Network Function Deployment with Balanced Server and Link Resources in Tree Topologies

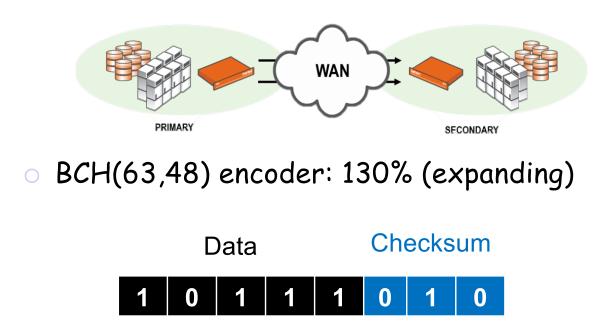
Yang Chen and Jie Wu

Center for Networked Computing

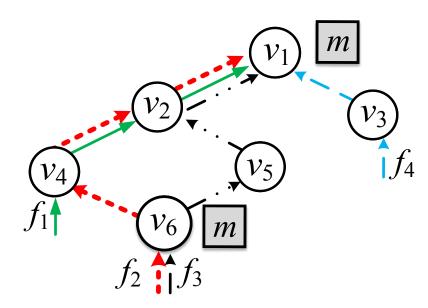
Temple University, USA

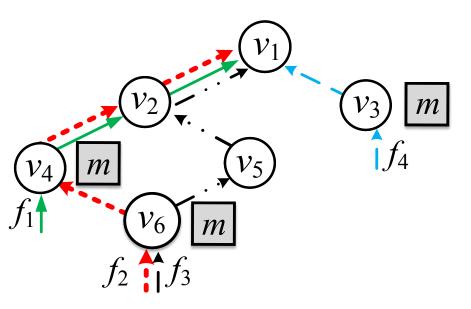
1. Introduction

- Network Function Virtualization (NFV)
 - Virtualizing network functions into software modules
- Virtualized Network Function (VNF) software implementation of network services
 - Improve performance:
 - Web proxy, load balancer
 - Enhance security:
 - Firewall, IDS/IPS
 - Examples:


Web Proxy

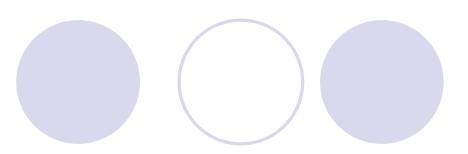
VNF Traffic Changing Effects ^[1]


- VNFs may change flow rates in different ways
 - Citrix CloudBridge WAN accelerator: 20% (diminishing)


[1] Traffic Aware Placement of Interdependent NFV Middleboxes (INFOCOM '17)

A motivating example

Traffic-diminishing ratio of VNF m: 0.5 Initial flow rate: f₁ (2), f₂ (4), f₃ (2), f₄ (2)



(a) Two VNFs allowed.

(b) Three VNFs allowed.

2. Our model

- Problem
 - Deploy a single type of VNFs with trafficdiminishing effect into the network
- Objective
 - Minimize total bandwidth consumption of all flows on all links along their paths
- Constraint
 - Each flow to be processed
 - Deploy a limited number of a single type of VNFs

3. Problem Formulation

A mathematical optimization problem on minimizing total flow bandwidth consumption

$$\begin{array}{ll} \min \quad b(\mathcal{P}) = \sum_{f \in F} b(f) = \sum_{f \in F} \sum_{e \in p_f} b_e(f) & (1) \\ \text{s.t.} \quad |\mathcal{P}| = \sum_{v \in V} m_v \leq k & \forall m \in M \quad (2) \\ \sum_{v \in p_f} f_v = 1 & \forall f \in F \quad (3) \\ f_v \leq m_v & \forall v \in V \quad (4) \\ m_v = \{0, 1\}, f_v = \{0, 1\} & \forall v \in V \quad (5) \end{array}$$

4. Solution for trees

Lowest Common Ancestor (LCA)

 LCA of two vertices v and w in an acyclic graph G is the lowest vertex that has both v and w as descendants

Solution

Greedy Solution for Trees (GST)

Steps

- Deploy one VNF on each leaf
- Merge two VNFs with the minimum difference of the total bandwidth value when we delete two VNFs on v and w and place one on LCA(v,w)
- Until total number of deployed VNFs no more than k

4. Solution for trees (cont'd)

- Optimality
 - O Proof: Induction
- Maintenance of all difference values
 - Min-heap
 - Improve time efficiency
- Time complexity
 - O(|V|² log |V|)
 - |V|: #vertices

5. Solution for DAGs

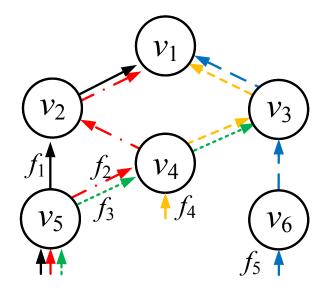
Directed Acyclic Graph (DAG)

- A finite directed graph with no directed cycles
- A tree is a special case of a DAG

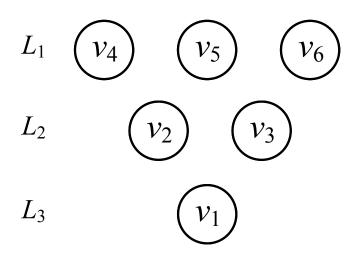
Solution

Directed Acyclic Graph Technique (DAGT)

Steps


- Deploy one VNF on each all sources of flows
- Sort all vertices in topological order level by level corresponding to all flows' paths
- Apply Alg. GST for vertices with the same order

5. Solution for DAGs (cont'd)


Time complexity
O(|V |³ log |V |)
|V|: #vertices

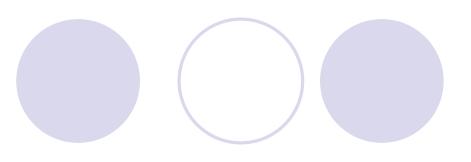
Traffic-diminishing ratio of VNF m: 0.5

> Initial flow rate: All are 1

(a) A DAG topology.

(b) Topological order.

4. Solution for general topologies


Decrement function

- Decrement of the total bandwidth consumption by a deployment plan
- Marginal decrement
 - Additional bandwidth decrement of processing flows by deploying VNFs on a new subset of vertices beyond current deployment
- Decrement function is submodular
 - Proof insight
 - More VNFs are placed, the less bandwidth consumption is, since each flow can be processed no later than the previous placement

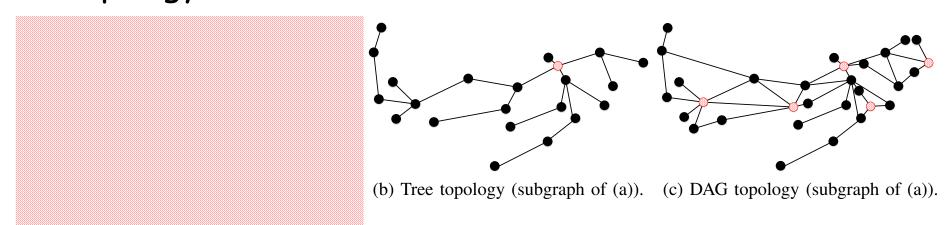
4. Solution for general topologies (cont'd)

- Solution
 - General Topology Placement (GTP)
- Steps
 - \circ Iteratively select $v \in V$ with the maximum marginal decrement until all flows are fully served
- Approximation ratio $\frac{1}{1-\frac{1}{e}}$
- Time complexity
 - O(k|V| log |V |)
 - V: #vertices
 - o k: limited #VNFs

7. Simulation

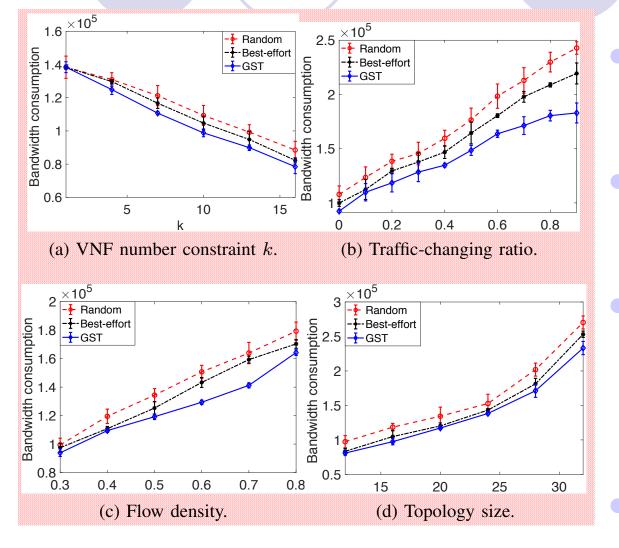
- Comparison algorithms
 - Random
 - randomly deploy VNFs until it places k VNFs
 - Best-effort
 - place one VNF on the vertex, which can reduce the total bandwidth of flows mostly, until it places k VNFs
- Our proposed algorithms
 - Tree: Alg. GST
 - DAG: Alg. DAGT
 - General topo: Alg. GTP

Settings


Variables

- VNF number constraint k
 - Default value: k = 8 for tree, k = 11 for DAG, k = 17 for the general topo
- Traffic-changing ratio
 - Default value: 0.5
- Flow density
 - Default value: 0.5
- Topology size
 - Default value: 22 for tree, 30 for DAG, 36 for a general topo
- Topology kind

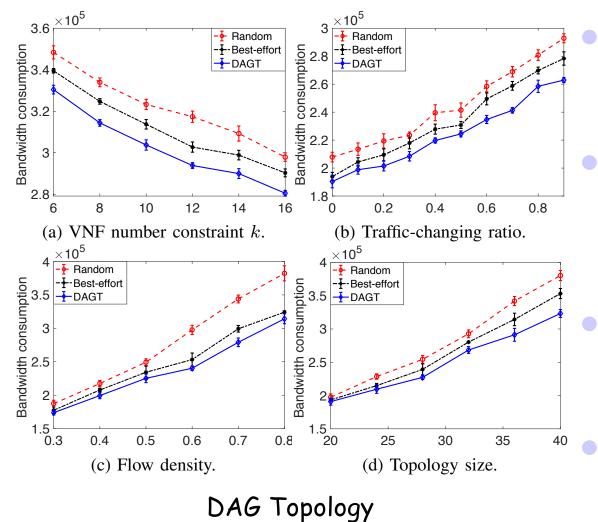
Metric


Total bandwidth consumption of all flows

Settings Topology

- Middlebox traffic-diminishing ratio
 - From 0 (e.g., spam filters) to 0.9 (e.g., traffic optimizer) with a stride of 0.1
 - Additional simulation on spam filter
- Flow rate distribution
 - CAIDA data center 1-hour packet trace

Simulation results of tree

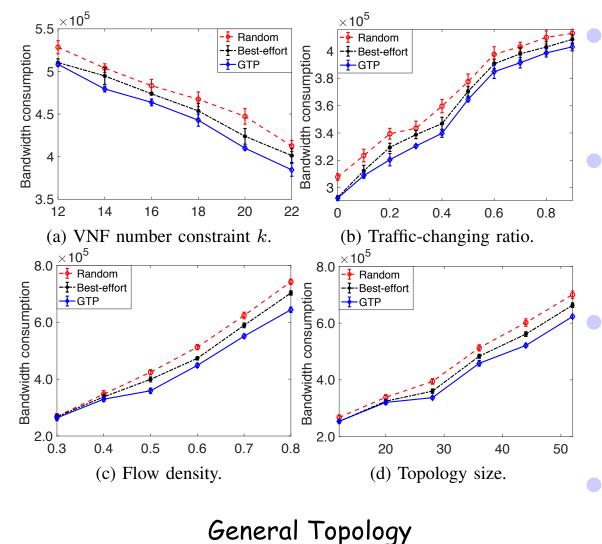

Tree Topology

Alg. GST performs best for all four variables

- k = 1, only one feasible placement plan for all methods
 - Traffic-changing ratio has the largest impact on the bandwidth consumption

Random has the biggest fluctuation

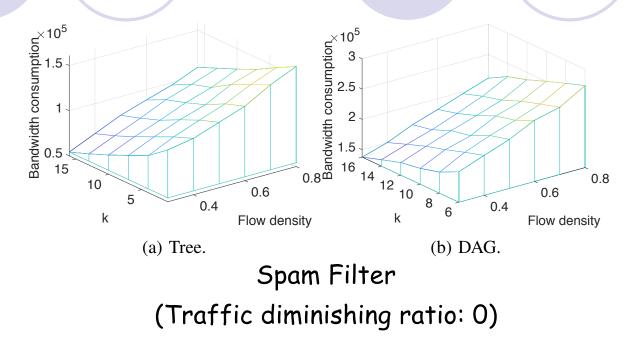
Simulation results of DAG(cont'd)


Bandwidth consumption is almost three times of tree.

In Fig. b, bandwidth of DAGT is 85.1% of Random and 92.0% of Best-effort.

Deviation of DAGT in fig. c is smaller than in last slide

When the topology size is larger than 35, DAGT performs even better.


Simulation results of general topo (cont'd)

Error bars become shorter than last two slides

- Bandwidth consumption increases faster in fig. b when ratio ranges from 0.4 to 0.6
 - When flow density is lower than 0.4 in fig. c, little difference among three algorithms
- Alg. GTP becomes larger when the topology size increases

Simulation results (cont'd)

- Flow density plays a more important role in affecting the total bandwidth consumption
- When flow density doubles from 0.3 to 0.6, bandwidth consumption in tree increases 30.2%, while increment is only 25.6% in DAG

Conclusion and Future Work

Problem

- Using limited number of traffic-diminishing VNFs process all flows
- Objective
 - Minimize total bandwidth consumption
- Solutions
 - Tree: optimal
 - Directed Acyclic Graph: efficient heuristic
 - General graph: performance-guaranteed

Future Work

- Traffic-expanding VNFs
- Service chain: an ordered set of multiple VNFs

Questions contact: Yang Chen (yang.chen@temple.edu)