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Abstract—Network function virtualization (NFV) enables flex-
ible implementation of software middleboxes (network functions)
as virtual machines running on standard servers. However, the
flexibility also creates a challenge for efficiently placing such
VNFs, due to the availability of multiple hosting servers and VNF
capability of changing traffic volumes. In this paper, we address
the placement problem of a special type of VNF with the traffic-
diminishing effect (e.g., spam filters). We aim at minimizing
the total bandwidth consumption of flows by placing at most
a pre-determined number of VNFs. First, we formulate the
Traffic-diminishing VNF Placement (TVP) as an optimization
problem. We propose an optimal strategy for the tree-structured
networks. Next, we extend the algorithm to the directed acyclic
graph (DAG) topology. Then an approximation algorithm is
designed after we prove the NP-hardness of our problem in a
general topology. Extensive simulations are conducted on CAIDA
dataset to evaluate the performance of our proposed algorithms
in various scenarios.

Index Terms—VNF placement, bandwidth consumption,
traffic-diminishing, NFV.

I. INTRODUCTION

Network function virtualization (NFV) changes the way
that we implement software middleboxes (network functions),
from expensive hardwares to software functions. These VNFs,
also called virtual network functions (VNFs), run on switch-
connected commodity servers. The choice of VNF service
location is complicated by the availability of multiple hosting
servers and the traffic-changing effect of VNFs. For example,
the Citrix CloudBridge Wide Area Network optimizer reduces
traffic volume by up to 80% by compressing traffic [1].
Redundancy eliminator would reduce the difference between
peak and minimum traffic more significantly by 25% for the
university and by 52% for the data center [2]. When it comes
to security, spam filters intercept all suspicious flows by cutting
down 100% traffic rates. Link bandwidth is a valuable resource
in most networks such as data center networks [3], WANs
[4], and LANs [5]. Additionally, server resources, such as
CPU and memory, are valuable and finite in today’s networks
[6]. Efficiently placing such traffic-diminishing VNFs is im-
portant in today’s high-performance networks. However, most
researches only focus on reducing VNF setup cost by sharing
VNFs without considering the bandwidth consumption.

In this paper, we focus on the placement of traffic-
diminishing VNFs. We aim at minimizing the total flow
bandwidth consumption under the constraints of a given
number of VNFs. The total flow bandwidth consumption is
the sum of each flow’s bandwidth consumption, which is
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(a) Two VNFs allowed.
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(b) Three VNFs allowed.

Fig. 1: A motivating example (Initial traffic rates of f1,f2,
f3,f4 are 2,4,2,2 and VNF m’s traffic-diminishing ratio is 0.5).

the sum of its occupied bandwidth on each link along its
path. Intuitively, placing traffic-diminishing VNFs as early as
possible, consumes less link bandwidth resources. However,
this simple strategy reduces the VNFs’ sharing opportunities
and forces the launch of more VNFs. There is a trade-off
between saving more link bandwidth and sharing more VNFs
among flows. When we do not place any VNFs along its
path, the occupied bandwidth of a flow on each link along
its path remains the same as its initial rate and no decrement
happens. Similarly, when there is a VNF placed on the vertex
of a flow’s source, the traffic rate of the flow diminishes
in its earliest position and its bandwidth consumption is the
minimum. However, more VNFs are needed if we place one
on every flow’s source. Thus, there is usually a constraint on
the maximum number of VNFs that we can place.

The traffic-changing effect due to the VNF placement may
complicates the scheduling policy. We illustrate the complexity
by showing an example in Fig. 1. The cylindrical nodes
are switches and the cubical nodes are VNFs. VNFs are
assigned to servers (not shown in the figures) that are attached
to switches. All flows need to be served by a same type
of VNF before reaching their destination v1. The traffic-
changing ratio, which is the proportion of a flow’s traffic rate
before and after being processed by the middlebox, is 0.5
(diminishing traffic). There are four flows, f1, f2, f3, and
f4, and their initial traffic rates are 2, 4, 2, and 2, respectively.
The line thickness indicates the traffic rate. Their sources,
destinations and paths are shown in the Fig. 1. Their paths
are pre-determined, shown in different types of lines. We
are only allowed to place two VNFs. Fig. 1(a) shows the
optimal placement with only two VNFs allowed. A VNF is
placed on v6 to process f2 and f3, and another one on v1
processes f1 and f4. The bandwidth consumption of f2 is
0.5 ∗ 4 ∗ 3 = 6. The total bandwidth consumption is the sum



of each flow’s bandwidth consumption, which is calculated as
2 ∗ 2 + 0.5 ∗ (4 + 2) ∗ 3 + 2 ∗ 1 = 15. Though both VNFs
cover f2 and f3, we only process them on their sources v6
in order to reduce their bandwidths as early as possible. If
allowed to place more than three VNFs, shown in Fig. 1(b), we
should place one VNF on each flow’s source, which reduces
the bandwidth consumption in the earliest locations for all
flows. Additionally, the total flow bandwidth consumption is
calculated as 0.5 ∗ 2 ∗ 2 + 0.5 ∗ (4 + 2) ∗ 3 + 0.5 ∗ 2 ∗ 1 = 12,
which is the minimum of all cases.

In this paper, we address the placement challenge of VNFs,
and propose solutions for VNFs with traffic-diminishing ef-
fects in order to minimize the total flow bandwidth consump-
tion. We focus on placing a single type of VNF for all flows.
First, we formulate the Traffic-diminishing VNF Placement
(TVP) as an optimization problem. We start with two special
topologies of tree-structured networks and directed acyclic
graph networks and introduce their corresponding efficient
strategies. We prove the NP-hardness of the problem in a
general topology and propose an efficient heuristic algorithm
with a performance-guaranteed ratio. The results can be eas-
ily extended to traffic-expanding ones. Extensive simulations
are conducted to evaluate the performance of our proposed
algorithms in various scenarios.

Our main contributions are summarized as follows:
• We define a new optimization problem in Section III,

called Traffic-diminishing VNF Placement (TVP), that
minimizes the total bandwidth consumption in a given
network using a fixed number of VNFs. The solution
to this problem is particularly useful in allocating spam
filters to minimize spam traffic using a fixed number of
spam filters.

• We propose two efficient greedy algorithms for the tree-
structured networks in Section IV and DAG topologies in
Section V. Their time complexities are O(||V |2 log |V |)
and O(|V |3 log |V |), respectively, where V is the vertex
set.

• We prove the NP-hardness of the VNF placement in
general topologies in Section VI (Theorem 3). A heuristic
algorithm with a performance-guaranteed ratio of 1 − 1

e
(Theorem 4) is proposed with a time complexity of
O(k|V | log |V |).

• Extensive simulations in Section VII are conducted to
evaluate the efficiency of our algorithms with a publicly
available CAIDA data set [7].

The remainder of this paper is organized as follows. Section
II surveys related works. Section III describes the model and
formulates the problem. In Sections IV and V, we handle two
special cases of tree and DAG topologies. Section VI includes
the analysis of the problem hardness in a general topology
and introduces a heuristic solution. Section VII includes the
experiments. Finally, Section VIII concludes the paper.

II. RELATED WORK

NFV frameworks have recently drawn a lot of attention,
especially in the area of VNF placement problem. We give

a brief review of state-of-the-art works. For placing a single
VNF for all flows, Casado et al. [8] propose a placement model
and present a heuristic algorithm to solve the placement prob-
lem. Sang et al. [9] study the joint placement and allocation
of a single middlebox, where flows can be split and served by
several VNFs. They propose several performance-guaranteed
algorithms to minimize the number of VNFs. However, neither
study considers VNF traffic-changing effects or focuses on the
bandwidth objective.

For placing multiple types of VNFs, most research on VNF
placement focus on placing a totally-ordered set as a service
chain. Mehraghdam et al. [10] propose a context-free language
to formalize the chaining of VNFs and describe the VNF
resource allocation problem as a mixed integer quadratically
constrained program. Rami et al. [11] locate VNFs in a way
that minimizes both new VNF setup costs and the distance cost
between VNFs and flows’ paths. They provide near optimal
approximation algorithms to guarantee a placement with a
theoretically proven performance. Both [12] and [13] aim to
maximize the number of requests for each service chain. Kuo
et al. [12] propose a systematic way to tune the proper link
consumption and the VNF setup costs in the joint problem
of VNF placement and path selection. Li et al. [13] present
the design and implementation of NFV-RT, a system that
dynamically provisions resources in an NFV environment to
provide timing guarantees so that the assigned flows meet their
deadlines. However, none of them consider the traffic-changing
effect.

Ma et al. [14] are the first to take the traffic-changing
effects into consideration. It targets load balancing instead of
VNF setting-up costs. It proposes a dynamic programming
based algorithm to place a totally-ordered set, an optimal
greedy solution for the VNF placement of a non-ordered set,
and proves the NP-hardness of placing a partially-ordered
set. However, this work only processes a single flow and
always builds new, private VNFs without sharing with other
flows, which excessively increases the setup costs of VNFs.
Sharing VNFs among multiple flows makes the placement
more challenging. In this paper, we consider not only the
traffic-changing effects, but also placing VNFs for multiple
flows.

III. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model

Our scenario is based on a directed network, G = (V,E),
where V is a set of vertices (i.e., switches), and E ⊆ V 2

is a set of directed edges (i.e., links). We use v to denote
a vertex (node) and use e to denote an edge (link). We
assume each link is bidirectional and has enough bandwidth
to hold all bypass flows with their initial traffic rates, which
eliminates congestion and ensures that the routing of all flows
is successful. This is because routing failure is not our concern.

VNF m has a pre-defined traffic-changing ratio λ ≥ 0 that
serves as the ratio of a flow’s traffic rate before and after being
processed by m. In this paper, we focus on the placement of
the traffic-diminishing middlebox, whose traffic-changing ratio



is λ ≤ 1, i.e., spam filters. We use an indicator function, mv ,
to represent whether there is a VNF of m placed on v. If a
VNF is placed on v, mv = 1; otherwise, mv = 0.

We are given a set of unsplittable flows F = {f} because
flow splitting may not be feasible for applications that are
sensitive to TCP packet ordering (e.g. video applications).
Additionally, split flows can be treated as multiple unsplittable
flows. We use f to denote a single flow that has an initial
traffic rate of rf . Its path pf is an ordered set of edges
from f ’s source, srcf , to its destination, dstf . All flows’
paths are predetermined and valid. We use be(f) and b(f)
to denote f ’s traffic rate (occupied bandwidth) on e and
bandwidth consumption on all edges along its path. Then the
total bandwidth consumption of f is b(f) =

∑
e∈pf

be(f).
We introduce another indicator function, fv , to express that
the flow f uses the VNF m placed on the vertex v. If a VNF
is placed on v, fv = 1; otherwise, fv = 0. We assume each
packet in a flow is served by a type of VNF only once, even
if there are several VNFs along its path. This is because being
served by VNFs will add an extra transmission delay, which
should be avoided as much as possible, in order to improve
the network performance.

We use P and b(P) to denote the placement plan and
the total bandwidth consumption of all flows being processed
by the placed VNFs of P , respectively. We have that P =
{v | mv = 1,∀v ∈ V } and P is a subset of V , i.e., P ⊆ V ,
which contains all vertices with placed VNFs. We are given
a priori the maximum number of VNFs that are allowed to
be placed in the whole network, denoted by k. For ease of
reference, we summarize notations in Tab. I.

B. Problem Formulation

Based on the above network model, our Traffic-diminishing
VNF Placement (TVP) problem includes two properties: fea-
sibility and optimality. The feasibility of our TVP problem is
whether we are able to use at most k VNFs to ensure all
flows being processed. We formulate the optimality of the
VNF placement as a mathematical optimization problem on
minimizing the total flow bandwidth consumption as:

min b(P) =
∑
f∈F

b(f) =
∑
f∈F

∑
e∈pf

be(f) (1)

s.t. |P| =
∑
v∈V

mv ≤ k ∀m ∈M (2)∑
v∈pf

fv = 1 ∀f ∈ F (3)

fv ≤ mv ∀v ∈ V (4)
mv = {0, 1}, fv = {0, 1} ∀v ∈ V (5)

Eq. (1) is our objective: minimizing the total bandwidth
consumption, which is the sum of all flows’ bandwidth con-
sumption. A flow’s bandwidth consumption is the sum of its
occupied bandwidths on each link along its path. Eq. (2) states
that the total number of placed VNFs is no more than k.
Meanwhile, | · | denotes the set cardinality. |P| is the total
number of selected vertices with placed VNFs, which equals

TABLE I: Symbols and Definitions.

Symbols Definitions
V,E, F the set of vertices, edges, and flows
v, e, f,m a vertex,an edge, a flow, and a VNF
srcf , dstf , pf , rf source, destination, path, initial rate of f
λ traffic-changing ratio of VNF m

mv indicator function of placing m on v
fv indicator function of f using m on v
be(f), b(f) f ’s traffic rate on e and its total bandwidth
P, b(P) placement plan and its total bandwidth
k the maximum number of VNFs

the sum of mv, ∀v ∈ V . This is because mv = 1 when a
VNF is placed on v; Otherwise, mv = 0. Eq. (3) requires that
each flow f ∈ F be served by the VNF once and only once.
Eq. (4) ensures that a flow only can use a VNF on v when
there is one placed on v. Eq. (5) shows mv and fv can only
be assigned the value either of 0 or 1.

IV. SOLUTION FOR TREE-STRUCTURED NETWORKS

We start solving our TVP problem with the tree topologies.
Networks with a tree-structured topology are extremely com-
mon in streaming services, content delivery networks (CDNs)
[15], and tree-based tiered topologies like Fat-tree [16] or
BCube [17] in data centers. More generally, data centers al-
ways use symmetric, hierarchical topologies to balance traffic
load [3]. From the view of a top level switch, the topology
can also be abstracted as two connected trees because of the
bi-directional links [18]. Here we require that the sources of
all flows are leaves and their destinations are the same as the
root of the tree. As long as the VNF number constraint k ≥ 1
and the destinations of all flows are the root, we can process
all flows by placing a VNF on the root so that there does not
exist the infeasibility situation. In this section, we propose an
optimal solution for our TVP problem in tree topologies. First,
we introduce a definition from graph theory.

Definition 1 (LCA): Lowest common ancestor (LCA) of two
vertices v and w in an acyclic graph G is the lowest vertex
that has both v and w as descendants. We define each vertex
to be a descendant of itself. Thus, if v has a direct connection
from w, w is the lowest common ancestor [19].

Take the Fig. 2 as an example. We list the LCA between
every two nodes in Tab. II. Specifically, LCA of vertices v4
and v5 is v2 because v2 is the lowest node that has both of v4
and v5 as descendants. As v1 is the ancestor of v5, LCA of
vertices v1 and v5 is v1.

Next, we define ∆b(i, j) as the difference of the total
bandwidth value when we delete two VNFs on vi and vj
and place one on LCA(i, j). The process of the deletion
and placement is called merge in this paper. We propose our
solution for the tree-structured networks as Greedy Solution
for Trees (GST) algorithm, shown in Alg. 1. Line 1 initiates the
placement plan by placing a VNF on every leaf vertex. Line 2
calculates the value of ∆(i, j) for each pair of vertices. Line
3 constructs the first min-heap. Lines 4-7 iteratively select the
pair with the minimum value of ∆b(i, j) and merge the two
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i
j 1 2 3 4 5 6

1 1 1 1 1 1 1
2 1 2 1 2 2 2
3 1 1 3 1 1 1
4 1 2 1 4 2 4
5 1 2 1 2 5 5
6 1 2 1 4 5 6

TABLE II: LCA(i, j).

VNFs by placing one on their LCA until the number of VNFs
reaches k. In each round, we do merge to reduce the number
of VNFs by one. The min-heap is updated by deleting pairs
with vi or vj and inserting new pairs with LCA(i, j). We also
delete two vertices vi and vj from P and insert their LCA into
P . The placement P returns in line 8.

Theorem 1: The GST algorithm is optimal for placing
a limited number of VNFs in order to minimize the total
bandwidth consumption in a tree topology. Its time complexity
is O(|V |2 log |V |).

Proof: We prove the optimality of Alg. GST by induction.
First, we place one VNF on each leaf node as the initial
placement plan, which is the optimal placement with the
minimum bandwidth consumption for an arbitrary number of
VNFs. This is because the traffic rate of each flow diminish
from its source and the bandwidth consumption of each flow
is the smallest for all possible placement plans. Suppose there
are n leaves in the tree. When k ≥ n, the placement returned
by our algorithm is optimal. When k = n− 1, our algorithm
merges two VNFs into placing one on their LCA for only one
round with the minimum value of ∆b(i, j), ∀vi, vj ∈ P . The
value of ∆b(i, j) indicates the increment of the bandwidth
consumption when we place one VNF on the LCA of vi
and vj and delete two VNFs on them. When k = n, our
placement has the minimum bandwidth consumption. And
when k = n − 1, we increases the consumption least. Thus,
the placement plan returned by our algorithm is optimal with
the minimum bandwidth consumption when k = n− 1. Now
assume our algorithm is optimal when k = p and we prove
the optimality when k = p−1. For each merge, our algorithm
increase the bandwidth consumption least. If it has the smallest
bandwidth consumption when k = p, then it also has the
smallest bandwidth consumption when k = p − 1, indicating
its optimality. Thus, our algorithm is optimal.

The time complexity of Alg. GST is O(|V |2 log |V |).
Initially, there are O(|V |/2) leaf vertices and O((|V |/2)2)
pairs. Building a min-heap costs O((|V |/2)2 log((|V |/2)2)) =
O(|V |2 log |V |). For the while loop, we need to run O(|V |/2−
k) = O(|V |) rounds in order to reduce the number of
VNFs from O(|V |/2) to k. In each round, it at most takes
O(|V |) time to delete pairs with vi or vj and insert new
pairs with LCA(i, j). Thus, the total time complexity is
O(|V |2 log |V |+ |V | × |V |) = O(|V |2 log |V |). �

For better understanding, we use an example to show steps
of running the GST algorithm in Fig. 2. There are five flows,
all of whose initial traffic rates are 1 Mbps, except f5 with
10 Mbps. Initially, P = {v3, v5, v6, v7, v8}, which has the
minimum bandwidth consumption for all possible placements.

Algorithm 1 Greedy Solution for Trees (GST)

In: Sets of vertices V , edges E, and flows F , traffic-changing
ratio λ and VNF number constraint k;

Out: The placement plan P;

1: Initialize P as a set of all leaf vertices;
2: Calculate ∆b(i, j), ∀vi, vj ∈ P (i 6= j);
3: Construct a min-heap of ∆b(i, j),∀vi, vj ∈ P (i 6= j).
4: while |P| > k do
5: Merge the two VNFs with the minimum ∆b(i, j),

∀vi, vj ∈ P(i 6= j).
6: Update the heap by deleting pairs with vi or vj and

inserting pairs with LCA(i, j).
7: P = P − {vi, vj}+ {LCA(i, j)};
8: return The placement plan P .

This is because the traffic rates of all flows are diminished
from their sources and the bandwidth consumption of each
flow is the smallest. If k ≥ 5, since the while the loop does
not need to run, the placement plan returned by Alg. GST is
P = {v3, v5, v6, v7, v8}. If k = 4, one round of the while
loop needs to run. There are

(
5
2

)
= 10 pairs. We calculate

the value of ∆b(i, j) for each pair. For example, ∆b(5, 6) =
2, ∆b(3, 5) = 3 and ∆b(3, 8) = 21. After calculating these ten
pairs, we find that ∆b(5, 6), ∆b(5, 7) and ∆b(6, 7) all have the
minimum value, 2. We can select either pair to merge. Here we
select the pair with v5 and v6. We delete v5 and v6 from P and
insert their LCA v2 into P . Then the placement plan returned
by Alg. GST is P = {v2, v3, v7, v8}. If k = 3, two rounds
of the while loop need to run. The first round is the same
as k = 4. In the second round, there are

(
4
2

)
= 6 pairs. We

have ∆b(2, 3) = 3,∆b(2, 7) = 1, ∆b(2, 8) = 22, ∆b(3, 7) =
2, ∆b(3, 8) = 21 and ∆b(7, 8) = 21. We delete v2 and v7
from P and insert their LCA v2 into P since ∆b(2, 7) = 1 is
the minimum. Then the placement plan returned by Alg. GST
is P = {v2, v3, v8}. Similarly, the placement plan is {v1, v8}
when k = 2 and the placement plan is {v1} when k = 1.

V. SOLUTION FOR DIRECTED ACYCLIC NETWORKS

Before proposing our solution, we introduce the definition
of the directed acyclic graph.

Definition 2 (DAG): Directed acyclic graph (DAG) is a finite
directed graph with no directed cycles. That is, it consists of
finite vertices and edges, with each edge directed from one
vertex to another, such that there is no way to start at any
vertex v and follow a consistently-directed sequence of edges
that eventually loops back to v again.

A tree is a special case of a DAG when each node has
at most one incoming edge. Most hierarchical data center
networks have DAG topologies [3], indicating its importance.
Inspired by our strategy for tree topologies, we propose a
solution, called Directed Acyclic Graph Technique (DAGT)
algorithm, to solve our TVP problem in DAG topologies. We
require the destinations of all flows are the same in order
to ensure the property of feasibility. In Alg. DAGT, line 1



Algorithm 2 Directed Acyclic Graph Technique

In: Sets of vertices V , edges E, and flows F , traffic-changing
ratio λ and VNF number constraint k;

Out: The placement plan P;

1: Initialize P as a set of all flows’ sources and i = 1;
2: Sort V in topological order level by level with pf ,∀f ∈ F ;
3: while |P| > k do
4: if |P| − k ≥ |Li−1| − |Li| and |Li−1| > |Li| then
5: P = P − Li−1 + Li and i+ +;
6: else
7: Call lines 3-7 in Alg. GST with multiple merges;
8: return The placement plan P .

initializes the placement plan P as a set of all flows’ sources
and a variable i. Line 2 sort all vertices in topological order
level by level corresponding to all flows’ paths. We define
the set of all vertices in the ith level as Li. Lines 3-7 do
the merge process until the total number of VNFs is no more
than its constraint k. Here we extend the definition of merge in
Section IV to multiple merge, which means deleting VNFs on
multiple vertices (≥ 2) and place VNFs on LCAs. If the vertex
number difference between current and next levels is less than
the VNFs that are to be deleted, we directly move all vertices
to the next level with fewer VNFs in line 5; otherwise, we
do multiple merges with the least increment of the bandwidth
consumption in line 7. Line 8 returns the placement plan P .

Theorem 2: The time complexity of our Alg. DAGT is
O(|V |3 log |V |).

Proof: The topological sorting takes O(|V | log |V |). The
while loop needs to run at most O(|V |−k) = O(|V |) rounds.
In each round, we either run line 5 or line 7. Doing merge in
line 5 takes a constant time and the time complexity of calling
Alg. GST is O(|V |2| log |V |) in line 7. So the time complexity
of our Alg. DAGT is O(|V |2 log |V |×|V |) = O(|V |3 log |V |).
�

For a better understanding, we use an example in Fig. 3(a)
to show steps of running the DAGT algorithm. There are six
flows with a same traffic rate of 1. Initially, we place three
VNFs on v4, v5, and v6, respectively. The topological sorting
result level by level is shown in 3(b). The vertex v4 is a source
of f4 and a descendant of v5. If the VNF number constraint
is k = 3, no round of the while loop needs to execute and the
placement plan P = {v4, v5, v6} is returned. If k = 2, we have
|L1| = 3, |L2| = 2, and |L1| − |L2| = 1, equals to |P | − k =
3 − 2 = 1. Then we delete all VNFs on L1 and place VNFs
to L2. The placement plan P = P − {v4, v5, v6} + {v2, v3}
is returned. Similarly, if k = 1, the optimal placement plan is
P = {v1}.

VI. SOLUTION FOR GENERAL NETWORKS

We first show that in general network topologies, our TVP
problem is NP-hard. After we define two funcions, a heuristic
algorithm with an approximations ratio is proposed.
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v5v5 f4 v6v6
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(a) A DAG topology.
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(b) Topological order.

Fig. 3: A motivating example.

Theorem 3: The feasibility of our TVP problem is NP-hard
to check in a general topology.
Proof: We construct a polynomial reduction from the set-cover
decision problem. Assume we have the network (V,E) and a
set of flows F = {f} that each flow requires to be processed
by the same type of traffic-changing VNF m. We are given k
VNFs. The feasibility of our TVP problem is whether we are
able to use k VNFs to ensure all flows being processed. This
problem is equivalent to the set-cover decision problem. The
elements are all the flows U = {f, ∀f ∈ F}. A VNF m placed
on a vertex v in the network can cover a set of flows whose
path passes v, i.e. Sv = {f |v ∈ pf}. We need to find the
minimum number of subsets whose union equals the universe
set. Since the set-over decision problem is NP-complete, our
TVP problem is NP-hard. �

Here are two newly-defined functions.
Definition 3 (decrement function): The decrement function,

denoted as d(P), indicates the decrement of the total band-
width consumption by a deployment plan P , which satisfies
d(P) = b(P)−

∑
f∈F rf × |pf |.

Definition 4 (marginal decrement): The marginal decre-
ment, denoted as dP(S) = d(P ∪ S) − d(P), indicates
the additional bandwidth decrement of processing flows by
deploying VNFs on a new subset S ∈ V beyond the vertices
in the current deployment P , i.e., S ∩ P = ∅.

Lemma 1: (1) d(∅) = 0 and d(V ) = (1− λ)×
∑

f∈F rf ×
|pf |; (2) max d(P) = (1 − λ) ×

∑
f∈F rf × |pf |; (3)

min d(P) = 0.
Proof: (1) A flow f ’s bandwidth consumption is the sum of
its occupied bandwidth on each link along its path, which is
rf × |pf |. When we do not place any middlebox, i.e., P = ∅,
the traffic rates of all flows remain unchanged. Then we have
d(∅) = 0. Similarly, when there is a VNF placed on each
vertex, i.e., P = V , the traffic rate of each flow f changes from
rf to λ×rf as early as its source. The bandwidth consumption
of a flow f is decreased to λ× rf ×|pf |. The total bandwidth
consumption becomes b(V ) =

∑
f∈F λ × rf × |pf | = λ ×∑

f∈F rf×|pf |. We have d(V ) = b(V )−(1−λ)×
∑

f∈F rf×
|pf |. (2) The total bandwidth consumption is the smallest when
all flows are processed as early as their sources because all
flows’ traffic rates are diminished from the first edges along
their paths. We have min b(P) = λ ×

∑
f∈F rf × |pf | and

max d(P) = (1−λ)×
∑

f∈F rf ×|pf |. (3) Similarly, the total
bandwidth consumption is the largest when all flows are not
processed because their traffic rates are not diminished. Thus,
we have max b(P) =

∑
f∈F rf × |pf | and min d(P) = 0. �

Next, we analyze the properties of the decrement function



Algorithm 3 General Topology Placement (GTP)

In: Sets of vertices V , edges E, flows F , traffic-changing
ratio λ and VNF number constraint k;

Out: The placement plan P;
1: Initialize P as an empty set ∅;
2: while |P| ≤ k do
3: Place one VNF on the vertex v ∈ V\P with max dP(v);
4: P = P + {v};
5: return The placement plan P .

d(P). It is known that a function d is submodular if and only
if ∀P ′ ⊆ P ⊆ V,∀v ∈ V \ P ′, dP(v) ≤ dP′(v), i.e., d(P ′ ∪
v)− d(P ′) ≥ d(P ∪ v)− d(P).

Theorem 4: d(P) is a submodular function.
Proof: It is intuitive that the more VNFs are placed, the less

bandwidth consumption is, since each flow can be processed
no later than the previous placement P . Thus, d(P) is an
non-decreasing function, which is monotone. Suppose two
deployments P ′ and P with P ′ ⊆ P . According to Lemma
1, we have (1) If the newly added VNF processes no flow in
both P ′ and P (all flows can not be processed nearer their
sources), then d(P ′ ∪ v)− d(P ′) = d(P ∪ v)− d(P) = 0. (2)
As P ′ ⊆ P , all VNFs in P ′ are also placed in P and all flows
can not be processed earlier in P ′ than in P . If the newly
added VNF processes some flows nearer their sources in P ,
then it must process at least the same flows (or more flows
including these flows) nearer their sources. The decrement of
the bandwidth consumption is larger from P ′ to P ′ ∪ v.Then
we have d(P ′ ∪ v) − d(P ′) ≥ d(P ∪ v) − d(P). Thus, d(P)
is a submodular function. �

We propose a greedy algorithm in Alg. 3, called General
Topology Placement (GTP) algorithm to solve the TVP prob-
lem. Line 1 initiates the placement plan as an empty set.
Lines 2-3 iteratively select v ∈ V with the maximum value of
max dP(v) until all flows are fully served. In each round, we
add the placement of the new VNF to the current plan P . The
placement plan P returns in line 4.

For better understanding, we use an example, shown in Fig.
4, to illustrate the process of applying Alg. GTP. There are
four flows f1, f2, f3, and f4, whose initial traffic rates are
r1 = 4, r2 = 2, r3 = 2, and r4 = 2, respectively. If we
are given k = 2, the result is shown in Fig. 4(a). We list the
values of marginal decrement for all vertices in Tab. III. In the
first round, d∅(v5) has the maximum value so that we place a
VNF on v5 and P = {v5}. In the next round, d{v5}(v6) has the
maximum value, but the placement plan is not feasible. We can
only place a VNF on v2 because of k = 2 and P = {v2, v5}.
If we are given k = 3, the result is shown in Fig. 4(b). In the
first round, d∅(v5) has the maximum value so that we place a
VNF on v5 and P = {v5}. In the next round, d{v5}(v6) has
the maximum value so P = {v5, v6}. Then, d{v5,v6}(v4) has
the maximum value so the final plan is {v4, v5, v6}.

Theorem 5: The proposed Alg. GTP, can achieve a place-
ment with at most (1− 1

e ) times of the maximum decrement.
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Fig. 4: An example of the general topology.

TABLE III: Marginal decrement values.
v v1 v2 v3 v4 v5 v6

d∅(v) 0 0 3 1 4 3
d{v5}(v) 0 0 1 1 — 3
d{v5,v6}(v) 0 0 0 1 — —

Its time complexity is O(k|V | log |V |).
Proof: Our TVP problem has the same formulation of

set cover problem and the placement P follows its greedy
algorithm in [20]. Hence, the approximation ratio (1 − 1

e )
follows from Proposition 6 in [20]. It is worth mentioning
that Feige [21] proved that unless P = NP, no polynomial
time algorithm can achieve an approximation ratio better than
(1 − 1

e ) for the cardinality constrained maximization of this
type of set cover problem.

The time complexity of Alg. GTP is O(k|V | log |V |). This
is because we need to run k rounds and in each round, it at
most takes O(|V | log |V |) time to sort all vertices. �

VII. EVALUATION

Simulated experiments are conducted to evaluate the per-
formances of our proposed algorithms. After we present the
network and flow settings, the results are shown from different
perspectives to provide insightful conclusions. The simulation
results show that our proposed greedy algorithms empirically
perform very well in corresponding network topologies.

A. Setting

Topology: We conduct simulations in the Archipelago (Ark)
Infrastructure [7] in Fig. 5(a), which is CAIDA’s active mea-
surement infrastructure serving the network research com-
munity since 2007. The tree and DAG topologies are re-
duced from the Fig. 5(a). Additionally, traditional data center
networks and WAN design over-provision the network with
30−40% average network utilization in order to handle traffic
demand changes and failures [22]. Thus, we assume each
link has enough bandwidth to hold all flows. This assumption
eliminates link congestion and ensures that the transmission of
all flows is successful, since routing failure is not our concern.

Middlebox: We only has one type of VNF for each place-
ment. The traffic changing ratio has a range from 0 (e.g., spam
filters) to 0.9 (e.g., traffic optimizer) with an interval of 0.1.
We do additional simulations of the spam filter, which cuts
down the traffic after flows are served by them.

Traffic: All flows’ paths are fixed and their traffic rates are
also known as a priori. We adopt the flow size distribution
of CAIDA center, which is collected in 1-hour packet traces.
Under the tree topology, the destinations of all flows are the



(a) The Archipelago (Ark) Infrastructure.

(b) Tree topology (subgraph of (a)). (c) DAG topology (subgraph of (a)).

Fig. 5: Simulation topologies.

root of the tree. For changing the flow density, we randomly
select the flows from our dataset in order to make our
experiments more general.

B. Performance metrics and comparison algorithms

We use one performance metric: the total bandwidth con-
sumption for benchmark comparisons, which is our objective
in Eq. 1. We test the relationships among our objective and
four variables: VNF number constraint k, traffic-changing
ratio, flow density, topology size and topology kind. Each
simulation tests one variable and other variables keep constant.
The default values of these variables are: (1)For the VNF
number constraint, we have k = 8 for tree, k = 11 for DAG,
k = 17 for the general topology; (2) The traffic-changing ratio
is λ = 0.5; (3) The flow density is 0.5; (4) The topology size
is 22 for tree (shown in Fig. 5(b)), 30 for DAG (shown in
Fig. 5(c)), and 36 for a general topology; (5) There are three
topology kinds including tree, DAG, and general topologies.
Destinations are shown as red nodes with upwards diagonal.
The tree topology only has one destination while the DAG
topology has five destinations. The flow density is defined as
the ratio of the total traffic load and the total capacity of the
network. The topology size changes by randomly inserting and
deleting vertices in the network. The independent variable in
each figure is shown as the caption.

We include two benchmark schemes in our simulations: one
is Random, which randomly deploys VNFs until it places k
VNFs; another one is Best-effort, which places one VNF on
the vertex, which can reduce the bandwidths of flows mostly,
until it places k VNFs. Our proposed Alg. GST is for the
tree, Alg. DAGT is for the DAG, and Alg. GTP is for the
general topology. We only discuss the feasible solutions in
our simulations. If the placement plan is infeasible, we will
rerun the algorithm until the result is feasible. We run each
algorithm for multiple times and show the error bar of each
point to evaluate the fluctuating situations.

C. Simulation results in a tree topology

The simulation results in a tree topology are shown in
Fig. 6. Fig. 6(a) shows the relationship between bandwidth
consumption and the increasing of k from 1 to 16 with an
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Fig. 6: Tree topology.

interval of 3. When k = 1, there is only one feasible placement
plan so their bandwidth consumption is the same. When k is
larger, all their total bandwidths are lower since more flows can
be processed nearer to their sources. The difference between
Alg. GST and other two algorithms, is at first larger and
then smaller. Fig. 6(b) indicates the result of the bandwidth
consumption and the traffic-changing effect ranging from 0 to
0.9 with an interval of 0.1. Our proposed optimal Alg. GST
achieves the lowest bandwidth consumption for all the time.
The difference between Alg. GST and other two first becomes
larger with the increase of λ. When λ = 0.8, the bandwidth
consumption of Alg. GST is only 75.4% of Alg. Best-effort
and 66.1% of Alg. Random.

The bandwidth with the flow density changing from 0.3
to 0.8 with an interval of 0.1 is shown in Fig. 6(c). The
basic tendencies of all three lines are linear with the increase
of the flow density. When the density is increased from
0.5 to 0.7, the advantage of our Alg. GST is so obvious
that its consumption is at most 72.1% of the consumption
of Alg. Random. When the density is high, the bandwidth
consumption of Alg. Random becomes larger at a faster rate
because more flows need to be handled and randomly selecting
locations is much far from optimality. Fig. 6(d) is the result
of the bandwidth consumption as the topology size goes from
12 to 32 with an interval of 4. The performance of Alg. Best-
effort is also good and has little difference with the bandwidth
consumption of our Alg. GST. The difference between Alg.
GST and Alg. Best-effort is ignorable when the topology has
20 − 25 vertices. On average, the bandwidth consumption of
our Alg. GST is 20.3% less than that of Alg. Random and
8.6% than that of Alg. Best-effort.

D. Simulation results in a DAG topology

The simulation results in a DAG topology are shown in
Fig. 7. Fig. 7(a) shows the relationship between bandwidth
consumption and the increase of k from 12 to 22 with an
interval of 2. Though the flow density is the same and the
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Fig. 7: DAG topology.

topology size is only 1.36 times of the tree size, the bandwidth
consumption is almost three times of the one of the tree
topology. This is because the DAG is much more complicated
of the vertex connection and the paths of flows have more
diversity, which makes the placement far away from flows’
sources. The advantage of our Alg. DAGT is more obvious
than in Fig. 6(a). Fig. 7(b) indicates the result of the bandwidth
consumption as the traffic-changing effect goes from 0 to 0.9
with an interval of 0.1. The lines increase more smoothly and
the deviations are smaller than in Fig. 6(b) while Alg. Random
has the largest error bar. On average, the bandwidth of our Alg.
DAGT is 85.1% of the Alg. Random’s bandwidth and 92.0%
of the Alg. Best-effort’s bandwidth. When the traffic-changing
ratio is close to 1, the increment of Alg. GST becomes slower.

The bandwidth with the flow density changing from 0.3
to 0.8 with an interval of 0.1 is shown in Fig. 7(c). The
bandwidth consumption is nearly twice of that in Fig. 6(c). The
performance of Alg. Random is the worst and its bandwidth
increases vastly when the flow density is high. Our Alg. DAGT
achieves the lowest bandwidth consumption and the deviation
is less than in Fig. 6(c). This is because the DAG topology
has a more balanced traffic distribution while flows in trees
are all from leaves to the root. Fig. 7(d) is the result of the
bandwidth consumption as the topology size goes from 20 to
40 with an interval of 4. The lines are almost linear, which
indicates the nearly even distribution of flows. There is no
obvious increment when the topology has more vertices. Our
Alg. DAGT achieves a more noticeably smaller bandwidth
consumption than the other two, especially when the topology
size is larger than 35. The difference among three algorithms
is ignorable when the topology has only a few vertices.

E. Simulation results in a general topology

The simulation results in a general topology are shown in
Fig. 8. Fig. 8(a) shows the relationship between bandwidth
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Fig. 8: General topology.

consumption and the increase of k from 1 to 16 with an
interval of 3. The bandwidth consumption is around three
times of that in Fig. 6(a). The possibility of an infeasible
placement plan is higher than in the other two topologies. This
is because the general topology has a larger diversity in the
flows’ paths and covering all flows becomes more difficult.
Additionally, the error bars are smaller than the other two.
Fig. 8(b) indicates the result of the bandwidth consumption as
the traffic-changing effect goes from 0 to 0.9 with an interval
of 0.1. The bandwidth consumption increases faster than the
other two topologies when the traffic-changing ratio is from
0.4 to 0.6. The advantage of our Alg. GTP is less obvious as its
bandwidth is only 17.3% less than Alg. Random’s bandwidth
and 8.3% less than Alg. Best-effort’s bandwidth. The lines are
not so smooth, especially when the ratio is around 0.3 to 0.6.

The bandwidth with the flow density changing from 0.3
to 0.8 with an interval of 0.1 is shown in Fig. 8(c). When
the flow density is lower than 0.4, there is little bandwidth
difference among the three algorithms. It may be due to the
non-optimality of our Alg. GTP and the NP-hardness of our
problem in a general topology. When the density is larger than
0.5, the bandwidth of our Alg. GST is on average 91.4% of
the bandwidth of Alg. Random and 93.5% of the bandwidth of
Alg. Best-effort. When Fig. 8(d) is the result of the bandwidth
consumption as the topology size goes from 12 to 52 with an
interval of 8. The lines are almost linear with the increment of
the topology size. The bandwidth consumption is nearly three
times of the one in Fig. 6(d). The advantage of our Alg. GTP
becomes larger when the topology size increases, indicating
its efficiency.

F. Simulation results with spam filters

We additionally do simulations with spam filters, whose
traffic-changing ratio is λ = 0. It illustrates that flows are
cut off after being processed by spam filters. We test the total
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Fig. 9: Spam filters.

bandwidth consumption with the relationship of flow density
and kin tree and DAG topologies. Results are shown in Fig. 9
(a) and (b). In order to describe the importance between k and
flow density, we draw 3-D plots. From both sub-graphs, we
know that flow density plays a more important role in affecting
the total bandwidth consumption. This is because the slope
of flow density is larger than the slope of k. Additionally,
the result increases gently with flow density and decreases
gradually with k. In Fig. 9(a), when the flow density doubles
from 0.3 to 0.6, the total bandwidth consumption in the tree
topology increases 30.2%, while the increment is 25.6% in
the DAG topology in Fig. 9. We find that when k is large, the
bandwidth drops quickly, especially with a high flow density,
since more flows are intercepted from their sources.

To sum up, our proposed three algorithms always achieve
the best performances in all scenarios, ensuring their efficien-
cies of placing VNFs. The five variables influence the results
in different extents while k has the largest compact on the
performance. The comparison Alg. Random does not have a
steady enough performance, and its error bars are always the
largest compared to the other two algorithms.

VIII. CONCLUSION

We address the placement problem of a special type of NFV
VNF with the traffic-diminishing effect (e.g., spam filters).
We aim at minimizing the total bandwidth consumption by
placing a pre-determined number of VNFs. First, we formulate
the traffic-diminishing (e.g., spam filters) VNF placement
problem as an optimization problem. We propose an optimal
strategy for the tree-structured networks. Next, we extend the
algorithm to solve the directed acyclic topology. We prove
the NP-hardness of our problem in a general topology. Then
a performance-guaranteed algorithm with an approximation
ratio is designed with newly defined functions. Extensive
simulations on CAIDA data set are conducted to evaluate the
performance of our proposed algorithms in various scenarios.
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