
Utility-Based Scheduling for Periodic Tasks with
Multiple Parallelization Options

Dawei Li and Jie Wu
Department of Computer and Information Sciences

Temple University
Philadelphia, USA

{dawei.li, jiewu}@temple.edu

Abstract—Modern cloud computing systems have been using
multiple processing units on servers to increase their processing
capability. Recently, applications with multiple parallelization
options have been witnessed, and serve as a promising model for
efficiently utilizing the processing capacity of the system. In this
paper, we consider utility-based scheduling for periodic multi-
segment tasks with multiple parallelization options on platforms
with multiple homogeneous processing units. Our goal is to
maximize the system’s overall utility achieved by scheduling the
tasks. We show that the problem is closely related to another
problem, which minimizes the density of each task separately. We
consider two typical types of utility models, namely, a uniform
utility model, where all tasks have equal utility, and a general
utility model, where all tasks have different utility values. For the
uniform utility model, we give the optimal solution for selecting
and scheduling tasks. For the general utility model, we prove that
the problem can be reduced to the classic 0-1 knapsack problem,
and thus is NP-complete; we then provide the Fully Polynomial
Time Approximation Scheme (FPTAS) for the problem. FPTAS
algorithms are known for high time complexity, especially if
we want to achieve near-optimal solutions. We then provide a
simple 1/2 approximation algorithm based on a greedy strategy
with significantly reduced time complexity. Simulations show that
tasks with multiple parallelization options can improve system
utility significantly; comparisons show that the 1/2 approximation
algorithm can achieve near-optimal solutions under general
conditions.

Index Terms—Multi-core processors, utility-based scheduling,
periodic tasks, parallel processing, multiple parallelization op-
tions.

I. INTRODUCTION
Recently, cloud computing has become an important service

and business model. General users or small- or medium-
sized companies can submit their application requests to cloud
service providers, such as Microsoft Azure, Amazon Web
Services, Google Cloud Platform, etc. By providing cloud
services, for example, in the form of Software-as-a-Service
(SaaS), cloud service providers receive a certain amount of
payment, benefits, or utilities from the service requesters.
In the rest of the paper, we will consistently use the word
utility to describe what the cloud service provider gains by
providing services. From the cloud service providers’ point
of view, application scheduling and resource provisioning can
be optimized to maximize the utility gained, as long as the
service level agreements with their customers are met.

To meet the increasing computation requirements of cloud
applications, modern cloud computing systems have been

using multiprocessors and/or multi-core processors to increase
their computational capabilities. In this paper, we do not con-
sider the hardware differences between multi-core processors
and multiprocessors; what we are interested in is the total
number of general purpose processing units in the system. We
define a processing unit to be a logical thread core with a
processing capability of 1.

Nowadays, the number of processing units on a single com-
puter is common to go up to 8, 16, or higher. Applications that
want to efficiently utilize these processing units evolve from
single-threaded tasks to multi-threaded tasks. The model is
further generalized into a general “multi-segment task model”
in [1], [2], and [3], where each task consists of a sequence of
segments, where each segment has multiple threads.

The aforementioned models assume that each task or each
segment of the task has a fixed number of parallel threads.
We call the number of parallel threads of each task or each
segment of the task the parallelization degree. It is intuitive
that if the number of parallel threads of each segment can
be dynamically adjusted, the tasks can benefit more from a
system with multiple processing units. This task model is
called malleable, resizable, or elastic tasks [4]–[6]; we refer to
this task model as tasks with multiple parallelization options.
Authors in [5] develop a software framework, ReSHAPE for
supporting dynamic resizing parallel tasks during runtime;
experiments in the paper also show that dynamic resizing
parallel tasks has great potential to improve system utilization
and to reduce application completion time. Authors in [7]
formally present the periodic multi-segment resizable task
model, where each segment of the task has multiple options
to chose a parallelization degree from.

Applications that can be modeled as tasks with multiple par-
allelization options provide profitable optimization spaces for
cloud service providers. In this paper, we consider scheduling
such tasks from the cloud service providers’ point of view.
Our goal is to maximize the overall system utility gained by
selecting and scheduling a subset of (many presented) tasks.
A. Motivational Example

In this subsection, we present a simple example to motivate
our work in this paper. Assume that there are three single-
segment tasks, ⌧1, ⌧2, and ⌧3. Each task has three paralleliza-
tion options. All tasks are released at time 0 and has a deadline
of 5. Their utilities, parallelization options, and corresponding

2

TABLE I
MOTIVATIONAL EXAMPLE

Task Utility Options NO. of Threads Execution Time
Single Thread Total

⌧1 8
I 1 7 7
II 2 4 8
III 3 3 9

⌧2 3
I 1 6 6
II 2 3.5 7
III 4 2 8

⌧3 4
I 1 6 6
II 3 3 9
III 4 2.5 10

execution times are provided in Table I. Assume that we have
3 processing units on the platform.

Since all tasks have a single-thread execution time greater
than 5, if they are not partitioned and parallelized, none of
them can meet their deadlines. In this simple example, we
can see that the utility of ⌧1 is greater than the sum of ⌧2
and ⌧3’s utilities; since we want to maximize the total utility
of the system, if ⌧1 is schedulable on the platform, we need
to select ⌧1. With a quick observation, we can see that ⌧1 is
not schedulable if it chooses the first parallelization option,
i.e., using one thread for the task, because the execution time
of using just one thread is 7, greater than its deadline. We
can also tell that if we choose either the second or the third
parallelization option for ⌧1, it is schedulable.

If we choose the third parallelization option for ⌧1, we
will need to use 9 units of execution time for ⌧1. Three
processing units from time 0 to 5 can provide a maximum
of 15 units of processing time. Thus, we have 15 � 9 = 6

units of processing time remaining. For the same reason as
⌧1, neither ⌧2 nor ⌧3 can meet their deadlines if they choose
their first parallelization options. However, if either ⌧2 or ⌧3
needs to use its second or third parallelization options, its
execution requirement will be greater than or equal to 7;
however, we only have 6 remaining. Thus, if we choose the
third parallelization option for ⌧1, we cannot schedule either
⌧2 or ⌧3. The maximum utility we can gain is 8.

If we choose the second parallelization option for ⌧1, we
will need to use 8 units of execution time for ⌧1. This leaves us
7 units of processing time remaining. 7 units of execution time
can only satisfy the requirement of ⌧2’s second parallelization
option. Thus, we are able to also schedule ⌧2. The overall
utility achieved is 8+3 = 11. Fig.1 shows an example schedul-
ing for ⌧1 and ⌧2 with their second parallelization options,
which is the best task selecting and scheduling strategy for
this example.

We can see that, even in this simple example where each
task has only one segment, how to choose the best paral-
lelization option for each task is not straightforward. When
each task has multiple segments, choosing the parallelization
option for each segment is even more challenging. Also, in
the simplest form, where each task has a fixed execution
requirement and utility, the problem reduces to the classic 0-1
Knapsack problem, which is NP-complete. In this paper, we
provide systematical approach to attack the general version of
the problem.

Thread 1 of task 1

Thread 2 of task 1

Thread 1 of task 2

Thread 2 of task 2

P1

P2

P3

0 51 4 t

Fig. 1. An example scheduling for ⌧1 and ⌧2

B. Main Contributions
In this paper, we consider selecting and scheduling a set of

multi-segment tasks with multiple parallelization options, with
the goal being to maximize the total utility of selected tasks.
Our main contributions are as follows:

• First, we formulate the utility-based scheduling problem
for multi-segment tasks with multiple parallelization op-
tions. The problem is of important practical meaning in
modern cloud computing business models.

• Second, we provide two utility-model for the tasks, i.e.,
the uniform utility model, where all tasks have the same
utility value, and the general utility model, where tasks
may have arbitrarily different utility values. For the
uniform utility model, we derive optimal solutions for
the problem.

• Third, for the problem under the general utility model,
we prove that the problem can be reduced to the classic
0-1 Knapsack problem and thus is NP-complete. We
propose an FPTAS algorithm for the problem with (1�✏)
approximation ratio. We also provide a 1/2 approximation
algorithm for the problem with a significantly reduced
time complexity.

C. Paper Organization
The organization of this paper is as follows. Section II

presents the system model and problem definition. Section III
presents some fundamental results about scheduling multi-
segment tasks with multiple parallelization options. In Sec-
tion IV, we consider the problem under the uniform utility
model, and provide optimal solutions for the problem. In
Section V, we consider the problem under the general utility
model. Simulations are conducted in Section VI. Conclusions
are made in Section VII.

II. SYSTEM MODEL AND PROBLEM DEFINITION
A. Platform and Task Models

We consider a system with m homogeneous processing
units. Each processing unit can execute multiple parallel
threads in a fine-grained time-shard fashion, as long as the
total execution requirement of the parallel threads is less than
or equal to 1. We consider a set of n periodic tasks:

⌧ = {⌧1, ⌧2, · · · , ⌧n}.

Each task ⌧
i

is a sporadic task repeatedly arriving with a inter-
release time T

i

. We call each arrival of ⌧
i

an instance of ⌧
i

.
Each instance of ⌧

i

has a relative deadline D
i

= T
i

, meaning
that it should be completed before the next instance of ⌧

i

.
Throughout this paper, we schedule each instance of a task
repeatedly in the same way; our focus is the density of a task,

3

which is also the density of each instance of the task; thus,
we use the task and each instance of the task interchangeably.
We assume that the total requirement of the given task set is
usually greater than the system’s total capacity. Thus, we need
to select a subset of tasks to schedule from the given task set.

Each task ⌧
i

has multiple sequential segments. We denote
the jth segment of ⌧

i

as ⌧
i,j

, where 1 j K
i

. K
i

is the total
number of segments that ⌧

i

has. Each segment of a task has
multiple parallelization options that we can choose from. Let
P
i,j

be the number of parallelization options that ⌧
i,j

has. For
the pth parallelization option, 1 p P

i,j

, the segment can
spawn into Np

i,j

threads and execute on Np

i,j

cores in parallel.
Without loss of generality, we assume that

N1
i,j

< N2
i,j

< · · · < N
P

i,j

i,j

.

This task model is quite common in large-scale scientific
computations and has been discussed in several existing works
[5], [7].
B. Task Utility Model

In our model, if a cloud service provider can successfully
schedule a task ⌧

i

, the system can gain a utility value u
i

from
the service requester. Utility-based models are quite useful
for real world problems; utility based routing and resource
allocation have been studied in other settings [8], [9]. In our
work, we introduce the utility-based model for task scheduling
in the cloud computing business model. We consider two
typical utility models for tasks.

Uniform utility model: all tasks have the same utility value,
1. If the task is scheduled, the system gains a utility of 1; if the
task is not scheduled, the system gains 0 utility. This simple
model is actually practical for situations where the tasks are
with similar requirements.

General utility model: tasks have different utility values;
the utility values of each task are quite arbitrary. This utility
model is applicable to various pricing models agreed by the
cloud service providers and the customers.
C. Problem Definition

Given a set of periodic tasks, ⌧ and the platform with m
processing units, our goal is to select a subset of tasks from
this task set, to

1.) determine the parallelization option for each segment of
the selected tasks,

2.) derive the actual scheduling for all the tasks given their
parallelization option,

3.) meet deadlines for all selected tasks, and
4.) maximize the utility gained by the system, which is the

sum of all selected tasks’ utility values.
III. PRELIMINARIES

Scheduling periodic sequential tasks on multiprocessor sys-
tems has received extensive research efforts. The earliest of
these works dates back to 1978, when Dhall and Liu first
presented the problem [10]. Authors in [11] first present a
theoretically optimal algorithm, named Pfair, for scheduling
periodic sequential tasks on multiprocessor systems. Pfair
allows full migration and fully dynamic priorities, which
may incur frequent scheduling and migration and therefore

significant run-time overhead. After that, many researchers
proposed optimal multiprocessor scheduling algorithms for
periodic sequential tasks with less overheads, for example,
PD2 [12], and LLREF [13].

These algorithms are called optimal in the sense that if
1.) each task’s requirement/density is less than 1, and 2.),
the total requirement/density of all the tasks is less than the
capacity of all the processing units, then, the entire task set
can be scheduled on the platform without missing any task’s
deadline. Our scheduling method will adopt one of these
optimal algorithms after deciding which tasks to select and
what parallelization option to choose for each selected task.
A. Using Intermediate Deadlines

We have three important steps to take to achieve the goal of
maximizing overall utility. First, we need to select a subset of
the tasks to schedule. Second, for each of the selected task, we
need to decide the parallelization option for each segment of
the task. Third, given the parallelization option, we still need
to derive the detailed scheduling for the tasks.

For the third step, we decide to leverage one of the optimal
scheduling algorithms, such as PD2 [12] and LLREF [13], to
derive the actual scheduling. To apply the optimal scheduling
algorithms, we need to satisfy the two conditions of the
algorithms. We take an approach that assigns an “intermediate
deadline” d

i,j

to each segment ⌧
i,j

for task ⌧
i

. d
i,j

is the
relative deadline for all the parallel threads of ⌧

i,j

. Notice that
assigning intermediate deadlines for each segment of a task is
a straightforward approach to utilize traditional schedulability
tests, and has been used in several existing works [2], [7].
Assume that ⌧

i

is released at time t, then all the parallel
threads of ⌧

i,1 are released at the same time t, and should
be completed by t + d

i,1. Then, the parallel threads of each
following segment ⌧

i,j

(2 j K
i

) are released when
⌧
i,j�1’s absolute deadline t+d

i,1+· · · d
i,j�1 has been reached

and needs to be completed by t + d
i,1 + · · · d

i,j�1 + d
i,j

.
With these intermediate deadlines, we can easily calculate each
thread’s density as the thread’s execution requirement divided
by its corresponding intermediate deadline. Applying one of
the optimal scheduling algorithms, we have the following
argument: if the intermediate deadlines are assigned to the
segments of ⌧

i

such that their sum is smaller than or equal
to D

i

, i.e.,
P

K

i

j=1 di,j D
i

, and each thread’s density is less
than 1, and the total density of all active threads of all tasks
is less than m, the total capacity of the system, then, task ⌧

i

can be scheduled without missing its deadline.
We now consider the first two steps in our decision proce-

dure. Notice that, the first step is actually dependent on the
second step. Without selecting the parallelization option, we
are unable to see whether the total density of a set of tasks is
less than or equal to m, or not. For this reason, we consider
the subproblem, which tries to determine which parallelization
option can lead to a minimized task density for each task. For
ease of presentation, we name this subproblem the Optimal
Parallelization Selection (OPS) problem.

The OPS problem itself consists of two important steps:
first, given parallelization options for each segment of the task,

4

allocate intermediate deadlines such that the density of each
thread of each segment is less than 1, and the total density of
threads in the same segment is less than m, i.e., the peak
density among all segments is less than m, and the total
density is minimized; second, among all the parallelization
options, determine which parallelization option to choose for
each segment of the task.

Let p
j

be the parallelization option that ⌧
i,j

decides on,
1 p

j

 P
i,j

. The WCET or execution requirement of the
lth thread of segment ⌧

i,j

under the p
j

th parallelization option
is Cl

i,j

(N
p

j

i,j

), (1 l N
p

j

i,j

). Then, the maximum execution
requirement among all of the N

p

j

i,j

threads can be denoted as:

Cmax

i,j

(N
p

j

i,j

) = max

1lN

p

j

i,j

Cl

i,j

(N
p

j

i,j

).

The total execution requirement of all the N
p

j

i,j

threads can be
calculated as:

Ctotal

i,j

(N
p

j

i,j

) =

X

1lN

p

j

i,j

Cl

i,j

(N
p

j

i,j

).

We define the “segment density” �
i,j

for segment ⌧
i,j

as the
sum of its thread densities, i.e.,

�
i,j

=

N

p

j

i,jX

l=1

Cl

i,j

(N
p

j

i,j

)

d
i,j

=

Ctotal

i,j

(N
p

j

i,j

)

d
i,j

Notice that, every time, only one segment of a task is active
under our intermediate deadline approach. Thus, we define the
“task peak density” �

i

for ⌧
i

as as its largest segment density,

�
i

= max

1jK

i

�
i,j

The OPS problem for a task ⌧
i

can be formally stated as
follows:

min �
i

s.t.
P

K

i

j=1 di,j D
i

.

C

l

i,j

(N
p

j

i,j

)

d

i,j

 1, 81 l N
p

j

i,j

.

�
i

 m.

The optimization variables are d
i,j

’s for deadline allocation,
and p

j

for parallelization selection for all segments. The
objective is to minimize ⌧

i

’s density.
B. Practical Assumptions and Fundamental Results

In practical situations, we have the following conditions for
each task:

Ctotal

i,j

(N1
i,j

) Ctotal

i,j

(N2
i,j

) · · · Ctotal

i,j

(N
P

i,j

i,j

),

Cmax

i,j

(N1
i,j

) � Cmax

i,j

(N2
i,j

) � · · · � Cmax

i,j

(N
P

i,j

i,j

).

The meaning for the first inequality is that, if we parallelize the
segment to more threads, the total execution requirement of
the segment will be increased due to increased parallelization
overhead. The meaning for the second inequality is that, by
slicing the task segment into more threads, the maximum

execution requirement among the parallel threads decreases;
otherwise, we may not want to slice the task segment into
more threads.

Thanks to the fundamental work in [7], under these two
conditions, the OPS problem can be solved optimally. We
adopt the method in [7] to solve the OPS problem. From now
on, we only consider the minimum density of each task; thus,
we simply use �

i

to represent ⌧
i

’s minimum density. Here,
we deal with some special cases: if �

i

> m, we can safely
eliminate ⌧

i

from the candidate task set, because it will never
be schedulable; if

P
n

i=1 �i m, we can select all of the tasks
to maximize the system utility. In the follow-up discussions,
we do not consider these special cases anymore.

C. Illustration Using Single Segment Tasks
Instead of presenting all the details in [7], we use a simpler

model to illustrate the solution. In this section, we consider
a single-segment task model, where each task has only one
parallelizable segment, i.e., K

i

= 1. Then, the deadline for
the task is the deadline for the only segment of the task.
Similarly, the execution time of the lth thread of the single
segment of ⌧

i

, with the pth optimization option is Cl

i,1(N
p

i,1).
The maximum and total execution requirements of the same
segment under the pth parallelization option are Cmax

i,1 (Np

i,1)

and Ctotal

i,1 (Np

i,1), respectively. The total execution time of all
the threads of the segment has the following relation:

Ctotal

i,1 (N1
i,1) Ctotal

i,1 (N2
i,1) · · · < Ctotal

i,1 (N
P

i,1

i,1).

The maximum execution time among all of the threads has
the following relation:

Cmax

i,1 (N1
i,1) � Cmax

i,1 (N2
i,1) � · · · � Cmax

i,1 (N
P

i,1

i,1).

To apply PD2 or LLREF algorithms, we have to satisfy
two conditions: first, the execution time of each thread of the
task should be less than or equal to D

i

, i.e., the maximum
execution time among all threads of the task should be less
than or equal to D

i

; second, the total density of all threads of
the task should be less than m. For single segment tasks, the
single segment’s relative d

i,1 is equal to the task’s deadline
D

i

. Since Cmax

i,1 decreases with the parallelization degree, if
Cmax

i,1 (N1
i,1) > D

i

, we can try increasing the parallelization
degree to N2

i,1; if Cmax

i,1 (N2
i,1) > D

i

, we can try increasing
the parallelization degree to N3

i,1. Assuming that the first
parallelization degree that has Cmax

i,1 D
i

is N j

i,1, then we
should use this parallelization degree for task ⌧

i

, because,
further increasing the parallelization degree will only increase
the total density of this task, which will risk the entire task
being unschedulable. The idea here is that, we should provide
each task just enough parallelization degree. Thus, the problem
of minimizing the density of a task is to select the just enough
parallelization degree such that the maximum execution time
of each thread is less than or equal to D

i

. When there are
multiple segments in each task, the main idea is still to select
just enough parallelization degree for each task, though the
solution is not as obvious as that of the single segment tasks.

5

Take a look at tasks ⌧1, ⌧2, and ⌧3 in the motivational
example as shown in Table I again. Any of the three tasks
cannot meet their deadline if we choose the first parallelization
option, i.e., using just one thread to execute the task, because
their deadlines of using just one thread are 7, 6, and 6, which
are greater than their deadline of 5. We can also see that the
second parallelization option provides enough parallelization
degree such that they can meet their deadline. Thus, the
minimum density of each task can be determined by choosing
the second parallelization option for each task.

IV. UNIFORM UTILITY MODEL
Under the uniform utility model, to maximize the system

utility is equivalent to maximizing the number of tasks to be
scheduled. In order to schedule the maximum number of tasks,
we need to select the tasks with the least density first. Thus,
our algorithm first sorts the tasks in ascending order of their
minimum densities, �

i

. After that, we pick the tasks one by
one as long as the total density is less than or equal to m. We
refer to this algorithm as the Optimal Task Selection (OTS)
algorithm.

Theorem 1: The OTS algorithm achieves optimal task se-
lection in polynomial time for the problem under the uniform
utility model.

Proof: Obviously, the algorithm is with polynomial time
complexity: deriving the minimum density for each task and
scheduling each task is polynomial time solvable [7]. The time
complexity of sorting all the tasks according to their densities
is ⇥(nlogn), and the task selection procedure is ⇥(n).

We prove optimality by contradiction. For ease of presenta-
tion, we assume that the tasks are sorted in ascending order of
their densities, in other words, �1 �2 · · · �

n

. Assume
that the OTS algorithm described above selects j tasks. If
j = n, i.e., all tasks are selected, it is obviously an optimal
solution. If j < n, then the greedy algorithm will select the
first j tasks and we have

�1 + �2 + · · ·+ �
j

 m,

and
�1 + �2 + · · ·+ �

j

+ �
j+1 > m.

Assume that there exists a better valid solution which can
select j + 1 tasks, i.e., ⌧

i1 , ⌧
i2 , · · · , ⌧

i

j+1 . Since all tasks are
sorted in ascending order of their densities, we have

�
i1 + · · ·+ �

i

j+1 > �1 + · · ·+ �
j+1 > m.

The above inequality indicates that the “better” solution does
not exist. Thus, there does not exist any valid solution that
can select more tasks than the OTS algorithm. The theorem is
hence proved.

V. GENERAL UTILITY MODEL
Theorem 2: Under the general utility model, the problem

of selecting and scheduling tasks to achieve maximum system
utility is NP-complete.

Proof: First, we know that deriving the minimum density
for each task is a polynomial time problem, according to
[7]. After achieving the minimum density for each task, the
problem becomes selecting a subset of tasks such that, their

Algorithm 1 DPOTS(u, �,m)

Input:
Utility vector of tasks, u = {u1, · · · , un

}; density vector,
� = {�1, · · · , �n}; the number of processing units, m;

1: Let �(n+1)⇥(U(⌧)+1) be a two dimensional array.
2: �[0, 0] = 0;
3: for U := 1 to U(⌧) do
4: �[0, U] = 1;
5: for i := 1 to n do
6: for U := 1 to U(⌧) do
7: if u

i

 U then
8: �[i, U] = min(�[i� 1, p],�[i� 1, U � u

i

] + �
i

)
9: else

10: �[i, U] = �[i� 1, U]

11: OPT = max{U :0 UU(⌧) and �[i, U]m, 80in}
12: Using � to find a subset S of profit OPT and total weight

less than or equal to m.
13: return S

total minimum density is less than or equal to m, and the
achieved utility is maximized. Each task can either be selected
or not be selected. It is easy to notice that the task selection
problem reduces to the classic 0-1 Knapsack problem, which
is a well known NP-complete problem.

A. Polynomial Time Solution for Integer Utility Values
If the utility of all the tasks are integer values, we provide

the following pseudo-polynomial time dynamic programming
algorithm that achieves the optimal solution.

Define U(S) to be the total utility of all task of task set S,
where S is a subset of all tasks:

U(S) =
X

⌧

i

2S

u
i

, 8S ✓ {⌧1, ⌧2, · · · , ⌧n}.

Define D(S) to be the total density of all tasks of task set S:

D(S) =
X

⌧

i

2S

�
i

, 8S ✓ {⌧1, ⌧2, · · · , ⌧n}.

Then, U(⌧) will be the total utility value of all the tasks.
Define

�[i, U] = min{D(S) : U(S) = U, 8S ✓ {⌧1, ⌧2, · · · , ⌧i}},

i.e., �[i, U] denotes the minimum possible density of any
subset of the first i items such that the subset’s total utility
is exactly U . When there is no such a subset of profit exactly
U , then we define �[i, U] = 1. Remember that we need
to select a subset of density at most m with the maximum
utility. This maximum utility is given by max{U : 0 U
U(⌧),�[i, U] m, 81 i n}. This means that if we
can compute all values in �[i, U], then we can compute the
maximum utility. From the values in �[i, U], we can also
compute a subset whose utility is the optimal value. �[i, U]

has the following recursive relation:

6

Algorithm 2 FPTAS(u, �,m, ✏)

1: u
max

=

P
1in

u
i

;
2: for i := 1 to n do
3: u⇤

i

= d u

i

(✏/n)max

e;
4: S = DPOTS(u⇤, �,m);
5: return U(S)

Lemma 1:

�[i, U]=

8
>><

>>:

0 U = 0

1 i=0, U>0
�[i� 1, U] i>0, 0<U<u

i

min{�[i�1, U],�[i�1, U�u
i

]+�
i

} i>0, U�u
i

Proof: The first two cases are predefined. We consider
how to calculate �[i, U] in general cases. If u

i

> U , then
⌧
i

cannot be included in the subset S, S ✓ {⌧1, ⌧2, · · · , ⌧i},
whose total utility sums to U ; this indicates the third case
in the recursive relation. If u

i

 U , we have two options to
select a subset S, S ✓ {⌧1, ⌧2, · · · , ⌧i}: first, include ⌧

i

, then,
the minimal total density is �[i�1, U�u

i

]+�
i

; second, do not
include ⌧

i

, then, the minimal total density is �[i � 1, U]. As
defined �[i, U] should choose the smaller density of these two
cases, which proves the fourth case.
Algorithm 1 sketches the Dynamic Programming algorithm
for Optimal Task Selection (DPOTS), when utility values of
all tasks are integers. Its time complexity is ⇥(nU(⌧)).

B. FPTAS algorithm for General Utility Values

We now design the FPTAS algorithm for the problem
when utilities of tasks are not necessarily integers. We define
u
max

= max

n

i=1 ui

, and the new utility value for task ⌧
i

as

u⇤
i

= d u
i

(✏/n)u
max

e,

where 0 < ✏ < 1. Notice that, the new utility values u⇤
i

will be integers within range [1, dn/✏e]; thus, we can apply
the dynamic programming algorithm on the integer utility
values, and derive the achieved total utility value. Algorithm 2
sketches the FPTAS algorithm for our problem. Denote the real
maximum (optimal) utility for the problem as OPT .

Theorem 3: Algorithm 2 computes in O(n3/✏) time. The
solution achieved is at least (1� ✏)OPT .

Proof: u⇤
i

 dn/✏e; thus, the total profit is at most
ndn/✏e. Thus the total run time is ⇥(n⇥ndn/✏e) = ⇥(n3/✏).
Let S

opt

denote an optimal subset, that is, a subset of tasks
whose total density is at most m such that U(S

opt

) = OPT .
Let S⇤ denote the subset returned by the algorithm. Let
U⇤

(S) be the total converted utility values of tasks in subset
S. Because S⇤ is optimal for the new profits, we have
U⇤

(S⇤
) � U⇤

(S
opt

). Due to the integer rounding procedure,
we have

u
i

(✏/n)u
max

 u⇤
i

 u
i

(✏/n)u
max

+ 1.

Algorithm 3 Greedy(u, �,m)

1: Sort items in non-increasing order of u
i

/�
i

.
2: Greedily add tasks until we hit an item ⌧

i

that is too big,
i.e.,

P
⌧

i

�
i

> m.
3: Pick the better of {⌧1, ⌧2, · · · , ⌧i�1} and ⌧

i

.

OPT can be derived as follows:
OPT =

P
⌧

i

2S

opt

u
i

P

⌧

i

2S

opt

(✏/n)u
max

u⇤
i

 (✏/n)u
max

U⇤
(S

opt

)

 (✏/n)u
max

U⇤
(S⇤

)

 (✏/n)u
max

P
⌧

i

2S

⇤(
u

i

(✏/n)u
max

+ 1)

= U(S⇤
) + (✏/n)u

max

|S⇤|
 U(S⇤

) + ✏u
max

 U(S⇤
) + ✏OPT.

Thus, U(S⇤
) � (1� ✏)OPT.

C. 1/2-Approximation Algorithm
Using the FPTAS algorithm, we can achieve a solution that

is arbitrarily close to the optimal solution. However, the time
complexity of the algorithm is too high when we want a
solution that is close to the optimal solution. Here, we provide
another algorithm, with a time complexity of ⇥(n), that has a
satisfactory bound on the utility we can achieve. The algorithm
is described in Algorithm 3.

Theorem 4: Algorithm 3 is a 1/2-approximation algorithm
for the original problem.

Proof: We employed a greedy approach. Therefore we
can say that if our solution is suboptimal, we must have some
leftover space �� at the end. Imagine our algorithm was able
to take a fraction of a task. Then, by adding ��

�

i

u
i

to our knap-
sack value, we would either match or exceed OPT . Therefore,
either

P
i�1
k=1 uk

� 1/2 OPT , or u
i

� ��

�

i

u
i

� 1/2 OPT. By
selecting the better of these two, we can conclude that the
algorithm can achieve an approximation ratio of 1/2.

VI. SIMULATIONS
A. Comparing Methods

We compare several task scheduling methods for the multi-
segment task model. Specifically, we compare the optimal
density minimization and task scheduling methods against
methods that minimize the density of each task given fixed
parallelization for each segment of a task. We denote the
optimal density minimization and task scheduling method as
“Optimal”, which is the method we use in this paper. For
methods with fixed parallelization options, we consider three
typical cases: using a single thread for each segment of a
task, choosing the maximum number of threads for each
segment, and choosing the median parallelization option for
each segment. We denote the three methods as “SingleThread,”
“MaximumParallel,” and “MedianParallel,” respectively. No-
tice that, given fixed parallelization option for each segment
of a task, the offline optimal deadline allocation among the
segment to minimize the task density is considered in [2]
by using linear programming solvers. We identify that, if
the parallelization option is fixed beforehand, the problem

7

(a) % of schedulable tasks. (b) Achieved utility using FPTAS. (c) Achieved utility using Greedy.
Fig. 2. 40 tasks on 20 processing units

(a) % of schedulable tasks. (b) Achieved utility using FPTAS. (c) Achieved utility using Greedy.
Fig. 3. 80 tasks on 20 processing units; tasks with increased densities.

becomes a simpler instance of our general problem, and thus
can be solved using the same algorithm as that of Optimal.

For task selection algorithms, we consider the Fully Polyno-
mial Time Approximation Scheme, denoted as “FPTAS,” and
the 1/2-approximation algorithm, denoted as “Greedy.” Our
objective is to show what the actual performance differences
are between these two task selection algorithms for our prob-
lem under various situations.
B. Simulation Settings

Modern computational systems usually have tens of, if not
hundreds of, cores. In our simulation, we target systems with
20 processing units, such as the Intel Xeon Processor E7-8870
[14] and Intel Broadwell-E Core i7-6950X [15].

To consider the utility achieved under various situations,
each task is randomly generated, with random deadline tight-
ness, parallelization overhead, and Cmax and Ctotal values.
We first generate 40 such random tasks; each time, we only
consider scheduling the first n tasks (1 n 40); that is,
we try to select a subset of tasks from the first n tasks, such
that the selected tasks can be scheduled without missing each
task’s deadline, and the total utility of all selected tasks be
maximized. For each specific setting, we repeat the simulation
100 times, and compare the average values.
C. Simulation Results

We call a task “independently schedulable” if the task can
be scheduled onto the platform when it is the only task on
the platform. Then, a task is independently schedulable if and
only if each thread of the task has a density less than or equal
to 1, and the maximum density of the task is less than or equal
to m. In our task generation scheme, we do not allow a task to
have density greater than or equal to m. Thus, if a task is not
independently schedulable, it means that the segments of the
task do not have the parallelization option that can use enough

cores for parallel processing, or the parallelization does not
reduce the single thread execution requirement significantly.

Fig. 2(a) shows the percentage of independently schedulable
tasks under each method, i.e., Optimal, SingleThread, Maxi-
mumParallel and MedianParallel. We can see from Fig. 2(a)
that, when there are a large number of tasks, there almost
always exists some task(s) that are not “independently schedu-
lable”. Optimal has the highest percentage of independently
schedulable tasks; MaximumParallel has the same percentage
of independently schedulable tasks, because, using a larger
parallelization options reduces the maximum execution re-
quirement among the threads for each segment of each tasks;
though it may increase the total execution requirement for
each segment of the task, it will not affect the schedulability
of the task as long as the total execution requirement is
not greater than m. SingleThread has the lowest schedula-
ble percentage because it cannot utilize multiple threads for
parallel processing. MedianParallel has a higher schedulable
percentage than SingleThread, but it is still lower than Optimal
and MaximumParallel, because its ability to utilize multiple
threads are limited.

Fig. 2(b) shows the utility achieved under each method using
the FPTAS algorithm for selecting tasks to schedule. It is no
surprise that the Optimal achieves the maximum utility. When
the number of tasks is small, for example, less than 14, Max-
imumParallel achieves a higher utility than MedianParallel,
because it has a large set of schedulable tasks to choose from,
while MedianParallel has a limited number of schedulable
tasks to choose from. When the number of tasks is large,
MaximumParallel achieves a lower utility than MedianParallel.
The reason is that though MaximumParallel has a large set of
schedulable tasks, when using the maximum number of threads
for each segment of a task, the total execution requirement

8

(a) n = 5 (b) n = 20 (c) n = 30
Fig. 4. FPTAS vs Greedy

of each task is much higher than MedianParallel; given the
number of processors on the system, the total number of tasks
that can be scheduled is thus lower than MedianParallel, and
consequently, the total achieved utility is lower. Similarly,
when the number of tasks is smaller than 24, SingleThread
achieves a lower utility value than MaximumParallel; when
the number of tasks is greater than 24, SingleThread achieves
a higher utility than MaximumParallel.

Fig. 2(c) shows the utility achieved under each method
using the Greedy algorithm for selecting tasks to schedule.
It demonstrates similar patterns as in Fig. 2(b).

To compare the performances of the task selection algo-
rithms, FPTAS and Greedy, we compare their achieved utility
values using various scheduling algorithms. When the number
of tasks is small, as shown in Fig. 4(a), Greedy achieves
obviously lower utilities. When the number of tasks is large,
the differences between their utilities values are minimal
(Figs. 4(b) and 4(c)). Since FPTAS can be considered as the
optimal solution, we can conclude that the Greedy algorithm
achieves near-optimal utility under general cases.

We also conduct simulations when there are a total of 80
tasks and the tasks have increased execution density. The
results are presented in Fig. 3. As we can see, the percentage
of independently schedulable tasks further decreases for Sin-
gleThread and MedianParallel due to tasks’ increased density.

VII. CONCLUSION
We consider utility-based scheduling for periodic tasks on

platforms with multiple homogeneous processing units, with
the goal of maximizing the system’s overall utility achieved by
scheduling the tasks. We consider two typical types of utility
models, namely, the uniform utility model and the general
utility model. For the first utility model, we give the optimal
solution for selecting and scheduling the tasks; for the second
model, we prove that the problem can be reduced to the classic
0-1 Knapsack problem, and thus is NP-complete; we then
provide an FPTAS algorithm with an arbitrary approximation
ratio for the problem. The FPTAS algorithms are known for
their high time complexity, especially if we want to achieve
a good approximation ratio. We provide a 1/2 approximation
algorithm with a significantly reduced time complexity. Sim-
ulations and comparisons show that our proposed algorithms
have good performances in terms of maximizing system utility,
and the 1/2 approximation algorithm can achieve near-optimal
solutions under general conditions.

ACKNOWLEDGEMENT
This research was supported in part by NSF grants CNS

1449860, CNS 1461932, CNS 1460971, CNS 1439672, CNS
1301774, and ECCS 1231461.

REFERENCES

[1] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in 32nd IEEE Real-
Time Systems Symposium (RTSS), Nov. 2011, pp. 217–226.

[2] G. Nelissen, V. Berten, J. Goossens, and D. Milojevic, “Techniques
optimizing the number of processors to schedule multi-threaded tasks,”
in Proc. of the 24th Euromicro Conference on Real-Time Systems, July
2012, pp. 321–330.

[3] H. S. Chwa, J. Lee, K. M. Phan, A. Easwaran, and I. Shin, “Global edf
schedulability analysis for synchronous parallel tasks on multicore plat-
forms,” in 25th Euromicro Conference on Real-Time Systems (ECRTS),
July 2013, pp. 25–34.

[4] J. Blazewicz, M. Y. Kovalyov, M. Machowiak, D. Trystram, and
J. Weglarz, “Preemptable malleable task scheduling problem,” IEEE
Transactions on Computers, vol. 55, no. 4, pp. 486–490, Apr. 2006.

[5] R. Sudarsan and C. J. Ribbens, “Scheduling resizable parallel ap-
plications,” in IEEE International Symposium on Parallel Distributed
Processing, May 2009, pp. 1–10.

[6] F. Liu and J. B. Weissman, “Elastic job bundling: An adaptive resource
request strategy for large-scale parallel applications,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2015, pp. 33:1–33:12.

[7] J. Kwon, K. W. Kim, S. Paik, J. Lee, and C. G. Lee, “Multicore schedul-
ing of parallel real-time tasks with multiple parallelization options,” in
Proc. of IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), Apr. 2015, pp. 232–244.

[8] M. Xiao, J. Wu, and L. Huang, “Time-sensitive utility-based routing in
duty-cycle wireless sensor networks with unreliable links,” in Proc. of
the 31st IEEE Symposium on Reliable Distributed Systems (SRDS), Oct
2012, pp. 311–320.

[9] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Utility-
based acceleration of multithreaded applications on asymmetric cmps,”
in Proc. of the 40th Annual International Symposium on Computer
Architecture. ACM, 2013, pp. 154–165.

[10] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,” Oper.
Res., vol. 26, no. 1, Feb. 1978.

[11] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Propor-
tionate progress: A notion of fairness in resource allocation,” in Proc. of
the 25th Annual ACM Symposium on Theory of Computing, 1993, pp.
345–354.

[12] A. Srinivasan and J. H. Anderson, “Fair scheduling of dynamic task
systems on multiprocessors,” J. Syst. Softw., vol. 77, no. 1, pp. 67–80,
2005.

[13] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time schedul-
ing algorithm for multiprocessors,” in 27th IEEE International Real-
Time Systems Symposium, Dec 2006, pp. 101–110.

[14] “Intel Xeon Processor E7-8870,” http://ark.intel.com/products/
53580/Intel-Xeon-Processor-E7-8870-30M-Cache-2 40-GHz-6
40-GTs-Intel-QPI, accessed: 2016-05-03.

[15] “Intel Broadwell-E Core i7-6950X,” http://wccftech.com/
intel-broadwell-e-core-i7-6950x-price/, accessed: 2016-05-03.

http://ark.intel.com/products/53580/Intel-Xeon-Processor-E7-8870-30M-Cache-2_40-GHz-6_40-GTs-Intel-QPI
http://ark.intel.com/products/53580/Intel-Xeon-Processor-E7-8870-30M-Cache-2_40-GHz-6_40-GTs-Intel-QPI
http://ark.intel.com/products/53580/Intel-Xeon-Processor-E7-8870-30M-Cache-2_40-GHz-6_40-GTs-Intel-QPI
http://wccftech.com/intel-broadwell-e-core-i7-6950x-price/
http://wccftech.com/intel-broadwell-e-core-i7-6950x-price/

	Introduction
	Motivational Example
	Main Contributions
	Paper Organization

	System Model and Problem Definition
	Platform and Task Models
	Task Utility Model
	Problem Definition

	Preliminaries
	Using Intermediate Deadlines
	Practical Assumptions and Fundamental Results
	Illustration Using Single Segment Tasks

	Uniform Utility Model
	General Utility Model
	Polynomial Time Solution for Integer Utility Values
	FPTAS algorithm for General Utility Values
	1/2-Approximation Algorithm

	Simulations
	Comparing Methods
	Simulation Settings
	Simulation Results

	Conclusion
	References

