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ABSTRACT

The implementation of network services is changed from dedicated

hardware to software middleboxes with the evolution of Network

Function Virtualization (NFV). The placement of such middleboxes

are complicated not only by the selection of multiple available

hosting servers, but also by the traffic-changing effect of middle-

boxes. In this paper, we address the placement problem of a single

type of traffic-diminishing middlebox (e.g., spam filters), where the

objective is to minimize the total bandwidth consumption when

the total number of placed middleboxes is limited. We prove the

NP-hardness of checking the feasibility of our problem in general

topologies. Then we propose a greedy solution and prove that it is

performance-guaranteed when it generates a feasible deployment.

Next we narrow down to tree-structured networks and propose an

optimal dynamic programming based strategy. In order to improve

the time efficiency, we also introduce an efficient greedy solution

with an intuitive insight. Extensive simulations are conducted on a

real-world dataset to evaluate the performance of our algorithms.
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1 INTRODUCTION

Network Function Virtualization (NFV) changes the way we im-

plement network services from expensive hardware to software

functions (middleboxes), which run on switch-connected commod-

ity servers [18]. The choice of middlebox service location is com-

plicated by not only the availability of multiple hosting servers

but also the traffic-changing effect of middleboxes [22]. Middle-

boxes with traffic-diminishing capability are quite common. For

example, the Citrix CloudBridge Wide Area Network Optimizer

reduces traffic volume by up to 80% by compressing traffic [2]. Re-

dundancy Eliminator would reduce the difference between peak

and minimum traffic more significantly by 25% for the university

and by 52% for the data center [15]. Spam filters intercept all sus-
picious flows by cutting down 100% spam rates. Link bandwidth

is a valuable resource in most networks such as data centers [21],

WANs [4], and LANs [13]. Efficiently placing such kind of traffic-

diminishingmiddleboxes is important for today’s high-performance

networks/systems [14]. Additionally, server resources for running

middleboxes, such as CPU and memory, are also valuable and finite
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(a) Two middleboxes.
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(b) Three middleboxes.

Figure 1: A motivating example.

in today’s networks [1]. Then there is usually a constraint on the

total number of middleboxes that we can deploy [26].

In this paper, we aim at minimizing the total flow bandwidth

consumption by placing a limited number of a single type of traffic-

diminishing middleboxes with a given number of copies. The flow

bandwidth consumption is defined as the sum of a flow’s occupied

bandwidth on each link along its path. A middlebox does not have

a capacity limit. Note that even under a simplified assumption of

only one type of middleboxes, our formulated problem is non-trivial

(Section V). There is a delicate trade-off between saving more link

bandwidth and sharing more middleboxes among flows. Intuitively,

deploying traffic-diminishing middleboxes as close to flows’ sources

as possible along all paths consumes less link bandwidth resources.

However, this simple strategy reduces middleboxes’ sharing oppor-

tunities and forces the launch of more middleboxes. Similarly, when

a middlebox is deployed on the vertex of a flow’s source, the traffic

rate of the flow diminishes in its earliest position and the band-

width consumption of the flow is the minimum. However, more

middleboxes are needed if we deploy one on each flow’s source.

We illustrate the complexity of deployment by showing an ex-

ample in Fig. 1, where circles and squares represent switches and

middleboxes, respectively. Middleboxes are assigned to servers (not

shown in the figures) that are attached to switches. All flows need

to be served by a middlebox𝑚 before reaching their destinations.

The traffic-diminishing ratio, which is the ratio of a flow’s traffic

rate before and after being processed by the middlebox, is 0.5. There

are four flows: 𝑓1, 𝑓2, 𝑓3, and 𝑓4, and their initial traffic rates are

4, 2, 2, and 2, respectively. All flow paths are pre-determined, shown

in different types of lines. Fig. 1(a) shows the optimal deployment

with only two middleboxes allowed. A middlebox is deployed on 𝑣5
to process 𝑓1, and another one on 𝑣2 processes 𝑓2, 𝑓3, and 𝑓4. Take

𝑓1 as an example of a flow’s bandwidth consumption calculation.

Its initial traffic rate is 4 and its consumed bandwidths on both

links (𝑣5 to 𝑣3 and 𝑣3 to 𝑣1) are 0.5 · 4 = 2 because of the deployed

traffic-diminishing middlebox at its source 𝑣5. Then the bandwidth

consumption of 𝑓1 is 2+ 2 = 4. The total bandwidth consumption of

all flows is calculated as 0.5·4·2+2·2+2+2 = 12. If we are allowed to

deploy three middleboxes, shown in Fig. 1(b), we should deploy one

on each flow’s source, which reduces the bandwidth consumption

https://doi.org/10.1145/3404397.3404458
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in the earliest locations for all flows. Additionally, the total flow

bandwidth consumption is reduced to 0.5 · (4 · 2 + 2 · 2 + 2 + 2) = 8,

which is the minimum.

Most existing works focus on multiple middlebox deployment,

but frequently formulate as a complex Integer Programming prob-

lem with no efficiency-guaranteed solvers, or are limited to design

no performance-guaranteed heuristic solutions. Additionally, we

find that when it comes to security inspection or analytic services,

only one kind of middleboxes is needed for each flow, such as spam

filters, Intrusion Detection Systems (IDSs), Intrusion Prevention

Systems (IPSs), Deep Packet Inspection (DPI), and network analyt-

ics/ billing services [28]. Thus, we narrow down to the deployment

problem of one single type of middleboxes per flow, and propose

performance-guaranteed solutions for middleboxes with traffic-

diminishing effects in order to minimize the total flow bandwidth

consumption. Our main contributions are summarized as follows:

• We formulate a new optimization problem, called Traffic-

diminishing Middlebox Deployment (TDMD), where the ob-

jective is to minimize the total bandwidth consumption in

a given network using a fixed number of middleboxes. The

solution of TDMD is particularly useful in allocating spam

filters to minimize the total spam traffic using a fixed number

of spam filters.

• We prove the NP-hardness of the middlebox deployment

in general topologies in Section 4 (Theorem 1). A heuris-

tic algorithm with a complexity of 𝑂 ( |𝑉 |2 log |𝑉 |) of oracle
queries is proposed, which has a performance-guaranteed

ratio of (1 − 1/𝑒) based on 𝑘 middleboxes derived from the

algorithm.

• We propose one optimal dynamic programming based al-

gorithm and one efficient greedy algorithm for the tree-

structured networks. Their time complexities are 𝑂 ( |𝑉 | ·
(log |𝑉 |)3 · 𝑟max) and 𝑂 ( |𝑉 |2 log |𝑉 |) respectively, where 𝑉
is the vertex set, and 𝑟max is the integral largest flow rate.

When flows have the same rate, the time complexity is re-

duced to 𝑂 ( |𝑉 |3 (log |𝑉 |)2). We also present a time-efficient

greedy solution with complexity of 𝑂 ( |𝑉 |3 log |𝑉 |).
• We conduct extensive simulations to evaluate our algorithms’

efficiency with the CAIDA data set [5].

2 RELATEDWORK

NFV frameworks have recently drawn a lot of attention, especially

in the middlebox deployment[9, 10, 24]. For placing a single type of

middleboxes for all flows, Casado et al. [6] propose a deployment

model and present a heuristic solution. Sang et al. [28] study the

joint deployment and allocation of a single type of middleboxes,

where flows can be split and served by several middleboxes. They

propose several performance-guaranteed algorithms to minimize

the number of middleboxes. Sallam et al. [27] maximize the total

amount of network flows that are fully processed by certain nodes

while respecting deployment budget and node capacity. However,

none of them considers middlebox traffic-changing effects or fo-

cuses on the bandwidth consumption objective.

For placing multiple types of middleboxes, most research on mid-

dlebox deployment focuses on placing a totally-ordered set, which

is known as a service chain [32]. Mehraghdam et al. [23] propose

a context-free language to formalize the chaining of middleboxes

and describe the middlebox resource allocation problem as a mixed

integer quadratically constrained program. Rami et al. [8] locate
middleboxes in a way that minimizes both new middlebox setup

costs and the distance cost between middleboxes and flows’ paths.

Both [19] and [20] aim to maximize the total number of requests

for service chains. Kuo et al. [19] propose a systematic way to tune

the proper link consumption and the middlebox setup costs in a

joint problem of middlebox deployment and path selection. Li et al.
[20] present the design and implementation of NFV-RT, a system

that dynamically provisions resources in an NFV environment to

provide timing guarantees so that the assigned flows meet their

deadlines. Fei et al. [11] propose a proactive approach to provi-

sion new middleboxes in order to minimize the cost incurred by

inaccurate prediction of middlebox deployment. However, none of

the above mentioned works on service chain considers the traffic-

changing effect.

Ma et al. [22] are the first to take the traffic-changing effects

into consideration. They target load balancing instead of middle-

box setting-up costs. They propose a dynamic programming based

algorithm to deploy a totally-ordered set, an optimal greedy solu-

tion for the middlebox deployment of a non-ordered set, and prove

the NP-hardness of placing a partially-ordered set. However, this

work only processes a single flow and always builds new, private

middleboxes without sharing with other flows, which excessively

increases the number of located middleboxes. Chen et al. [7] con-
sider both traffic-changing effects and multiple flows. However,

their results only can apply to a special restrictive network called

the double-tree structure network when flows have the same rate.

3 MODEL AND PROBLEM FORMULATION

3.1 Network model

Our scenario is based on a directed network, 𝐺 = (𝑉 , 𝐸), where 𝑉
is a set of vertices (i.e., switches), and 𝐸 ⊆ 𝑉 2

is a set of directed

edges (i.e., links). We use 𝑣 and 𝑒 to denote a vertex (node) and an

edge (link). We assume each link is bidirectional and has enough

bandwidth to hold all bypass flows with their initial traffic rates,

which eliminates congestion and ensures that the routing of all

flows is successful. Middlebox𝑚 has a pre-defined traffic-changing

ratio 𝜆 ≥ 0, serving as the ratio of a flow’s traffic rate before and

after being processed by𝑚 if the flow requires to be processed by𝑚.

We focus on the deployment of a single type of traffic-diminishing

middleboxes, whose traffic-changing ratio is 𝜆 ≤ 1. We use an

indicator function,𝑚𝑣 , to represent whether there is a middlebox of

𝑚 deployed on 𝑣 . If a middlebox is deployed on 𝑣 ,𝑚𝑣 = 1; otherwise,

𝑚𝑣 = 0.

We are given a set of unsplittable flows 𝐹 = {𝑓 }. Because flow
splitting may not be feasible for applications that are sensitive to

TCP packet ordering (e.g. video applications). In any case, split

flows can be treated as multiple unsplittable flows. We use 𝑓 to

denote a single flow that has an initial traffic rate of 𝑟 𝑓 . Its path 𝑝 𝑓
is an ordered set of edges from 𝑓 ’s source, 𝑠𝑟𝑐 𝑓 , to its destination,

𝑑𝑠𝑡𝑓 . All flows’ paths are predetermined and valid. We introduce the

indicator function, 𝑓𝑣 , for flow 𝑓 using the middlebox𝑚 deployed

on the vertex 𝑣 . We define 𝑙𝑣 (𝑓 ) as the minimum number of edges

from a vertex 𝑣 to 𝑠𝑟𝑐 𝑓 . We use 𝑏 (𝑓 ) to denote 𝑓 ’s total bandwidth
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Symbols Definitions

𝑉 , 𝐸, 𝐹 the set of vertices, edges, and flows

𝑣, 𝑒, 𝑓 ,𝑚 a vertex,an edge, a flow, and a middlebox

𝑠𝑟𝑐 𝑓 , 𝑑𝑠𝑡𝑓 , 𝑝𝑓 , 𝑟 𝑓 source, destination, path, initial rate of 𝑓

𝜆 traffic-changing ratio of middlebox𝑚

𝑚𝑣 indicator function of placing𝑚 on 𝑣

𝑓𝑣 indicator function of 𝑓 using𝑚 on 𝑣

𝑙𝑣 (𝑓 ) minimum number of edges from 𝑣 to 𝑠𝑟𝑐 𝑓

P, F deployment and allocation plans

𝑏 (𝑓 ), 𝑏 (P, F) consumed bandwidth of 𝑓 and the solution

𝑘 the maximum number of middleboxes

Table 1: Symbols and definitions.

consumption on all edges along its path. If 𝑓 requires to get pro-

cessed by𝑚, its traffic rate (occupied bandwidth) on 𝑒 equals to 𝑟 𝑓
before a flow 𝑓 is processed by𝑚 and 𝜆 · 𝑟 𝑓 after the processing;

otherwise, its traffic rate remains unchanged as 𝑟 𝑓 . We assume that

each packet in a flow is served by the middlebox only once, even if

there are several middleboxes along its path. This is because being

served by middleboxes will add an extra transmission delay, which

should be avoided as much as possible, in order to improve the

network performance.

The problem consists of two sub-problems: themiddlebox deploy-

ment, which vertices to deploy middleboxes; and the flow allocation,

which middlebox to process each flow. Note that the flow allocation

is trivial once the middlebox deployment is determined because

assigning each flow 𝑓 with the first deployed middlebox along its

path always minimizes its total bandwidth consumption. We use

P and F to denote the deployment and allocation plans. 𝑏 (P, F )
is the total bandwidth consumption of all flows being processed

by the plans. We have P = {𝑣 | 𝑚𝑣 = 1,∀𝑣 ∈ 𝑉 } where P is a

subset of 𝑉 , i.e., P ⊆ 𝑉 , which contains all vertices with deployed

middleboxes. The allocation plan consists of indicator values for all

flows, meaning F = {𝑓𝑣 |∀𝑓 ∈ 𝐹 }. The decision variables include 𝑓𝑣
and𝑚𝑣 for all flows and all vertices. We are given a priori the maxi-

mum number of middleboxes that are allowed to be deployed in the

whole network, denoted by 𝑘 . For ease of reference, we summarize

notations in Tab. 1.

3.2 Problem formulation

Based on the above model, our Traffic-Diminishing Middlebox De-

ployment (TDMD) problem includes two properties: feasibility and

optimality. The feasibility of our TDMD problem is whether we are

able to use 𝑘 middleboxes to ensure all flows being processed. For

the optimality of middlebox deployment and allocation, we formu-

late it as a mathematical optimization problem on minimizing the

total bandwidth consumption in the following:

min

{𝑚𝑣 ,𝑓𝑣 |𝑣∈𝑉 }
𝑏 (P, F ) =

∑
𝑓 ∈𝐹

𝑏 (𝑓 ) =
∑

𝑓𝑣=1,𝑓 ∈𝐹
𝑟 𝑓 ( |𝑝 𝑓 |−(1 − 𝜆)𝑙𝑣 (𝑓 )) (1)

s.t. P = {𝑣 |𝑚𝑣 = 1, ∀𝑣 ∈ 𝑉 } (2)

|P | =
∑

𝑣∈𝑉 𝑚𝑣 ≤ 𝑘 ∀𝑚 ∈ 𝑀 (3)∑
𝑣∈𝑝𝑓

𝑓𝑣 = 1 ∀𝑓 ∈ 𝐹 (4)

𝑓𝑣 ≤ 𝑚𝑣, F = {𝑓𝑣 |∀𝑓 ∈ 𝐹 } ∀𝑣 ∈ 𝑉 (5)

𝑚𝑣 = {0, 1}, 𝑓𝑣 = {0, 1} ∀𝑣 ∈ 𝑉 (6)

Eq. (1) is our objective: minimizing the total bandwidth con-

sumption, which is the sum of all flows’ bandwidth consumption.

Figure 2: Reduction from feasibility check to set-cover.

A flow’s bandwidth consumption is the sum of its occupied band-

widths on each link along its path. We mathematically define P in

Eq. (2) as a set of vertices with middleboxes deployed on them. Eq.

(3) states that the total number of deployed middleboxes is no more

than 𝑘 . (| · | denotes the set cardinality.) |P | is the total number

of selected vertices with deployed middleboxes, which equals the

sum of𝑚𝑣, ∀𝑣 ∈ 𝑉 . This is because𝑚𝑣 = 1 when a middlebox is

deployed on 𝑣 ; otherwise,𝑚𝑣 = 0. Eq. (4) requires that each flow

𝑓 ∈ 𝐹 be served by the middlebox once and only once. Eq. (5) en-

sures that a flow only can be processed on 𝑣 when one𝑚 has been

deployed on 𝑣 . Eq. (6) shows𝑚𝑣 and 𝑓𝑣 can only be either 0 or 1.

4 SOLUTION FOR GENERAL NETWORKS

4.1 Problem hardness in a general topolgoy

Theorem 1. The feasibility of the TDMD problem is NP-hard to
check in a general topology.

Proof: The TDMD problem’s feasibility is whether a deployment

with 𝑘 middleboxes ensuring all flows being processed exists or

not. First, the feasibility of a given deployment can be verified in a

polynomial time as it takes 𝑂 ( |𝐹 |) time to check that all flows are

processed when reaching their destinations.

Second, we show that the set-cover decision problem is reducible

to the feasibility of our TDMD problem. Consider a case of set-cover

decision: given a set of elements {1, 2, ..., 𝑛} (called the universe) and
a collection 𝑆 of |𝑆 | sets, whose union equals the universe, we need

to identify whether there is a sub-collection of 𝑆 with 𝑘 sets, whose

union equals the universe. We can always construct an equivalent

case of the TDMD problem: we construct a flow 𝑓 corresponds

to each element, then the universe equals their universal set 𝐹 =

{𝑓 }. Each flow requires to be processed by a same type of traffic-

changing middlebox𝑚. For each set and its elements in collection 𝑆 ,

we construct a set of corresponding flows and assume it is the set of

flows that can be processed by deploying a middlebox𝑚 on a vertex

𝑣 . Intuitively, the union of all such sets equals to 𝐹 . The topology of

the TDMD instance consists of all these vertices and is designed as

fully-connected between every pair of vertices. The path 𝑝 𝑓 of each

flow 𝑓 is a directed line connecting each vertex that can process

𝑓 . We claim that there is a sub-collection of 𝑆 with 𝑘 sets, whose

union equals the universe, if and only if there exists 𝑘 vertices

to deploy middleboxes, which can process all flows. For suppose

there is a sub-collection of 𝑆 with 𝑘 sets whose union equals the

universe, then we can deploy middleboxes on 𝑘 vertices with their

corresponding sets of processed flows. We illustrate the reduction

using an example in Fig. 2. The elements are all the flows 𝐹 = {𝑓 },
i.e., {𝑓1, 𝑓2, 𝑓3, 𝑓4}. In the example, 𝑆1 = {𝑓1, 𝑓2, 𝑓4}, 𝑆2 = {𝑓1, 𝑓2} and
𝑆3 = {𝑓3}. We need to find the minimum number of subsets whose

union equals the universe set, which is 𝑆1 and 𝑆3. Then we deploy

one middlebox on 𝑣1 and another on 𝑣3 to serve all flows.
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Algorithm 1 General Topology Placement (GTP)

In: 𝑉 , 𝐸, 𝐹 and traffic-changing ratio 𝜆;

Out: Deployment and allocation plans P and F ;

1: Initialize P as an empty set ∅;
2: while not all flows are processed do

3: deploy one𝑚 on the vertex 𝑣 ∈ 𝑉 \P with max𝑑P (𝑣);
4: P = P⋃{𝑣} and𝑚𝑣 = 1;

5: ∀𝑓 ∈𝐹, 𝑓𝑣 =1, if 𝑙𝑣 (𝑓 )=max{𝑙𝑣′ (𝑓 ) |𝑚𝑣′ =1,∀𝑣 ′ ∈𝑝 𝑓 }.
6: return P and F = {𝑓𝑣 |∀𝑓 ∈ 𝐹 } .

Conversely, if we can deploy 𝑘 vertices to process all flows, then

we can select their corresponding sets of elements from 𝑆 . As all

flows are processed, the union of the sub-collection sets of 𝑆 equals

the universe. Consequently, since the set-cover decision problem is

a NP-complete problem, the TDMD problem is NP-hard. ■

4.2 Performance-guaranteed solution

Since the feasibility is NP-hard to check in a general topology, we

propose a greedy but feasible solution that uses 𝑘 middleboxes de-

rived from the solution. We prove that it is performance-guaranteed

for the 𝑘 . The greedy algorithm, called General Topology Placement

(GTP), is shown in Alg. 1. Line 1 initiates the deployment plan as

an empty set. Lines 2-4 iteratively select 𝑣 ∈ 𝑉 with the maximum

value of max𝑑P(𝑣) until all flows are fully served. In each round,

we add the new middlebox to the current plan P. Line 5 generates

the allocation plan The deployment plan P returns in line 6.

We also use Fig. 1 to illustrate the process of applying GTP. The

settings are the same. The initial traffic rates of flows are 𝑟1 =

4, 𝑟2 = 2, 𝑟3 = 2, and 𝑟4 = 2, respectively. We list the values of

marginal decrement for all vertices in Tab. 2. In the first round,

𝑑∅ (𝑣5) has the maximum value so that we deploy a middlebox on

𝑣5 and P = {𝑣5}. In the next round, 𝑑 {𝑣5 } (𝑣6) has the maximum

value, but the deployment plan is not feasible. We can only deploy a

middlebox on 𝑣2 because of 𝑘 = 2 and P = {𝑣2, 𝑣5}. If we are given
𝑘 = 3, the result is shown in Fig. 1(b). In the first round, 𝑑∅ (𝑣5)
has the maximum value so that we deploy a middlebox on 𝑣5 and

P = {𝑣5}. In the next round, 𝑑 {𝑣5 } (𝑣6) has the maximum value so

P = {𝑣5, 𝑣6} and . Then, 𝑑 {𝑣5,𝑣6 } (𝑣4) has the maximum value so the

final plan is {𝑣4, 𝑣5, 𝑣6}.

Definition 1 (decrement function). The decrement func-
tion, denoted as 𝑑 (P), indicates the decrement of the total band-
width consumption by a deployment plan P, which satisfies 𝑑 (P) =∑

𝑓 ∈𝐹 𝑟 𝑓 · |𝑝 𝑓 | − 𝑏 (P).

Definition 2 (marginal decrement). The marginal decre-
ment, denoted as 𝑑P (S) = 𝑑 (P ∪S) −𝑑 (P), indicates the additional
bandwidth decrement of processing flows by deploying middleboxes
on a new subset S ∈ 𝑉 beyond vertices in the current deployment P.

Lemma 1. (1) 𝑑 (∅) = 0 and 𝑑 (𝑉 ) = (1 − 𝜆) ·∑𝑓 ∈𝐹 𝑟 𝑓 · |𝑝 𝑓 |; (2)
max𝑑 (P) = (1 − 𝜆) ·∑𝑓 ∈𝐹 𝑟 𝑓 · |𝑝 𝑓 |; (3) min𝑑 (P) = 0.

Proof: (1) A flow 𝑓 ’s bandwidth consumption is the sum of its

occupied bandwidth on each link along its path, which is 𝑟 𝑓 · |𝑝 𝑓 |.
When we deploy no middlebox, i.e., P = ∅, the traffic rates of all

flows remain unchanged. Then we have 𝑑 (∅) = 0. Similarly, when

there is a middlebox deployed on each vertex, i.e., P = 𝑉 , the traffic

𝑣 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6

𝑑∅ (𝑣) 0 0 3 1 4 3

𝑑{𝑣5} (𝑣) 0 0 1 1 — 3

𝑑{𝑣5,𝑣6} (𝑣) 0 0 0 1 — —

Table 2: Marginal decrement values.

rate of each flow 𝑓 changes from 𝑟 𝑓 to 𝜆·𝑟 𝑓 as early as its source. The
bandwidth consumption of a flow 𝑓 is decreased to 𝜆 · 𝑟 𝑓 · |𝑝 𝑓 |. The
total bandwidth consumption becomes 𝑏 (𝑉 ) = ∑

𝑓 ∈𝐹 𝜆 · 𝑟 𝑓 · |𝑝 𝑓 | =
𝜆 ·∑𝑓 ∈𝐹 𝑟 𝑓 · |𝑝 𝑓 |. We have 𝑑 (𝑉 ) = 𝑏 (𝑉 ) − (1 − 𝜆) ·∑𝑓 ∈𝐹 𝑟 𝑓 · |𝑝 𝑓 |.
(2) The total bandwidth consumption is the smallest when all flows

are processed as early as their sources because all flows’ traffic

rates are diminished from the first edges along their paths. We have

min𝑏 (P) = 𝜆 ·∑𝑓 ∈𝐹 𝑟 𝑓 · |𝑝 𝑓 | and max𝑑 (P) = (1 − 𝜆) ·∑𝑓 ∈𝐹 𝑟 𝑓 ·
|𝑝 𝑓 |. (3) Similarly, the total bandwidth consumption is the largest

when all flows are not processed because their traffic rates are

not diminished. Thus, we have max𝑏 (P) =
∑

𝑓 ∈𝐹 𝑟 𝑓 · |𝑝 𝑓 | and
min𝑑 (P) = 0. ■

Next, we analyze the properties of the decrement function 𝑑 (P).
It is known that a function 𝑑 is submodular if and only if ∀P ⊆
P ′ ⊆ 𝑉 ,∀𝑣 ∈ 𝑉 \P ′

,𝑑P ({𝑣}) ≥ 𝑑P′ ({𝑣}), i.e.,𝑑 (P∪{𝑣})−𝑑 (P) ≥
𝑑 (P ′ ∪ {𝑣}) − 𝑑 (P ′).

Theorem 2. 𝑑 (P) is a submodular function.

Proof: We assume P ′=P⋃
𝑆 . From definitions 2 and 3, we have

𝑑 (P ′)−𝑑 (P)= (
∑
𝑓 ∈𝐹

𝑟 𝑓 · |𝑝 𝑓 |−𝑏 (P ′))−(
∑
𝑓 ∈𝐹

𝑟 𝑓 · |𝑝 𝑓 |−𝑏 (P))

=𝑏 (P)−𝑏 (P ′) =
∑

𝑓𝑣′=1,𝑓 ∈𝐹
𝑟 𝑓 (1 − 𝜆)𝑙𝑣′ (𝑓 ) −

∑
𝑓𝑣=1,𝑓 ∈𝐹

𝑟 𝑓 (1 − 𝜆)𝑙𝑣 (𝑓 )

=
∑𝑓 ∈𝐹

𝑓𝑣′=1,𝑓𝑣=1
𝑟 𝑓 (1 − 𝜆) [𝑙𝑣′ (𝑓 ) − 𝑙𝑣 (𝑓 )] .

We know 𝑓𝑣 = 1 if 𝑣 has 𝑙𝑣 (𝑓 ) = max{𝑙𝑤 (𝑓 ) |𝑚𝑤 = 1,∀𝑤 ∈ 𝑝 𝑓 }.
As more middleboxes are deployed in P ′

beyond P, flows must be

processed no later than in P. Then ∀𝑓 ∈ 𝐹 , we have 𝑙𝑣′ (𝑓 ) ≥ 𝑙𝑣 (𝑓 )
when 𝑓𝑣′ = 1 in P ′

and 𝑓𝑣 = 1 in P. Thus, 𝑑 (P ′) ≥ 𝑑 (P) and 𝑑 (P)
is a non-decreasing function, which is monotone. Suppose a vertex

𝑢 satisfies 𝑢 ∈ 𝑉 \P ′
. If we deploy a middlebox on 𝑢, 𝑓𝑢 becomes

1 if 𝑢 has 𝑙𝑢 (𝑓 ) = max{𝑙𝑤 (𝑓 ) |𝑚𝑤 ,∀𝑤 ∈ 𝑝 𝑓 }, resulting in a smaller

𝑏 (𝑓 ); otherwise, 𝑓𝑢 still is 0 and 𝑏 (𝑓 ) remains the same. Then we

have 𝑙𝑢 (𝑓 ) > 𝑙𝑣′ (𝑓 ) ≥ 𝑙𝑣 (𝑓 ),∀𝑓 ∈ 𝐹 .

From above, we get𝑑 (P⋃{𝑢})−𝑑 (P) = ∑𝑓 ∈𝐹
𝑓𝑢=1

𝑟 𝑓 (1−𝜆) (𝑙𝑢 (𝑓 )−
𝑙𝑣 (𝑓 )). As ∀𝑓 ∈ 𝐹, (𝑙𝑢 (𝑓 ) − 𝑙𝑣′ (𝑓 )) ≤ (𝑙𝑢 (𝑓 ) − 𝑙𝑣 (𝑓 )), we have:

𝑓 ∈𝐹∑
𝑓𝑢=1

𝑟 𝑓 (1 − 𝜆) (𝑙𝑢 (𝑓 ) − 𝑙𝑣′ (𝑓 )) ≤
𝑓 ∈𝐹∑
𝑓𝑢=1

𝑟 𝑓 (1 − 𝜆) (𝑙𝑢 (𝑓 ) − 𝑙𝑣 (𝑓 )) .

Then we have 𝑑 (P ′⋃{𝑢}) −𝑑 (P ′) ≤ 𝑑 (P⋃{𝑢}) −𝑑 (P), mean-

ing 𝑑P′{𝑣} ≤ 𝑑P {𝑣}. Thus, 𝑑 (P) is submodular. ■

Theorem 3. The proposed GTP can achieve a deployment with at
most (1 − 1/𝑒) times of the maximum decrement. Its time complexity
is 𝑂 ( |𝑉 |2 log |𝑉 |) of oracle queries.

Proof: Our TDMD problem has the same formulation as the set

cover problem and the deployment P follows its greedy algorithm

in [16]. Hence, the approximation ratio (1−1/𝑒) follows from Propo-

sition 6 in [16]. Also, Feige [12] proved that unless P =NP, no polyno-

mial time algorithm can achieve an approximation ratio better than

(1−1/𝑒) for the cardinality constrained maximization of this kind of
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(b) Served on current node 𝑣.

Figure 3: Illustration for fully served situation.

set cover problem. We run 𝑘 rounds for placing each middlebox and

𝑘 = 𝑂 ( |𝑉 |) as we at most place one middlebox on each vertex. In

each round, it takes a constant time to calculate 𝑑P (𝑣), ∀𝑣 ∈ 𝑉 \ P.

Sorting all such 𝑑P (𝑣) takes at most 𝑂 ( |𝑉 | log |𝑉 |). The function
calculation itself is usually assumed to be conducted by an oracle,

and thus its complexity is not taken into account. So the algorithm

complexity is𝑂 ( |𝑉 | · |𝑉 | log |𝑉 |) = 𝑂 ( |𝑉 |2 log |𝑉 |) times oracles.■

5 SOLUTIONS FOR TREE NETWORKS

Because of the NP-hardness of our TDMD problem in general

topologies, here we narrow down to tree topologies, which are

common in streaming services [25], content delivery networks

(CDNs) [30], and tree-based tiered topologies like Fat-tree [3] or

BCube [14] in data centers. We require that the sources of all flows

are leaves and their destinations are the same as the root of the tree.

As long as the middlebox number constraint 𝑘 ≥ 1 and the destina-

tions of all flows are the root, we can process all flows by placing a

middlebox on the root so that there does not exist infeasibility.

5.1 Optimal DP-based solution

We introduce the optimal dynamic programming (DP) based solu-

tion for the tree-structured networks. Note that the solution works

for general trees with an arbitrary number of branches. For sim-

plicity, we only discuss the solution for the binary tree. Before

introducing our optimal DP solution, we define two notations for

the fully and partially served situations, respectively. Let 𝐹 (𝑣, 𝑘)
denote the minimum total occupied bandwidth of all flows with 𝑘

deployed middleboxes in the subtree 𝑇𝑣 rooted at 𝑣 when all flows

have been fully processed. Let 𝑃 (𝑣, 𝑘, 𝑏) denote the minimum total

occupied bandwidth of all flows with 𝑘 deployed middleboxes in

the tree 𝑇𝑣 when flows with a total bandwidth consumption of 𝑏

have been processed. Then we have the following formulations.

The formulation for the full served case is:

𝐹 (𝑣, 𝑘) = min{ min

0<𝑝<𝑘
{𝐹 (𝑣𝑙 , 𝑝) + 𝐹 (𝑣𝑟 , 𝑘 − 𝑝)}+

𝜆
∑

𝑓 ∈𝑇𝑣
𝑏 (𝑓 ), min

0≤𝑞<𝑘
{𝑃 (𝑣𝑙 , 𝑞, 𝑏𝑙 ) + 𝑃 (𝑣𝑟 , 𝑘 − 1 − 𝑞,𝑏𝑟 )

+ 𝜆𝑏𝑙 + 𝜆𝑏𝑟 +
∑

𝑓 ∈𝑇𝑣
(𝑏 (𝑓 ) − 𝑏𝑙 − 𝑏𝑟 )}}. (7)

Here is the explanation. When all flows have been fully processed,

there are only two served situations in Fig. 3:

(a) In Fig. 3(a), the left and right subtrees of 𝑣 have already been

served by totally deploying 𝑘 middleboxes before 𝑣 . The minimum

total occupied bandwidth in the tree of 𝑣 , is selected from all com-

binations of allocating the total 𝑘 middleboxes. If the left subtree

deploys 𝑝 (0 < 𝑝 < 𝑘) middleboxes, then the right tree deploys the

remaining 𝑘−𝑝 ones. The sum of the minimum total occupied band-

width inside 𝑣 ’s two subtrees is min
0<𝑝<𝑘 {𝐹 (𝑣𝑙 , 𝑝) + 𝐹 (𝑣𝑟 , 𝑘 − 𝑝)}.

v

P P

k-pp
vl vr

Figure 4: Illustration for partial served situation.

The total consumed bandwidth on the two uplinks from its two

subtrees to 𝑣 , is 𝜆
∑

𝑓 ∈𝑇𝑣 𝑏 (𝑓 ). This is because all flows have already
been processed inside its two subtrees. The minimum total occupied

bandwidth in the tree of 𝑣 , 𝐹 (𝑣, 𝑘), is the sum of the two parts.

(b) In Fig. 3(b), its two subtrees are partially served. So we deploy

one middlebox on 𝑣 to make sure all flows through 𝑣 have been

served. The minimum total occupied bandwidth in the tree of 𝑣 is

selected from all combinations of allocating the remaining 𝑘−1mid-

dleboxes in its subtrees. If the left subtree deploys 𝑞 (0 ≤ 𝑞 ≤ 𝑘 − 1)

middleboxes, then the right tree deploys the remaining 𝑘 − 𝑞 − 1

ones. Here each subtree can deploy no middlebox as we do not

require all flows to be served. The sum of the minimum total occu-

pied bandwidth inside 𝑣 ’s two subtrees is min
0≤𝑞≤𝑘 {𝑃 (𝑣𝑙 , 𝑞, 𝑏𝑙 ) +

𝑃 (𝑣𝑟 , 𝑘 − 1 − 𝑞,𝑏𝑟 )}. The total consumed bandwidth on the two up-

links from its two subtrees to 𝑣 , is 𝜆𝑏𝑙 +𝜆𝑏𝑟 +
∑

𝑓 ∈𝑇𝑣 (𝑏 (𝑓 ) −𝑏𝑙 −𝑏𝑟 ).
This is because its left subtree has flows with a total bandwidth of

𝑏𝑙 processed while the right has flows with a total bandwidth of 𝑏𝑟
processed. Additionally, there are flows with a total bandwidth of∑

𝑓 ∈𝑇𝑣 (𝑏 (𝑓 )−𝑏𝑙 −𝑏𝑟 ) that are not processed inside its both subtrees
and will be processed by the middlebox deployed on 𝑣 .

The formulation for the partial served case is:

𝑃 (𝑣, 𝑘, 𝑏) = min

0≤𝑝≤𝑘
{𝑃 (𝑣𝑙 , 𝑝, 𝑏𝑙 ) + 𝑃 (𝑣𝑟 , 𝑘 − 𝑝,𝑏𝑟 ) + 𝜆𝑏𝑙

+ 𝜆𝑏𝑟 +
∑

𝑓 ∈𝑇𝑣
(𝑏 (𝑓 ) − 𝑏𝑙 − 𝑏𝑟 )}. (8)

We have 𝑏 = 𝑏𝑙 +𝑏𝑟 . Here is the explanation. When flows are par-

tially processed with a total served bandwidth 𝑏, there is only one

served situation, illustrated in Fig. 4: The left and right subtrees of 𝑣

are both partially served. The minimum total occupied bandwidth

in the tree of 𝑇𝑣 is selected from all combinations of allocating the

total 𝑘 middleboxes. If the left subtree deploys 𝑝 (0 ≤ 𝑝 ≤ 𝑘) mid-

dleboxes, then the right tree deploys the remaining 𝑘 −𝑝 ones. Here

each subtree can deploy no middlebox as we do not require all flows

to be served. The sum of the minimum total occupied bandwidth

inside 𝑣 ’s two subtrees is min
0≤𝑝≤𝑘 {𝑃 (𝑣𝑙 , 𝑝, 𝑏𝑙 ) + 𝑃 (𝑣𝑟 , 𝑘 − 𝑝, 𝑏𝑟 )}.

The total consumed bandwidth on the two uplinks from its two

subtrees to 𝑣 , is 𝜆𝑏𝑙 +𝜆𝑏𝑟 +
∑

𝑓 ∈𝑇𝑣 (𝑏 (𝑓 ) −𝑏𝑙 −𝑏𝑟 ). The reason is the

same as the second served situation of 𝐹 (𝑣, 𝑘). Then the total served
flow bandwidth is the sum of the served ones in each subtree, which

is 𝑏 = 𝑏𝑙 +𝑏𝑟 . Here we need to mention that 𝐹 (𝑣, 𝑘) is a special case
of 𝑃 (𝑣, 𝑘, 𝑏) when all flows in𝑇𝑣 are processed and 𝑏 is the smallest.

The initial value of 𝐹 (𝑣, 𝑘) for each leaf node 𝑣 is:

𝐹 (𝑣, 𝑘) =
{
0 𝑘 ≥ 1,

∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(9)

There is no bandwidth consumption inside a leaf node if any

middlebox is deployed. If no middlebox is deployed (𝑘 ≤ 0), there

is no feasible deployment then the value of 𝐹 (𝑣, 𝑘) is set as ∞. The
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Figure 5: An example.

𝑘\𝑣 1 2 3 4 5 6 7 8

1 24 3 6 0 0 6 0 0

2 16.5 1.5 3 0 0 3 0 0

3 13.5 1.5 3 0 0 3 0 0

4 12 1.5 3 0 0 3 0 0

Figure 6: Values for 𝐹 (𝑣, 𝑘).
initial value of 𝑃 (𝑣, 𝑘, 𝑏) for each leaf 𝑣 is:

𝑃 (𝑣, 𝑘, 𝑏) =
{
0 𝑘 ≥ 0 and 𝑏 ≤ ∑

𝑓 ∈𝑇𝑣 𝑏 𝑓 ,

∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(10)

The upper-bound of the total processed bandwidth is

∑
𝑓 ∈𝑇𝑣 𝑏 𝑓 ,

which is the sum of all flows’ initial traffic rates. Even when no

middlebox is deployed (𝑘 = 0), 𝑃 (𝑣, 𝑘, 𝑏) is 0.
In order to reduce bandwidth consumption, flows are always

processed by the middlebox that is nearest to their sources, i.e.,

farthest to their destinations. It means that 𝑓𝑣 = 1 if 𝑣 has the

value 𝑙𝑣 (𝑓 ) = max{𝑙𝑤 (𝑓 ) |𝑚𝑤 = 1,∀𝑤 ∈ 𝑝 𝑓 }. For a flow 𝑓 , if a

vertex 𝑣 ∈ 𝑝 𝑓 has 𝑓𝑣 = 1, we have ( |𝑝 𝑓 | − 𝑙𝑣 (𝑓 )) edges consuming

𝑟 𝑓 bandwidth and 𝑙𝑣 (𝑓 ) edges consuming 𝜆 · 𝑟 𝑓 bandwidth. Then

𝑏 (𝑓 ) = ( |𝑝 𝑓 | − 𝑙𝑣 (𝑓 )) · 𝑟 𝑓 + 𝜆 · 𝑟 𝑓 · 𝑙𝑣 (𝑓 ) = 𝑟 𝑓 |𝑝 𝑓 | − 𝑟 𝑓 (1 − 𝜆)𝑙𝑣 (𝑓 ).
Thus, when P is decided, the optimal allocation plan is also decided.

For simplicity, we omit F in 𝑏 (P, F ) as 𝑏 (P).
Theorem 4. The dynamic programming based solution (DP) is

optimal for our TDMD problem in tree-structured topologies.

Proof: The detailed proof is omitted due to the optimal property

of the dynamic programming method. ■
We use an example in Fig. 5 to explain the details of applying

our DP formulation. There is a binary tree with eight vertices and

four flows 𝑓1, 𝑓2, 𝑓3 and 𝑓4 with their initial rates as 𝑟1 = 2, 𝑟2 =

1, 𝑟3 = 5 and 𝑟4 = 1, respectively. The traffic changing ratio of the

middlebox is 𝜆 = 0.5. We list the values of 𝐹 (𝑣, 𝑘) and 𝑃 (𝑣, 𝑘, 𝑏) for
all combinations of feasible 𝑘 and 𝑏 for each vertex in the tables of

Fig. 6 and Fig. 7. When all flows have been processed in the root 𝑣1,

𝑏 = 𝑟1+𝑟2+𝑟3+𝑟4 = 2+1+5+1 = 9, andwe have 𝐹 (𝑣1, 𝑘) = 𝑃 (𝑣1, 𝑘, 9)
for all 𝑘 . Take 𝑘 = 3 as an example. We have 𝐹 (𝑣1, 3) = 𝑃 (𝑣1, 3, 9) =
13.5 from tables in Fig.6 and Fig. 7(a). For finding the corresponding,

we trace back. If no middlebox is deployed on 𝑣1, all flows have been

processed inside both subtrees of 𝑣1. Then we can calculate the total

consumed bandwidth inside both subtrees as 13.5−0.5·(2+1+5+1) =
9, which is exactly the sum of 𝐹 (𝑣2, 1) = 3 and 𝐹 (𝑣3, 2) = 6. Our

assumption is correct. Then 𝐹 (𝑣2, 1) is selected, which means that

we deploy only one middlebox to fully serve all flows in the tree

𝑇2. The only feasible position is 𝑣2. For the right subtree, 𝐹 (𝑣3, 2) is
selected. Since there are only two leaf nodes in the tree𝑇3, we deploy

one middlebox on each leaf node. Then the optimal deployment for

𝑘 = 3 is {𝑣2, 𝑣7, 𝑣8}. Similarly, the optimal deployment for 𝑘 = 2 is

{𝑣1, 𝑣7} or {𝑣2, 𝑣6}. As for partially processing with 𝑘 = 3, if only 1

rate of flows is not processed, we have 𝑏 = 9−1 = 8. For minimizing

the total bandwidth consumption, we should deploy a middlebox

on 𝑣4 instead of 𝑣2, resulting in 𝑃 (𝑣1, 3, 8) = 13 < 𝑃 (𝑣1, 3, 9). Due
to space limits, we omit calculation of other values in Figs. 6 and 7.

Theorem 5. Time complexity of Alg. DP is 𝑂 ( |𝑉 | · (log |𝑉 |)3 ·
𝑟max), where 𝑟max = max𝑓 ∈𝐹 𝑟 𝑓 . (We assume 𝑟max is an integer.)

Proof: This is because there are |𝑉 | vertices and we need to

traverse each vertex. For each vertex 𝑣 , we need to calculate values

𝑘\𝑏 0 1 2 3 4 5 6 7 8 9

0 24 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 ∞ 22.5 22 22.5 ∞ 16.5 ∞ ∞ ∞ 24

2 ∞ ∞ 21.5 20.5 21 16.5 15 14.5 15 16.5

3 ∞ ∞ ∞ ∞ 19.5 ∞ ∞ 14 13 13.5

4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 12

(a) 𝑃 (𝑣1, 𝑘, 𝑏)

𝑘\𝑏 0 1 5 6

0 6 ∞ ∞ ∞
1 6 5.5 3.5 ∞
2 ∞ 5.5 3.5 3

(b) 𝑃 (𝑣2, 𝑘, 𝑏)

𝑘\𝑏 0 1 5 6

0 12 ∞ ∞ ∞
1 12 11 7 ∞
2 ∞ 11 7 6

(c) 𝑃 (𝑣3, 𝑘, 𝑏)

𝑘\𝑏 0 2

0 0 ∞
1 ∞ 0

(d) 𝑃 (𝑣4, 𝑘, 𝑏)

𝑘\𝑏 0 1

0 0 ∞
1 ∞ 0

(e) 𝑃 (𝑣5, 𝑘, 𝑏)

𝑘\𝑏 0 1 5 6

0 6 ∞ ∞ ∞
1 6 5.5 3.5∞
2 ∞ 5.5 3.5 3

(f) 𝑃 (𝑣6, 𝑘, 𝑏)

𝑘\𝑏 0 5

0 0 ∞
1 ∞ 0

(g) 𝑃 (𝑣7, 𝑘, 𝑏)

𝑘\𝑏 0 1

0 0 ∞
1 ∞ 0

(h) 𝑃 (𝑣8, 𝑘, 𝑏)

Figure 7: Values for 𝑃 (𝑣, 𝑘, 𝑏).

of 𝐹 (𝑣, 𝑘) and 𝑃 (𝑣, 𝑘, 𝑏) for all combinations of feasible 𝑘 and 𝑏.

The largest value of 𝑘 is the number of leaves, which is 𝑂 (log |𝑉 |)
for a binary tree. Additionally, the largest value of 𝑏 is the sum of

all flows’ initial traffic rate

∑
𝑓 ∈𝐹 𝑏 𝑓 , which is less than |𝐹 | · 𝑟max.

Additionally, for flows from the same leaf source, we can treat

them as a single flow because of their same path to the root. As

a result, the maximum number of flows is the same number of

the leaf nodes, i.e., 𝑂 ( |𝐹 |) = 𝑂 (log |𝑉 |). 𝑟max is the largest flow

rate after the merge. When calculating the value of 𝐹 (𝑣, 𝑘) for a
group of fixed values 𝑣 and 𝑘 , we need to select the minimum value

from all its combinations for two served situations, whose total

number is less than𝑂 (𝑘 +𝑘 · |𝐹 | ·𝑟max) = 𝑂 ((log |𝑉 |)2 ·𝑟max). When

calculating the value of 𝑃 (𝑣, 𝑘, 𝑏) for a group of fixed values 𝑣, 𝑘 and

𝑏, we need to select the minimum value from all its combinations,

whose total number is less than 𝑘 · |𝐹 | · 𝑟max = 𝑂 ((log |𝑉 |)2 · 𝑟max).
The selection takes a constant time. As a result, the worst time

complexity is𝑂 ( |𝑉 | · log |𝑉 | · ((log |𝑉 |)2 · 𝑟max + (log |𝑉 |)2 · 𝑟max) =
𝑂 ( |𝑉 | · (log |𝑉 |)3 · 𝑟max). ■

When all flows have the same initial traffic rate, the time complex-

ity becomes𝑂 ( |𝑉 | (log |𝑉 |)2 ( |𝑉 |2+ (log |𝑉 |)2) = 𝑂 ( |𝑉 |3 (log |𝑉 |)2),
which is polynomial. When flows have various initial traffic rates ,

the DP algorithm is pseudo-polynomial. It is not trivial to transform

our proposed DP algorithm into a polynomial-time approximation

scheme (PTAS) [31] because the placement at the current vertex

does not have a obvious relationship or direct impact with its par-

ent. When the traffic rates of flows are in an arbitrary precision

and order of magnitude, the DP algorithm is computationally hard.

This motivates us to propose an efficient algorithm with a lower

time complexity in the next subsection.

5.2 Efficient greedy solution

We study a fast, sub-optimal greedy solution, but first introduce a

definition from graph theory.

Definition 3 (LCA). Lowest common ancestor (LCA) of two
vertices 𝑣 and𝑤 in an acyclic graph 𝐺 is the lowest vertex that has
both 𝑣 and𝑤 as descendants.
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Algorithm 2 Heuristic Algorithm for Trees (HAT)

In: Sets of vertices 𝑉 , edges 𝐸, and flows 𝐹 , traffic-changing ratio

𝜆 and middlebox number constraint 𝑘 ;

Out: The deployment plan P;

1: Initialize P as a set of all leaf vertices;

2: Calculate Δ𝑏 (𝑖, 𝑗), ∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝑃 (𝑖 ≠ 𝑗);
3: Construct a min-heap of Δ𝑏 (𝑖, 𝑗),∀𝑣𝑖 , 𝑣 𝑗 ∈ 𝑃 (𝑖 ≠ 𝑗).
4: while |P | > 𝑘 do

5: Merge the two middleboxes with the minimum Δ𝑏 (𝑖, 𝑗),
∀𝑣𝑖 , 𝑣 𝑗 ∈ P(𝑖 ≠ 𝑗).

6: Update the heap by deleting pairs with 𝑣𝑖 or 𝑣 𝑗 and inserting

pairs with 𝐿𝐶𝐴(𝑖, 𝑗).
7: P = (P \ {𝑣𝑖 , 𝑣 𝑗 })

⋃{𝐿𝐶𝐴(𝑖, 𝑗)};
8: return The deployment plan P.

We define each vertex to be a descendant of itself. Thus, if 𝑣 has

a direct connection from𝑤 ,𝑤 is the lowest common ancestor [29].

Take Fig. 5 as an example. LCA of vertices 𝑣4 and 𝑣5 is 𝑣2 and LCA

of vertices 𝑣1 and 𝑣6 is 𝑣1.

Next, we define Δ𝑏 (𝑖, 𝑗) as the difference in the total bandwidth

value when we delete two middleboxes on 𝑣𝑖 and 𝑣 𝑗 and deploy one

middlebox on 𝐿𝐶𝐴(𝑖, 𝑗). The process of the deletion and deployment

is calledmerge. We propose our solution as Heuristic Algorithm for

Trees (HAT), shown in Alg. 2. Line 1 initiates the deployment plan

by placing a middlebox on every leaf vertex. Line 2 calculates the

value of Δ𝑏 (𝑖, 𝑗) for each pair of vertices. Line 3 constructs the first

min-heap. Lines 4-7 iteratively select the pair with the minimum

value of Δ𝑏 (𝑖, 𝑗) and merge the two middleboxes by placing one on

their LCA until the number of middleboxes reaches 𝑘 . In each round,

we do merge to reduce the number of middleboxes by one. The

min-heap is updated by deleting pairs with 𝑣𝑖 or 𝑣 𝑗 and inserting

new pairs with 𝐿𝐶𝐴(𝑖, 𝑗). We also delete two vertices 𝑣𝑖 and 𝑣 𝑗 from

P and insert their LCA into P. The deployment P returns in line

8. Note that HAT is not optimal for some cases, especially when

traffic has a heavily unbalanced distribution.

We show steps of running HAT in Fig. 5 with the same setting

in the last subsection. Initially, P = {𝑣4, 𝑣5, 𝑣7, 𝑣8}, which has the

minimum bandwidth consumption for all possible deployments.

This is because the traffic rates of all flows are diminished from

their sources and the bandwidth consumption of each flow is the

smallest. If 𝑘 ≥ 4, since the while loop does not need to run, the

deployment plan returned by Alg. HAT is P = {𝑣4, 𝑣5, 𝑣7, 𝑣8}. If
𝑘 = 3, one round of the while loop needs to run. There are

(
4

2

)
= 6

pairs. We calculate the value of Δ𝑏 (𝑖, 𝑗) for each pair. For example,

Δ𝑏 (4, 5) = 1.5, Δ𝑏 (7, 8) = 3 and Δ𝑏 (4, 7) = 9.5. After calculating

these six pairs, we find that Δ𝑏 (4, 5) has the minimum value, 1.5.

We delete 𝑣5 and 𝑣6 from P and insert their LCA 𝑣2 into P. Then

the deployment plan returned by Alg. HAT is P = {𝑣2, 𝑣7, 𝑣8}. If
𝑘 = 2, two rounds of the while loop need to run. The first round

is the same as 𝑘 = 3. In the second round, there are

(
3

2

)
= 3 pairs.

We have Δ𝑏 (2, 7) = 9,Δ𝑏 (2, 8) = 3, and Δ𝑏 (7, 8) = 3. Δ𝑏 (2, 8) = 3,

and Δ𝑏 (7, 8) = 3 have the same minimum value. If we select to

delete 𝑣7 and 𝑣8 from P and insert their LCA 𝑣6 into P. Then

the deployment plan returned by HAT is P = {𝑣2, 𝑣6}. Otherwise,
P = {𝑣1, 𝑣7}. Similarly, P = {𝑣1} when 𝑘 = 1.

(a) The Archipelago (Ark) Infrastructure.

(b) Tree topo (subgraph of (a)). (c) General topo (subgraph of (a)).

Figure 8: Simulation topologies.

Theorem 6. The time complexity of Alg. HAT is𝑂 ( |𝑉 |2 log |𝑉 |).

Proof: There are 𝑂 ( |𝑉 |/2) = 𝑂 ( |𝑉 |) leaf vertices and 𝑂 ( |𝑉 |2)
pairs. The time of building a min-heap costs𝑂 (( |𝑉 |2) · log( |𝑉 |2)) =
𝑂 ( |𝑉 |2 log |𝑉 |). For the while loop, we need to run 𝑂 ( |𝑉 |/2 − 𝑘) =
𝑂 ( |𝑉 |) rounds in order to reduce the number of middleboxes from

𝑂 ( |𝑉 |/2) to 𝑘 . In each round, it at most takes 𝑂 ( |𝑉 |) time to delete

pairs with 𝑣𝑖 and 𝑣 𝑗 and insert pairs with 𝐿𝐶𝐴(𝑖, 𝑗). Thus, the total
time complexity is 𝑂 ( |𝑉 |2 log |𝑉 | + |𝑉 | · |𝑉 |) = 𝑂 ( |𝑉 |2 log |𝑉 |). ■

6 EVALUATION

6.1 Setting

Topology:We conduct simulations by MATLAB on the Archipela-

go (Ark) Infrastructure topology [5] in Fig. 8(a), which is CAIDA’s

active measurement infrastructure serving the network research

community since 2007. The tree and general topologies are reduced

from Fig. 8(a). Additionally, traditional data center networks and

WAN design over-provision the network with 30−40% average

network utilization in order to handle traffic demand changes and

failures [17]. Thus, we assume each link has enough bandwidth

to hold all flows. This assumption eliminates link congestion and

ensures that the transmission of all flows is successful, since routing

failure is not our concern.

Middlebox: We only have one kind of middlebox for each de-

ployment. The traffic changing ratio has a range from 0 (e.g., spam

filters) to 0.9 (e.g., traffic optimizer) with an interval of 0.1. We do

additional simulations for the spam filter, which cuts down the

traffic after flows being served by them.

Traffic: All flows’ paths are fixed and their traffic rates are also

known a priori. We use the flow size distribution of the CAIDA

center, which was collected in a 1-hour packet trace. Under the tree

topology, the destination of all flows is the root of the tree. As for

changing the flow density variable, we randomly select flows from

the dataset in order to make our experiments more general. Here we

mention that our simulations only study feasible deployments. If the

algorithm can not find a feasible solution, we choose to regenerate

a traffic distribution.

6.2 Metrics and comparison algorithms
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Figure 9: Middlebox number constraint 𝑘 in tree.
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Figure 10: Traffic-changing ratio in tree.

We use two performance metrics for our benchmark comparisons:

the total bandwidth consumption, which is our objective in Eq. 1,

and the execution time of each algorithm in seconds. We test the

relationships among these two metrics and five variables: middle-

box number constraint 𝑘 (only for trees), traffic-changing ratio,

flow density, topology size and topology type. The flow density is

defined as the ratio of the total traffic load to the total capacity of

the network. Each simulation tests one variable and keeps other

variables constant. The default values of these variables are: (1) The

middlebox number for the tree is 𝑘 = 8 and for the general topology

is 𝑘 = 10; (2) The traffic-changing ratio is 𝜆 = 0.5; (3) The flow den-

sity is 0.5; (4) The topology size is 22 for the tree topology (shown

in Fig. 8(b)), and 30 for the general topology (shown in Fig. 8(c)); (5)

We have a tree topology and a general topology. Destinations are

shown as red nodes. The root of tree topology is colored red, shown

in Fig. 8(b). The topology size changes by randomly inserting and

deleting vertices in the network. The independent variable in each

figure is shown as the caption.

We include two benchmark schemes in our simulations: one is

Random, which randomly deploys middleboxes until it deploys 𝑘

middleboxes; another one is Best-effort, which deploys one mid-

dlebox on the vertex, which can reduce the bandwidth of flows

mostly, until it deploys 𝑘 middleboxes. Our proposed Alg. DP and

Alg. HAT are for the tree, and Alg. GTP is for both the tree and the

general topologies. We only discuss feasible solutions. We run each

algorithm multiple times and show the error bar of each point to

evaluate fluctuating situations.

6.3 Simulation results in a tree topology

Simulation results in a tree are shown in Figs. 9, 10, 11, and 12.

Fig. 9(a) shows the relationship between bandwidth consumption

and 𝑘 ranging from 1 to 16 with an interval of 3. Alg. DP always

has the lowest bandwidth consumption as well as the smallest

error bars, which verifies its optimality. When 𝑘 = 1, there is
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Figure 11: Flow density in tree.
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Figure 12: Topology size in tree.

only one feasible deployment plan so all bandwidth consumptions

are the same. When 𝑘 becomes larger, all their total bandwidth

consumptions become lower since more flows can be processed

nearer to their sources. Alg. HAT has the second lowest bandwidth

consumption, while Alg. GTP has the third lowest. The error bars

of Alg. Random are always the largest because its randomness of

deployment results in an unsteady performance. Fig. 9(b) shows

the execution time result of the five algorithms, which verifies the

time complexity analysis of our proposed algorithms. When the

middlebox number constraint 𝑘 increases, the execution time of

Alg. DP increases vastly while other four algorithms only have

moderate increment. This is because the relationship between 𝑘

and 𝑉 is 𝑘 = 𝑂 (log |𝑉 |) as we discussed in Section V. It indicates

the trade-off between the performance and the efficiency of this

algorithm. Alg. HAT has the second longest execution time because

its complexity is 𝑂 ( |𝑉 |2 log |𝑉 |) larger than others, although its

bandwidth consumption performance is the second best. Alg. Best-

effort has a close execution time with the Alg. GTP. In the following

discussion, since some results and analysis are similar, we omit the

details because of limited space.

Fig. 10(a) indicates the result of the bandwidth consumption on

the traffic-changing effect ranging from 0 to 0.9 with an interval of

0.1. Alg. DP still achieves the lowest bandwidth consumption for all

the time. Alg. HAT has the second lowest bandwidth consumption,

while Alg. GTP has the third lowest. The difference between every

two algorithms becomes larger with the increase of 𝜆. When 𝜆 = 0.8,

the bandwidth consumption of Alg. HAT is only 75.4% of Alg. Best-

effort and 66.1% of Alg. Random. We find the traffic-changing ratio

has little influence on the execution time of all greedy algorithms,

shown in Fig. 10(b). This also confirms that the time complexity is

almost irrelevant of the traffic-changing ratio.

The bandwidth consumption with the flow density changing

from 0.3 to 0.8 with an interval of 0.1 is shown in Fig. 11(a). The

basic tendencies of all five lines are linear with the increase of
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Figure 13: Middlebox number 𝑘 in a general topology.
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Figure 14: Traffic-changing ratio in a general topology.

the flow density. When the density increases from 0.5 to 0.7, the

advantage of our Alg. HAT is so obvious that its consumption is at

most 72.1% of the consumption of Alg. Random. When the density

is high, the bandwidth consumption of Alg. Random becomes larger

at a faster rate because more flows need to be handled and randomly

selecting locations is much far from optimality. The execution time,

shown in Fig. 11(b) has a similar tendency with Fig. 9(b). When the

flow density grows, the execution time of Alg. DP increases vastly

while other four algorithms only have moderate increment. When

the flow density reaches the largest value as 0.8, the execution time

of Alg. DP is more than 4 times than that of any of other algorithms.

Fig. 12(a) is the result of the bandwidth consumption as the topol-

ogy size goes from 12 to 32 with an interval of 4. The performance

of Alg. Best-effort is also good and has little difference with the

bandwidth consumption of our Alg. GTP. The difference between

Alg. HAT and Alg. GTP is ignoble when the topology has 20 − 25

vertices. On average, the bandwidth consumption of our Alg. DP

is 10.3% less than that of Alg. GTP and 18.6% less than that of Alg.

Best-effort. The tendency of the execution times in Fig. 12(b) is also

similar to that in Fig. 9(b). Besides that, the increment speed with

the growth of the topology size is faster than those of the previous

three variables in Figs. 9(b), 10(b), and 11(b). Alg. Best-effort has a

close execution time with the Alg. GTP.

6.4 Simulation results in a general topology

The simulation results in a general topology of Fig. 8(b) with 𝑘

derived from Alg. GTP are shown in Figs. 13, 14, 15, and 16. Fig.

13(a) shows the relationship between bandwidth consumption and

𝑘 ranging from 12 to 22 with an interval of 2. We compare our pro-

posed Alg. GTP, with Algs. Random and Best-effort. The bandwidth

consumption is around three times of that in Fig. 9(a). The possibil-

ity of an infeasible deployment plan is higher than in the tree. This

is because the general topology has a larger diversity in the flows’

paths and serving all flows becomes more difficult. Additionally, the
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Figure 15: Flow density in a general topology.
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Figure 16: Topology size in a general topology.

error bars are smaller than in the tree. From Fig. 13(b), Alg. GTP has

the longest execution time, indicating the delicate tradeoff between

the bandwidth consumption performance and the time efficiency.

Fig. 14(a) indicates the result of the bandwidth consumption as

the traffic-changing effect goes from 0 to 0.9 with an interval of

0.1. The bandwidth consumption increases faster when the traffic-

changing ratio is from 0.4 to 0.6. The advantage of our Alg. GTP

is less obvious as its bandwidth is only 17.3% less than that of Alg.

Random and 8.3% less than that of Alg. Best-effort. The lines are not

so smooth, especially when the ratio is around 0.3 to 0.6. Fig. 14(b)

shows the execution time results. The tendency is almost linear,

which is different from Fig. 10(b), because the general topology has

more choices and is more likely to generate infeasible solutions.

The bandwidth with flow density changing from 0.3 to 0.8 with

an interval of 0.1 is shown in Fig. 15(a). When the flow density is

lower than 0.4, there is little bandwidth difference among the three

algorithms. It may be due to the non-optimality of our Alg. GTP

and the NP-hardness of our problem in a general topology. When

the density is larger than 0.5, the bandwidth of our Alg. HAT is on

average 91.4% of the bandwidth of Alg. Random and 93.5% of the

bandwidth of Alg. Best-effort. From Fig. 15(b), Alg. GTP has the

longest execution time, indicating the delicate tradeoff between the

bandwidth consumption performance and the time efficiency.

Fig. 16(a) is the result of bandwidth consumption as topology size

goes from 12 to 52 with an interval of 8. The lines are almost linear

with the increment of topology size. The bandwidth consumption

is nearly three times of the one in Fig. 12(a). The advantage of Alg.

GTP becomes larger when topology size increases. Fig. 16(b) is

similar to Fig. 15(b).

6.5 Simulation results with spam filters

We additionally do simulations with spam filters, whose traffic-

changing ratio is 𝜆 = 0. It illustrates that flows are cut off after
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Figure 17: Spam filters.

being processed by spam filters. We test the total bandwidth con-

sumption of Alg. GTP with the relationship of flow density and

𝑘 in the tree and general topologies. Results are shown in Figs.

17 (a) and (b). In order to describe the importance between 𝑘 and

flow density, we draw 3-D plots. From both sub-graphs, we know

that flow density plays a more important role in affecting the total

bandwidth consumption. This is because the slope of flow density

is larger than the slope of 𝑘 . Additionally, the result increases gen-

tly with flow density and decreases gradually with 𝑘 . In Fig. 17(a),

when the flow density doubles from 0.3 to 0.6, the total bandwidth

consumption in trees increases 30.2%, while the increment is 25.6%

in the general topology in Fig. 17. We find that when 𝑘 is large, the

bandwidth drops quickly, especially with a high density, since more

flows are intercepted from sources.

Consequently, the results demonstrate the delicate trade-off be-

tween the performance and the time efficiency of our proposed

algorithms. The five variables have different extents of impacts

on the results while 𝑘 has the largest impact on the performance

of bandwidth consumption. We find that when 𝑘 grows large, the

bandwidth drops quickly, especially with a high flow density. The

comparison Alg. Random does not have a steady enough perfor-

mance, and its error bars are always the largest compared to the

other four algorithms.

7 CONCLUSION

In this paper, we address the deployment problem of one single

type of middleboxes with traffic-diminishing effect (e.g., spam fil-

ters). We aim at minimizing the total bandwidth consumption of

all flows by placing a pre-determined number of middleboxes to

serve flows. First, we formulate the traffic-diminishing middlebox

deployment problem as an optimization problem. We prove that

it is NP-hard to check the feasibility of our problem in a general

topology. Then a greedy algorithm is proposed and prove it is

performance-guaranteed when it generates a feasible deployment.

Next we narrow down to the tree-structured networks, and pro-

pose both an optimal dynamic programming based strategy and

an efficient heuristic strategy. Extensive simulations on CAIDA

data set are conducted to evaluate the performance of our proposed

algorithms in various scenarios.
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