A Combined Functional and Object-Oriented Approach
to Software Design

Haifeng Qian, Eduardo B. Fernandez, Jie Wu
Department of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431

Abstract

Large and complez software systems contain a vari-
ety of entities (objects) and a complex control system
(transformation function). The pure object-oriented
design and structured design approaches concentrate
on either abjects or the transformation function sep-
arately. As such they may not be adequate in iso-
lation, to deal with the design of compler systems.
Therefore, it makes sense to study their combination.
In this paper we propose a Combined Functional and
Object-Oriented Design approach (CFOOD) based on
the extended object-oriented design method proposed
by P. Jalote. The CFOOD approach makes full use of
the object-oriented design and structured design tech-
niques combining the object view and the functional
view to provide a more complete view of a system. We
demonstrate the use of our approach by a design ex-
ample of a hospital patient monitoring system.

Keywords: Complex systems, functional modules,
object-oriented design, stepwise refinement, struc-
tured design.

1 Introduction

In the development of a software system the design
phase is the bridge connecting the problem space and
the solution space. It determines the major character-
istics of the system and has great impact on the later
phases, particularly testing and maintenance, which
account for the majority of the cost of a software sys-
tem over its entire life cycle. Many design techniques
have been proposed, among which, structured design
(SD) [17], {20] and object-oriented design (OOD) [3],
[9], [15] are the most widely used.

The SD method views every system as a function
that transforms the given inputs into desired outputs,
the main task being designing this transformation

0-8186-7123-8/95 $4.00 © 1995 IEEE

167

fammmmeeemececacammac e ammasmcecacamaommaaamamo————— y
1 L}
1)
'] Object Object Object ‘
H data data data '
H :
3 Operations Operations Operations .

‘
H 1
1 34

Transformation

Function

Figure 1: The model of a system, (adapted from [9])

function by functional abstraction and functional de-
composition. In object-oriented design a system is de-
composed into objects and associations between these
objects. An object is an instance of an abstract data
type, which encapsulates the object data, and provides
a set of predefined operationsto manipulate and access
this data.

In the SD paradigm, the basic units of a system are
functions, data are secondary. In the OOD paradigm,
data are primary and functions are secondary. How-
ever, systems in real life consist of complex entities
with operations on them through which they interact
with other entities, and of a complex transformation
function that controls and operates on the entities.
This transformation function requires its own method
of development [16]. The entities and the transforma-
tion function are usually of equal importance. Thus a
more natural way to model a real life system is to in-
corporate both OOD and SD techniques. Entities can
be represented as objects with their operations using
the OOD technique, and the transformation function
can be designed by the SD approach (Figure 1).

The work of exploring integration of methods has
deep significance [7], [8], [13], [18]. It is useful to ex-
plore these areas of compatibility for pragmatic rea-

sons: contractual and/or documentation requirements
may make it necessary, and also it promotes the de-
velopment of software systems to a higher theoretical
level, as well as facilitating the evolution of more co-
herent and usable approaches. This integration may
also be useful as a transition phase from one method-
ology to another. While SD is theoretically weaker
than OOD, it is still used in many places and there
are many programmers familiar with its use. This
makes the combination of these methods of practical
value. In particular, when we are designing large and
complex systems, a specific methodology may not be
appropriate for all the development phases or for all
the subsystems of this system.

Several studies on the integration of the OOD
and SD approaches have appeared in the last few
years. Ward [18] showed that there is no funda-
mental opposition between the two approaches, and
that “real-time structured analysis/structured design
can, with modest extensions to the notation and to
the model-building heuristics, adequately express an
object-oriented design”. Jalote [9], [10] proposed an
extended object-oriented design (EOOD) methodology,
which incorporates a top-down, stepwise refinement
approach in the OOD approach. Bailin [1] described
a method for combining structured analysis with the
object-oriented approach for requirement specifica-
tions. Similarly, Lee and Carver [12] used data flow
diagrams in the analysis part of the problem. In [4],
Constantine emphasized that we must get beyond the
“madness of methods” and get “back to basics” by
agreeing on a set of fundamental principles indepen-
dent of any methodology. With sound principles being
recognized as more important than specific methods,
the groundwork could be laid for a coherent integra-
tion of the methods. Wasserman et al. [19] created an
object-oriented structured design notation that can be
used to describe not only object-oriented designs but
also structured designs and even concurrent designs.
Loy [13] made a comparison of the object-oriented and
structured development methods and concluded that
there is little evidence of the statement that the QOD
is better than SD, although he might have obtained
a different result if he had done his study at a later
time. In [7] and [3] Henderson-Sellers and Constan-
tine pointed out that the object-oriented and struc-
tured techniques can be seen as complementary, and
could be used at different stages of the life cycle, so
that the existing investments in traditional tools are
preserved. There are some OOD methods based on
hierarchical decomposition of objects, e.g. HOOD [6],
but these methods use only objects. The OMT model

168

[15] includes a functional model to describe the im-
plementation of the operations of an object; however
this model is used after all these operations have been
defined. In summary, all these methods are used to
produce only an object-oriented design or they dis-
cuss general aspects, none of them presents a specific
development methodology combining the methods in
the final result.

In this paper, we present a Combined Func-
tional aend Object-Oriented Design (CFOOD) ap-
proach based on the extended object-oriented design
approach. The CFOOD approach makes full use of the
SD and OOD techniques, provides stronger ability to
deal with those systems whose transformation func-
tion and operations on objects are both fairly com-
plex, and also provides adaptability to different types
of problems. Of the methods discussed above, our ap-
proach is closest to EOOD. However, when applied
to systems that have transformation functions and/or
operations that are much more complex than the cor-
responding objects, our way to develop the functional
refinement is more systematic and formal than the way
used by EOOD.

2 Preliminaries

A functional model of a system shows how output
values in a computation are derived from input val-
ues, without regard for the order in which the values
are computed. The functional model consists of mul-
tiple data flow diagrams (DFD) which show the flow
of values from the external inputs, through operations
and internal data stores, to external outputs. Data
flow diagrams do not show the logic for implementing
them. In the OOD method, the design is represented
by an object model which captures the static structure
of a system by showing the objects in the system, rela-
tionships between objects, and attributes and opera-
tions that characterize each class of objects. In the SD
method, the design is represented by a structure chart
which is produced from the functional model by trans-
form and transaction analysis. The structure of a sys-
tem is composed of the functional modules of that sys-
tem together with the interconnections between these
modules.

The structured design (SD) methodology consists
of four steps [10]: 1. Restate the problem as a data
flow diagram. 2. Identify the input and output data
elements. 3. First-level factoring, transfer the DFD to
a structure chart. 4. Factoring of input, . output:and
transform modules.

The object-oriented design (OOD) methodology
consists of five basic steps [15]. From the word state-
ment of the problem: 1. Identify the objects and their
attributes. 2. Identify the operations on the objects.
3. Establish associations between objects, including
generalization, aggregation and relationships. 4. De-
velop a dynamic model of the system. 5. Implement
the operations.

This purist OOD approach is acceptable for smaller
systems, but may not be suitable for complex prob-
lems [9], [10]. The extended object-oriented design
(EOOD) method proposed by Jalote [9] has three
phases: 1. Produce the initial design. 2. Do a func-
tional refinement. 3. Perform object refinement.

The first phase utilizes the OOD approach. From
an informal strategy, identify the objects, their at-
tributes and operations on them. Then identify the
operations that do not seem to belong to any identi-
fied object, and mark them for functional refinement
in phase 2. These would typically be the operations
that employ many objects or do not seem to use any
objects.

In the second phase, for each of the operations
marked for functional refinement, write an informal
strategy, identify the objects, operations on them and
operations to be further refined in the next refinement.
This process is repeated until no operations for further
refinement are identified. As the functional refinement
finds new objects and operations on them, new oper-
ations on old objects may be uncovered. When this
phase terminates, all the objects in the problem space
are identified, they form the Problem Space Object Set
(PSOS).

The third phase is to refine objects in PSOS. For
each object in PSOS, write an informal strategy for
all the operations on the object, and identify any new
objects (and their corresponding operations) that are
required to implement these operations. New opera-
tions on old objects may also be identified. The new
objects should naturally be regarded as nested within
the object whose refinement uncovered their existence.
The process continues on the nested objects until the
objects can be implemented directly.

In the EOOD method, emphasis is placed on ob-
jects. The SD technique is not brought into full play
and the design of the transformation function is pro-
cessed in a less systematic and coherent way than that
of objects. The reason is that the initial design uses
only the OOD approach and the implementation of
informal strategies always consider objects and their
operations first. It is fine when the method is applied
to the design of an object-oriented system in which ob-

169

jects are primary. However, when it is used to design a
function-oriented system, i.e. the transformation func-
tion is dominant over and more complex than objects,
the SD technique used in the EOOD approach appears
to be inadequate, full use of the SD technique is not
only helpful but also required. The same thing hap-
pens to the implementation of operations on objects
when the operations are very complex.

3 A Combined Functional and Object-
Oriented Design Methodology

In the proposed methodology we start from two
models: object model and structure chart, each re-
sulting from the OOD and SD methods respectively.
Like EOOD we employ a top-down, recursive refine-
ment approach both for the transformation function
and for the objects in the system. However, unlike
the EOOD, the approach is unbiased to either objects
or the transformation function, the OOD as well as the
SD technique are applied as needed. The transforma-
tion function and operations are designed using mostly
the SD technique. In addition, CFOOD provides a
more complete view of the system by interrelating the
components of the object model and structure chart.
We describe below the five phases in this approach: 1.
Produce an initial design by creating a combination
of object model and structure chart. 2. Relate func-
tional modules to objects. 3. Functional refinement.
4. Object refinement. 5. Produce the final design.
We analyze below each one of these steps in detail.

1. Produce an initial design

We create an initial object-oriented design from the
specifications. A reasonable way to start is to se-
lect some nouns as potential objects. We also define
some basic associations. Finally, we define intuitively
some appropriate operations on the defined objects
(we might use a state diagram or event-trace diagram
to define operations if necessary). Then we restate
the strategy as a functional model (DFD) using the SD
technique, identify the most abstract input and output
data items, and create an structured chart from the
functional model by transform and transaction anal-
ysis [10]. The outputs of this phase are an object
model composed of objects and associations and the
structure chart composed of functional modules.

2. Relate functional modules to objects

The object model and the structure chart are two
different views of the same system. The modules in
the structure chart may be interpreted as functions
operating on objects in the object model. For each

module in the structure chart, we identify the relation-
ship between this module and the objects on which it
has actions by adding links connecting the module and
the objects. If the function of the module is simply an
operation already defined on the object to which it is
connected, then this module needs not to be further
refined. Otherwise, mark it for functional refinement
in the next phase. The output of this phase is a com-
bination of two models with a many-to-many mapping
between them and marks on some functional modules
that are to be further decomposed.

3. Functional refinement

This is an iterative process to refine the functional
modules in the structure chart. Each module marked
for functional refinement in the last phase, is refined by
applying step 1 to it. New objects and operations on
them may be uncovered during the refinement; if this
happens, we add them to the object model, and iden-
tify their attributes and interfaces with other objects.
Also, new operations on the objects that already ex-
ist will be identified, we attach them to their objects.
When the modules in the current level are refined, ap-
ply step 2 to mark modules in the next level that still
require further refinement. To keep things clear, re-
move the link between a module and an object if the
relationship is also indicated by that between its sub-
module and the same object. This refinement process
ends when no module is marked for further refinement,
i.e. the function of each leaf module in the structure
chart is either an operation on some object or can be
implemented directly.

The objects and operations that are discovered dur-
ing refinement at a given level are used for defining the
functions that were marked for refinement at the pre-
vious level, but have no other effect on the transfor-
mation function. At the end of this phase, we have a
refined structure chart and an object model consisting
of problem space objects, with relationships between
the modules and objects that are clearer: a leaf mod-
ule is related to an object if the function of the module
is an operation defined on the object.

4. Object refinement

In this phase we identify the objects and operations
that are required to implement the operations on the
objects in the PSOS. To refine an object, for all the
operations defined so far on the object, apply steps 1,
2 and 3 to them, i.e. use both OOD and SD techniques
to create object and functional models and a structure
chart, then relate the components in the two models,
and refine modules level by level. Identify any new ob-
jects and their operations required to implement these
operations. The new objects and operations should

170

be regarded as nested within the object undergoing
refinement. Also identify any new operations on old
objects (other objects in the PSOS). This may require
the refinement of those objects reconsidered. This is
repeated for each object in the PSOS. After all oper-
ations on the parent objects are identified, the refine-
ment of nested objects starts. This phase terminates
when the objects can be implemented directly. The
output of this phase are two related hierarchical mod-
els where the last level can be implemented directly.

5. Produce the final design

A design should contain: modules and their spec-
ifications, a set of classes with their attributes and
operations including their visibility, and design deci-
sions. The problem specification can be obtained from
the data flow diagram which is generated in phase 1,
with the specification of data flows that occur in the
DFD. Modules and their specifications are acquired
from the structure chart. The specification of a mod-
ule includes its interfaces, its abstract behavior, and
its submodules. The design decisions should explain
the choices that were available and reasons for making
a particular choice.

4 A Design Example

In this section we demonstrate the use of the com-
bined functional and object-oriented design methodol-
ogy through an example (this is a variation of a clas-
sical problem [14]).

A hospital needs a patient monitoring system. Each
patient is monitored by a sensor which measures pulse,
temperature, blood pressure, etc. The program reads
these vital values (specified for each patient) periodi-
cally and stores these values in a database. For each
patient, safe ranges for vital values are specified. If
a reading is outside the safe range, the alarms in the
offices of the doctor and nurses who are responsible
for the patient will sound. Each patient’s values are
constantly displayed by his bed and in the offices of
the persons responsible for him. A patient has several
nurses and one doctor assigned to him. Doctors and
nurses have several patients assigned to them. Each
doctor has his own office while several nurses share an
office.

For conciseness, we will only show some major de-
tails. Readers are referred to [10] and [15] for the
complete model notation.

Phase 1: Produce the initial design
Our strategy for this phase of the problem is based
on [2] and [15]. We assume that nouns correspond to

potential objects. The words that are repre-

sent the selected objects, and the possible operations
on the objects are ifalicized. The phrases in boldface
denote the functions of modules.

Get vital values of a and check the
patient’s safety. If not safe, set alarms for the
related doctor] and [nurses | - Display the values
on corresponding screens and store the values
in a database.

For simplicity, we assume that the frequency at
which the sensor reads values from the patient is set
manually. From this informal strategy, three objects:
Patient, Doctor and Nurses, with their relevant at-
tributes and operations are identified (there could be
other attributes and operations that are not of inter-
est for this application). The Doctor and Nurse classes
could be generalized to a superclass such as Employee.
Because this aspect is not peculiar to our methods, we
leave it out but of course in a real design one should
take advantage of convenient generalizations. From
the statement: ” A patient has several nurses and one
doctor assigned to him. Doctors and nurses have sev-
eral patients assigned to them”, we get two relation-
ships between these classes. We use the OOD and
SD methods to get the object model and functional
model, then we convert the functional model into a
structure chart. The loop in the structure chart root
corresponds to looping through all the patients. Fig-
ure 2 shows all three initial models. The data flow
details are omitted in the functional model and the
structure chart.

Phase 2: Relate modules to objects

Examining the four modules in the structure chart,
we find that the module Check safety is related to
the Patient object since it needs the patient’s safe
ranges. The modules Set related alarms and Dis-
play & store values are related to the objects Doctor
and Nurse, since only in the offices of those responsi-
ble medical personnel, will the alarms sound and the
patient’s values be displayed. The module Get vital
values does not belong to any existing object at this
point. Clearly, all modules need to be further refined.
Figure 3 shows explicitly the relationships between the
modules in the structure chart and their correspond-
ing objects.

Phase 3: Functional refinement

We perform now a second-level factoring of the
modules in the structure chart. The informal strategy
for the module Get vital values is: Read analog
values from a sensor for a specific patient, then Con-

171

Patient
name, sex, age
§SN [———
medical condition Freq. of reading data Database
safe ranges -~
freq. of sensor
set safe ranges
listdoctor Display &
list.nurees Loplay
store values
asigned-to | | assigned-to
Doctor Nurse
name name
SSN SSN
office # office #
med. specialty med. specialty

zan! rank

assign-to.patient

assign.to.patient
list_patients

list.patients

(b)

(2)

Patient Monitoring
System
/ \

Get Check Set related Display &
vital values safet; alarms stote values

(c)

Figure 2: (a) Object model (b) Functional model (c)

Structure chart

Patient
aame, sex, age o atient Monitori
SSN stient Monitoring]
medical condition System
T—X
fistdoctor /
list_nurses
Get Check Ses related Display &
prommmsnT b vital values safloty alarms storo values
. ' T T T
awigaed-to | 1 assigned-to H i ' :
'
Dctor Nurse : ' H \
' ' I
name name | ' : ;
S5N SSN e J : ,
office # office # H '
med. specialty med. specialty H :
rank rank \ H
‘)
' '
'
assigntopatient assign.to.patient : '
list_patients list.patients N :
: :
‘

Figure 3: The combined object model and structure
chart

vert them to digital values. The | Vital-values| are

collected from the patient by the sensor. The module
is simple so we can do as in the EOOD method instead
of recursively applying phase 1 to create two models.
Here another object Vital-values is identified, with two
operations Read analog values and Convert A/D on it.
We add this Vital-values object to the object model,
identify its attributes and one-to-one relationship with
the Patient object. Two submodules are created for
implementing this module (Figure 4).

The informal strategy for Set related alarms is:
Get the responsible person for the patient, Set
on the alarm in that person’s office. Repeat this
for the other people responsible for the patient. The
decomposition of this module is indicated in Figure 4.

The decomposition of the other two modules
Check safety and Display & store values can be
done similarly (Figure 4).

Next we relate these modules to objects. The mod-
ules Read analog values and Convert A /D are two
operations that refer to Vital-values (because these
values are obtained from sensors), thus they are re-
lated to object Vital-values, and do not need further
refinement. Other relationships can be adjusted sim-
ilarly. Modules set office alarm, display on office
screen and store values are marked for further re-
finement. Other modules are either operations on ob-
jects or can be implemented directly. For example,
“get the responsible person” for the patient can
be performed through the assignment relationship be-
tween the patient and his doctor and nurses. After
the second-level factoring is done, we get the related
two models of Figure 4.

In the third-level factoring, the strategy for Set on
office alarm is: Get number, set on the
alarm in the office. Here a new object Office and
the operation set on the alarm on it are identified.
We add it to the object model, identify its attributes,
and its one-to-one relationship with the object Doctor
and one-to-many relationship with the object Nurse
according to the problem specification. The function
Get office number is realized through a new oper-
ation on objects Doctor and Nurse: find office. Set
on alarm is an operation of object Office. The mod-
ule display on office screen is done similarly. In
the above functional refinements, we did not recur-
sively applying phase 1 since the functions are sim-
ple. The implementation of the module store values
to database depends on the specific structure of the
database, we leave it open here. After applying phase
2, no module is marked for further refinement (except
module store values), the output of phase 3 is shown

172

Patient Monitoring

Coridy

[\
=

Check
safety

Display &

store values

Get resp.| | Set office Disp. on Bed Store
rson alarm off._scrn. display values
1 H '
' ‘ '
! fomnmmmcasanan b -
‘ ' '
1 i 3
Doctor Nurse
name, sex, age name name
SSN SSN
medical condition| office # office #
med. specialty med. specialty
rank rank
read ana. valuesf list_doctor
comvert A/D list.nurses assign.to.patient assign.to.patient
check_safety listpatients list-patients
set_safe ranges
I assigned-to e=——=q]

Figure 4: The combined models after 2nd-level mod-
ules have been factored

in Figure 5. At this time, the objects: Patient, Doc-
tor, Nurse, Sensor and Office form the problem space
object set.

Phase 4: Object refinement

We will not show all the refinement of objects here,
we use the object Patient as an example to show the
object refinement procedure. Consider the operation
set safe ranges on the patient object. Assume the
safe ranges of a patient are determined by his sex,
age, medical history and current diseases contracted,
medicines taken, etc. These data are processed by a
function, the result of which is reviewed by the doc-
tor, and finally the safe ranges are given by the doc-
tor. The medical history and medicines taken are two
new attributes. The medical history is composed of
medical records, each of which may contain period,
description of disease, treatment, responsible doctor,
etc. It is referenced by the doctor and nurses and
should be kept up to date by inserting new medical
records. The medicines taken should have attributes
such as name of medicine, the length of period the
medicine was taken, dosage, side effects, etc. These
two attributes are complex and have their own op-
erations, they should be implemented as new objects
nested within the object Patient.

The informal strategy for the operation of set safe
rangesis: read patient’s data, process data, doc-
tor review result & set the safe ranges. Then
apply steps 1, 2 and 3 to create the object model,
functional model and structure chart, and refine mod-

Patient Monitoring

System

Display &

Get
vital values

store values

<D

Patient Mouitoring
System
T X

Check
safety.

AN
iR

Get resp.| |Set office
Compare
person alam
1
v
‘
i
H >
| Get office Set on Get office Disp. on
number alarm number. screen
t 3
<+

Get.
vital values

Get safe
ranges

Disp. on

Bed Store
display values

off._sen.

PP

: ' '
: ' H
3 ¢ ' .
! !) i :
: ' P G : pane
[I . i
T R [H ' }
AR R R . franeondeenees 1
. H H Vo ‘ H : : :
o : H R |) 3 ¥ 1 ¥
H : ' i essemmeccorecces $mmmmes M Vital-values Patient Doctor Office Nurse
o '
Voo H ' H frequency name, sex, age name building # name
F SR 2) 1 1 1 fe-rang SSN SSN office # SSN
4 ' Offi Nurse edical conditi alarm #
Vital-values Patient it medieleonCOM 1 med. specialty | | screen % med, specialty
{requency name, sx, age name building # name rank san]
safe.ranges SSN SSN office # SSN read ana, values| listdoctor 1
medical conditian alarm # . convert A/D list.nurses assign.to.patient set alarm on/off] assign.to.patient
med. specialty screen # med. specialty checksafety listpatients list-patients
rank rank set.saferanges find.office find.office
- — -
read ana. values| | list.doctor 1 assigned-to +—— T
convert A/D list.nurses assign.to.patient set alarm on/off] :.uign.t?.puiant
check.safety listpatients list.patients . X
set.saferanges find.office find.office nested objects & trans. {unction
assigned-to ~=—"} Set safe
L L] Medical history Medicines taken l :_n‘ﬂ
. \ A period ‘medicine T
Figure 5: The result of functional refinement e dosage
‘docter.seview insert/delete/update records [4= = --i Read pat- l Process I Ses by
P ient data data doctor

ules level by level, as in functional refinement.
Repeat the process for other objects in PSOS.
When this phase finishes, we get the two related mod-
els with every component in either model being im-
plemented by ‘atomic actions’ and/or ‘atomic objects’

(Figure 6).

Phase 5: Produce the final design

The design specification can be generated as de-
scribed earlier, we omit the details here.

In this example, the transformation function is not
complex, thus we did not recursively apply step 1
to create the object model and structure chart while
refining functional modules, the EOOD method is
enough. However, some operations on objects such
as set safe ranges are very complex, we may have to
recursively apply the CFOOD method in order to im-
plement those operations. Some attributes of objects
may seem not important for this system, they are in-
cluded for reusability reasons.

5 Conclusions

The pure SD and OOD methods which view a sys-
tem as composed of either functions or objects may
not be suitable for designing large and complex sys-
tems. The extended object-oriented design (EOOD)
method uses the OOD approach with the aid of SD
technique, but the emphasis is still placed on objects.
The design process follows an initial design resulting

173

Figure 6: The output of object refinement

from the OOD approach. Its use of the SD technique
may not be adequate to deal with very complex func-
tions or operations.

We have proposed a combined functional and
object-oriented design approach (CFOOD) to attack
these weaknesses of the EOOD. The CFOOD ap-
proach starts from an initial design that combines an
object model and a structure chart that result from the
use of the OOD and SD approaches respectively. Then
the two models are related together to combine the
two different views of the system. These two steps are
recursively applied to the complex modules and oper-
ations in the following phases of functional and object
refinement. The approach provides the flexibility to
use the OOD, SD, and EOOD techniques, depending
on the complexity of the modules or operations under-
going refinement, and also makes it possible to design
the object and the transformation function parts of a
software system independently.

CFOOD makes full application of the OOD and
SD techniques. The refinement of functional modules
and objects applies the OOD and SD techniques recur-
sively. This seems complicated, but it could be really
necessary for a very complex module. In fact, CFOOD
provides adaptability for using the OOD and SD tech-
niques for different modules or operations. For a mod-
ule or an operation that is simple, we can go through

an informal strategy as in EOOD instead of phase 1.
For a module that is function dominant we may ap-
ply only the SD method. In extreme cases, CFOOD
can become SD , OOD or EOOD, respectively. In ad-
dition, by incorporating the object model and struc-
ture chart, and relating the two models, the CFOOD
method is more systematic and complete in designing
a system than the EOOD method. A more general
advantage is the possibility that the two parts of a
large software system, objects and the transformation
function, can be designed independently by OOD and
SD experts respectively. The two submodels obtained
in the initial design in CFOOD are two descriptions of
the same system, are consistent with each other, and
are naturally related.

Another application of the proposed approach
comes from the need for controllers for an applica-
tion [16]: The objects obtained through any design
method, e.g. OMT, are static; to define a complete ap-
plication we need a controller that implements some
flow of control and makes calls to object operations
according to the needs of the application. In our
approach the final structure chart is in effect a con-
troller for the application and there is no need to
design any other controller. A final justification for
our method is that the O-O paradigm is not the best
approach for every aspect of an application. For ex-
ample, some real-time procedures can be more pre-
dictable when designed procedurally than as opera-
tions on objects. In these cases, our method gives a
designer the flexibility to choose the most convenient
approach for different portions of the application. The
value of the method should be validated through its
use in real applications. We have used it in two appli-
cations: a backup system for file servers and a stream-
ing/synchronization system (part of a multimedia user
interface). While clearly more experience in its use is
needed, we are convinced it is a method that has prac-
tical value.

References

{1} S. Bailin, “An object-oriented requirements speci-
fication method,” Comm. of ACM, Vol. 32, No. 5,
May 1989, pp. 608-623.

[2] G. Booch, “Object-oriented development,” IEEE
Trans. on Software Eng., Vol. SE-12, No. 1, Feb.
1986, pp. 211-221.

[3] G. Booch, Object-Oriented Analysis and Design
(2nd Edition), The Benjamin/Cummings Publ.
Co., 1994.

174

[4] L. L. Constantine, “Beyond the madness of meth-
ods: system structure modeling and convergent
design,” Software Development °89: Proceedings,
Miller-Freeman Publishing Co., 1989.

[5] L. L. Constantine, “Object-oriented and struc-
tured methods toward integration,” American
Programmer, Vol. 2, No. 7/8, Aug. 1989, pp. 34-40.

[6] J. E. Cooling, Software Design for Real-time Sys-
tems, Chapman & Hall, London 1990.

[7] B. Henderson-Sellers, “Three methodological
frameworks for object-oriented systems develop-
ment,” Proceedings of TOOLSS, Sydney, Aus-
tralia, Nov. 1990, pp. 118-131.

[8] B. Henderson-Sellers and L. L. Constantine,
“Object-oriented development and functional de-
composition,” JOOP, Jan. 1991, pp. 11-17.

[9] P. Jalote, “Functional refinement and nested ob-
jects for object-oriented design,” IFEE Trans. on
Software Eng., Vol. 15, No. 3, March 1989, pp.
264-270.

[10] P. Jalote, An Integrated Approach to Software
Engineering, Springer Verlag, New York, 1991.

[11] N. L. Kerth, “A structured approach to object-
oriented design,” Addendum to the Proceedings of
OOPSLA’91, pp. 21-43.

[12] S. Lee and D. L. Carver, “Object-oriented analy-
sis and specification: a knowledge base approach,”
JOOP, Jan. 1991, pp. 35-43.

[13] P. H. Loy, “A comparison of object-oriented
and structured development methods,” Tutorial on
System and Software Requirements Engineering ,
ggéEE Computer Society Press, CA, 1990, pp. 290-

[14] S. Rotenstreich and W. E. Howden, “Two-
dimensional program design,” IEEE Trans. on
Software Eng., March 1986, pp. 377-384.

[15] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen, Object-Oriented Modeling and
Design, Prentice-Hall, Englewood Cliffs, NJ, 1991.

[16] J. Rumbaugh, “Controllin
ment dynamic models,” J 0%
1993, pp. 25-30.

[17] W.P.Stevens, G.J. Myers and L. L. Constantine,
;‘Eg‘)gzuctured design,” IBM Syst. J., Vol. 13, No. 2,

[18] P. Ward, “How to integrate object orientation
with structured analysis and design,” IEEE Soft-
ware, March 1989, pp. 74-82.

[19] A.I. Wasserman, P. A. Pircher, and R. J. Muller,
“The object-oriented structured design notation
for software design representation,” Computer,
Vol. 23, No. 3, March 1990, pp. 50-63.

[20] E. Yourdon and L. L. Constantine, Structured De-
sign, Prentice-Hall, Englewood Cliffs, NJ, 1979.

code—how to imple-
P, Vol. 6, No. 2, May.

