb, arg minb(βB) (use final state to

break tie) by 1, until sum(ρ+,ρ−) = 0
5: else if sum(ρ+,ρ−) < 0 then
6: Iteratively increase ρb, arg maxb(αB) by 1, until

sum(ρ+,ρ−) = 0
7: return ρB(t0) as the rebalance target vector

look ahead due to the uncertainty of the system in the temporal
domain. If the algorithm is short-sighted, some self-balancing
situations may be ignored. On the other hand, infeasible
situations may occur if the algorithm considers too many
time slices. [2] proposes a greedy approach that tries to
find rebalancing targets which can maximize the future living
periods for each station. We find out that their approach may
generate unnecessary bike movements and their algorithm does
not consider that the sum of rebalance targets over overflow
and underflow stations should be zero. Inspired by their idea,
we investigate two algorithms that are outlined below.

A. k-slice greedy algorithm
Firstly, we introduce a heuristic greedy algorithm: k-slice

Greedy Algorithm (kGA). The idea is to look ahead k time
slices, and find a proper rebalancing target for the following k
time slices, where k is constant and is set by the BSS operator.
The operator conducts a round of rebalancing for every k time
slices. Recall that a proper target should minimize the number
of bikes needed to move, and the sum of targets for all stations
should be 0. In kGA, we firstly choose the target for each
station greedily, and then check the sum of the chosen targets
over all stations.

The procedures of kGA are illustrated in Algorithm 3. We
first calculate the range of the feasible rebalancing target for
each station. The largest value in the range for station b is
denoted by αb. A positive αb means that at most, αb bikes
can be moved into b within the following k time slices. The
smallest value in the range is denoted by βb, and a negative βb
means at most |βb| bikes can be removed from b. If αb < 0,
the station b will face overflow events in the following k slices
and has to remove bikes beforehand. In contrast, βb > 0 has
the opposite meaning. For example, in Table II, the initial
state is (0, 3, 3, 1), and the demand during the first slice is
(−1,+1,+2,−1). The capacity for each station is 5. In 1GA,
α1 = 5 and β1 = 1. It means that we can add a minimum
of 1 bike and a maximum of 5 bikes to station 1 without
causing OoS events. αb and βb indicate the range of feasible

Algorithm 4 Greedily Look-ahead Algorithm
Input: station capacity vector ηB , current station state vec-

tor φB(t0), the demand prediction {τB(t)}(t0 ≤ t ≤ |T |)
of following time slices

Output: rebalancing target vector ρB(t0)

1: Calculate longest survival time Tb under different targets
ρb(t0) for each station b, i.e., arg maxρb(t0)(Tb|0 ≤∑t0+Tb

t=t0
τb(t) + φb(t0) + ρb(t0) ≤ ηb), ∀b ∈ B

2: k ← min(Tb,∀b)
3: Apply kGA to calculate ρB(t0). Repeatedly decrease k if
kGA cannot find a feasible set of targets.

4: return ρB(t0) as the rebalance target

· · ·
Time

Fig. 8. An example of multiple slice rebalance scenario.

rebalancing targets of station b. αB and βB record the ranges
for all stations in B. The kGA will greedily choose the
smallest number in this range. However, the greedy strategy
cannot guarantee that the sum of targets among all stations is
0. To solve this, kGA iteratively adjusts the target. If the sum
of targets is larger than 0, kGA iteratively adds one negative
target to the station that has the minimum βb and uses the
highest number of bikes on-dock (after k time slices) to break
ties. If the sum is greater than 0, kGA iteratively adds one
positive target to the station that has the maximum αb and uses
the highest number of docks to break ties. Notice that if the
demand of a station exceeds the station capacity, kGA cannot
find a feasible target. This happens when the adjustments in
lines 4 or 6 cannot proceed. We assume that the operator can
set the length of each time slice properly to avoid such cases.

B. Greedily look-ahead algorithm
Besides manually defining k for kGA, we can also design

a greedy algorithm to automatically select the largest k.
Following this approach, we propose another target setting
algorithm: Greedily Look-ahead Algorithm (GLA).

The procedures of the GLA are illustrated in Algorithm 4.
The survival time (i.e., the time duration before OoS events
occur) of a station is related to the rebalancing target. In line
1, GLA tests the survival time of each station b under all
possible rebalancing targets, and stores the longest one, which
is denoted by Tb. In line 2, the GLA sets k as the minimum
Tb,∀b ∈ B. Unfeasible situations may occur if k is large. To
deal with this case, the GLA repeatedly decreases k by 1 and
then calls kGA until a feasible target is found.

It seems looking up more time slices (i.e. larger k) can
generate better results in terms of the total moved bikes



TABLE II

Time
slice Demand τ Greedily Look-ahead Algorithm 1-slice Greedy Algorithm

State without rebalancing Rebalancing target State without rebalancing Rebalancing target
1 (−1,+1,+2,−1) ( −1, 4, 5, 0) (+1,−1, 0, 0) ( −1, 4, 5, 0) (+1, 0,−1, 0)
2 (+3,−1,−3,+2) (3, 2, 2, 2) (0, 0, 0, 0) (3, 3, 1, 2) (0, 0, 0, 0)
3 (+3,−4,+5,−3) (6,−2 ,7,−1) (−1,+2,−2,+1) (6,−1 ,6,−1) (−1,+1,−1,+1)
4 (0, 0, 0, 0) (5, 0, 5, 0) (0, 0, 0, 0) (5, 0, 5, 0) (0, 0, 0, 0)

in a day. However, this is not the case, since the greedy
algorithm cannot generate an optimal substructure in our
problem. We use the following counterexample in Table II to
illustrate this point. Assume the current state is (0, 3, 3, 1)
and the demand vectors in the following time slices are
τ(1) = (−1,+1,+2,−1), τ(2) = (+3,−1,−3,+2), τ(3) =
(+3,−4,+5,−3) and τ(t) = (0, 0, 0, 0) ∀t ≥ 4. Notice that
the sum of demands in each time slice may not be 0, while the
sum of targets should be 0. According to the table, three bikes
need to be moved if the operator follows the targets generated
by GLA. However, the operator only needs to move two bikes
if the 1GA is used.

Theorem 4: The time complexity of kGA and GLA is
O(|B| log |B|).
Proof: First we analyze the time complexity of kGA. The cal-
culation of the largest/smallest feasible targets for all stations
costs O(|B|) time. It is the same for the calculation of the
positive/negative demand vector, since they are founded by a
traversal of each αb/βb (with constant size k). If the sum of
positive and negative targets doesn’t equal 0, the algorithm
will bridge the gap by 1 in each iteration. Since the maximum
difference between the sum of positive targets and the sum of
negative targets does not exceed |B|, the maximum amount
of iterations will not exceed O(|B|). In each iteration, the
algorithm chooses the station with largest lower/upper bound
value. If a heap is maintained, O(log |B|) time is needed to
adjust the head in each iteration. Therefore, the overall time
complexity of kGA is O(|B| log |B|).

The difference between kGA and GLA is that the GLA
will determine the value k by itself and then apply kGA.
The determination of k requires a single traversal of the input
time slices. Since the amount of time slices is a constant,
the GLA has the same time complexity as kGA, which is
O(|B| log |B|). �

VII. EXPERIMENT

A. Real-world dataset and statistics

We use the public data of NYC Citi Bike to construct our
real-world dataset: the NYC dataset. We use the history trip
data from 8/1/2017 to 9/30/2017. The data contains the records
of each trip including trip duration (in seconds), trip start/stop
time and date, start/end station ID, and latitude/longitude,
etc. Our NYC dataset contains more than 1.5 million trip
records and 328 bike stations. The statistics of trip duration
and temporal usage distribution of trips on 8/1/2017 (Tuesday)
shows that more than 55% of trips are shorter than 10 minutes.
It is reasonable to infer that most workers can ride a bike from
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Fig. 9. Usage pattern in weekdays and weekends.

one station to another within 10 minutes. It provides us with
a clue for choosing the slice length.

The temporal imbalance of the usage distribution is shown
in Fig. 9 and the spatial imbalance is shown in Fig. 10. To
illustrate temporal imbalance, we sum up the users’ demands,
including rent events and return events, among all stations
for each 15-min time slice in a day. Fig. 9(a) and Fig. 9(b)
illustrate the usage distribution on weekdays and weekends,
respectively. It can be seen that there are two peak periods on
weekdays and one on weekends. To show spatial imbalance,
we plot the usage of each station in Fig. 10 for AM rush
hours (8:00 - 10:00 AM) and PM rush hours (5:00PM - 7:00
PM). The blue nodes represent stations whose return events
are more frequent (i.e. the number of bikes at these stations
increases) in the given time window. The node’s diameter is
proportional to demands of the corresponding station. The red
nodes have the opposite meaning. The demand is predictable
because of the existence of the usage pattern. Usage prediction
methods such as [2] can be added into our scheme to generate
the near-future demand for kGA and GLA.

B. Synthetic Dataset
The synthetic dataset is used as a supplement for the real-

world dataset. The location of each bike station in the NYC
dataset is static, and so is the density of bike stations. We
want to test how the density of stations affects the performance
of TRM, since the station density of BSSs in different cities
may vary significantly. Therefore, we build a synthetic dataset
which contains several station sets with different densities.

In our synthetic dataset, we randomly generate the locations
of bike stations following a uniform distribution. The source
and destination location distributions of workers are also
uniform. The density of stations is measured by the expected
number of stations in a 5×5 km2 square. The capacity of each
station is set as 20 and the initial inventory of each station is
set as 3/4 of the capacity, which is 15. The number of rent and
return events of stations in each time slice is generated by the



(a) AM rush hours (8:00 - 10:00 AM) (b) PM rush hours (5:00 - 7:00 PM)

Fig. 10. The users’ demands in morning and evening rush hours.

Poisson process with parameter λ = 7 which is the average
number of daily rent events in the NYC dataset.

C. Comparison algorithms
The Branch-and-Bound (BB) algorithm is a global opti-

mization method which is used to find the optimal solution
to the WAP problem. Although it cannot be used in realistic
scenarios, it can provide an optimal result when the input
size is small. The optimal result can be used to evaluate
the performance of our two-rounds matching algorithm. The
key issue in the branch-and-bound algorithm is designing a
proper lower-bound heuristic for each state. It is defined as
the sum weight of chosen k stations plus the sum of the
n − k smallest weights. The complexity of calculating this
lower-bound heuristic is factorial. Therefore, the comparison
is conducted with a small input size.

The Local Search (LS) algorithm is a local optimization
approach. Finding the weighted 3D matching can be seen as
finding the minimum weighted subfamily of pairwise disjoint
sets and the size of each set is equal to 3. To the best of
our knowledge, the approximation algorithm with the tightest
bound for the problem is proposed by Berman in [24]. The
basic idea of the algorithm is local search. The approximation
ratio of the local search algorithm is (k + 1 + ε)/2 and the
time complexity is mO(k), in which m is the number of nodes
in the intersection graph. In our problem k = 3, and m =
|W |3. Therefore, the approximation ratio of the algorithm is
equal to 2 + ε with time complexity O(|W |9). Assuming that
a BSS only needs to move 50 bikes in each time slice, it costs
more than 120 hours to calculate a result on a 4.5GHz CPU
theoretically, which is not applicable. In contrast, our TRM
costs 3.85s on a 4.5GHz CPU with an input size of 50, and
357s on a 1GHz CPU with an input size of 100.

In addition, a Greedy algorithm is used as a baseline
approach. In the greedy algorithm, each worker chooses the
nearest station in N to rent a bike, and returns it to the station
in P that is nearest to his/her destination. If too many workers
choose to rent/return at the same station, the situations can be
arbitrarily broken, i.e., simply making a random selection.
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D. Experimental Settings
In the synthetic dataset, we focus on testing the performance

of TRM on different station densities. Totally, we choose three
densities: 10, 20, 40 to represent sparsely, regularly, densely
distributed stations, respectively.

In the real-world dataset, we first compare the performance
of TRM with others. The rebalancing target is calculated by
1GA. Notice that the branch-and-bound algorithm is extremely
time-consuming, so we extract a subset of stations and choose
a short slice length (20 min) to decrease the number of bikes
need to be moved. The stations are randomly extracted from
the NYC dataset in a 2 × 2 km2 area. We use the average
total detour in a time slice to measure the performance of the
TRM. For generalization, we repeat the experiment 100 times
over 10 different regions and record the average results.

The other experiment based on real-world datasets focuses
on the comparison between kGA and GLA. We assume the
rebalancing period is from 0:00 AM to 11:59 PM. The initial
state and capacity of each station are extracted from the NYC
dataset. However, the OoS events are not recorded by the
system. Therefore, the demand for each time slice is generated
by the prediction algorithm in [2]. Similarly, to smooth out the
result, the experiment is repeated 40 times.

E. Evaluation Results
Firstly, we present the evaluation results of TRM with

different densities in Fig.11(a). In total, there are 3 lines in
the figure. Each line represents a unique station density. From
the simulation result, we can find out that if the number of
workers is fixed (meaning the number of bikes that need to be
moved is fixed), a larger station density costs a smaller total
move distance. This is easy to explain because higher station
density may lead to smaller spatial intervals between stations,
and thus leads to a smaller total moving distance.

Fig. 11(b) illustrates the comparison between GLA and
kGA algorithms, we can find out that the GLA outperforms
1GA and 2GA. That is to say, although we find an example
where 1GA outperforms GLA, GLA has better performance in
general cases. It is not surprising since the GLA can adjust the
time slice to look ahead automatically and it is more flexible
than kGA. In the experiment, we also track the k chosen by
GLA in each iteration and find that the k value barely exceeds
4, which gives a clue for deciding the rebalancing frequency.

The comparison between TRM and other algorithms is
shown in Fig. 12. The number of workers represents the
average number of workers recruited in each time slice. The
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Fig. 12. Comparison between TRM and existing algorithms.

cost represents the average total detour in each slice. From Fig.
12(a), we can conclude that the performances of TRM and LS
are similar. They both outperform the greedy algorithm and
are not far from the optimal solution. However, considering the
running time in Fig. 12(b), we can conclude that the running
time of LS is larger than that of TRM. If the problem size
is larger, applying the LS to solve the WAP is no longer
appropriate since it costs more than one day to provide the
solution. Although TRM slightly underperforms compared to
LS, TRM is more efficient in terms of its running time.

VIII. CONCLUSION

In this paper, we propose a crowdsourcing BSS rebalancing
scheme that recruits workers to rebalance the system. The user
dynamics in spatial and temporal domains bring uncertainties
when designing such a system. To decouple effects from these
two domains, we slice the problem in the temporal domain and
generate a sequence of slices with a fixed time duration. In
each slice, we formulate the WAP in the spatial domain. The
general WAP is proven to be NP-hard. A 3-approximation
algorithm based on two rounds of matching is proposed
to solve WAP in the Euclidean plane. Over multiple time
slices, the rebalance frequency and targets affect the number
of bikes that are moved. We investigate several approaches,
including kGA (which only looks ahead for a single time
slice) and GLA (which looks ahead for as many time slices
as possible). The experiments are conducted based on both
synthetic and real-world datasets. Results of the comparison
between TRM and other algorithms in a fixed time slice
show that although TRM slightly underperforms compared to
a local-search approach algorithm, it runs much faster and
can be applied to large-scale real-world BSSs. Over multiple
time slices, the comparison between kGA and GLA shows that
GLA can efficiently decrease the number of workers recruited
over a day in the real-world dataset, although we show it may
generate unnecessary bike movements in some cases.
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