
When Learning Joins Edge: Real-time Proportional
Computation Offloading via Deep Reinforcement Learning

Ning Chen, Sheng Zhang, Zhuzhong Qian, Jie Wu, Sanglu Lu

演示者
演示文稿备注
I’m Ning Chen from Nanjing University, today I will be presenting our work about proportional computation offloading. This is a joint work with Sheng, Zhuzhong, Jie and Sanglu.

Background

Benefits
• Low latency
• Energy efficient
• Privacy protection
• Bandwidth consumption

reduction

演示者
演示文稿备注
In the traditional cloud computing model, mobile users use resources on the remote cloud to process the computing tasks, which inevitably results in large upload and download delays.
[click]
This also facilitates the emergency of edge computing, which sinks computing resources to edge nodes. Therefore, the user can offload the computation to a edge server nearby for a quick response.
[click]
In general, edge computing has the advantages of low latency, energy efficient, privacy protection, and bandwidth consumption reduction.

Related work
Facets of computation offloading:
• Energy consumption Energy harvesting [TCCN’ 2017], Energy-Efficient [INFOCOM’ 2018]

• Resource allocation SDR-AO-ST [INFOCOM’ 2017], Min-Max Fairness Guarantee [TCOM’ 2017]

• Latency-aware scheduling Optimization for MECO [TWC’ 2018], uRLLC [IEEE Access’ 2018]

Methods of computation offloading:
• NP-hard problem -> heuristic algorithm
• Minority game [IEEE WLC’ 2018]

• Deep Reinforcement Learning [WCNC’ 2018], [IoT’ 2019]

演示者
演示文稿备注
Computation offloading has been widely studied, which focus on energy consumption, resource allocation and latency-aware scheduling. Most previous researches formulate the computation offloading problem as a NP-hard problem, and design a heuristic algorithm to solve it. While, its robustness and scalability can't be guaranteed. Some researches adopt the minority game theory, and deep reinforcement learning, but without a comprehensive description of state and well-designed reward.

Motivation
Time-variant edge environment:
• Heterogeneity of mobile devices
• Fluctuation of bandwidth
• Mobility of mobile users

(model of job arrival)
• Diversity of jobs

No “one-size-fits-all” solution:
Best algorithm depends on specific workload

演示者
演示文稿备注
Some observations motivate us to find a scalable method to solve the computation problem. Firstly, we live in a time-variant edge environment. There are diverse heterogeneous mobile device, such as camera, and smart phones, and these devices are equipped with different computing capability.
The edge bandwidth fluctuated significantly, offloading too much computation to the edge server may lead to a more congested network state.
Sometimes the mobile user may keep moving and we can’t get the model of job arrival beforehand. What is more, there are diverse jobs, some about machine learning, some about video analyze
[click]
Hence, if taking all these factors into consideration, there has no “one-size-fit-all” solutions, and existing best algorithm depends on specific workload.

Motivation
RL shows superiority in decision-making in dynamic environment

State Q network Q value

Agent Environment

Reward

Action

Observe next state from environment

演示者
演示文稿备注

Secondly, Deep reinforcement learning obtain inspiring achievements such as alpha Go for decision-making in dynamic environment, which is similar to our considering scenario.

The DRL model aims to get a max accumulated discounted reward and improves its policy through continuous interaction with environment. The DRL-agent is expected to select an optimal action based on the Q value for each observed state, and receive an instant reward. In the real computation offloading scenario, a offloading decision may affect the subsequent decisions, thus we consider a learning method to solve the computation offloading problem.

Design
Definition of action

1U

2U 3U

1E 2E

5E
4E3E

𝒋𝒋𝒋𝒋𝒋𝒋_𝟏𝟏

𝒋𝒋𝒋𝒋𝒋𝒋_𝒔𝒔

⋯
•••

1c 2c nc•••

1E 2E

3E

4E

5E



Local execution Remote execution

𝑡𝑡1

𝑡𝑡𝑠𝑠

𝑡𝑡2 𝒋𝒋𝒋𝒋𝒋𝒋_𝟐𝟐 ⋯
•••

ADQN 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

How to transform the computation offloading problem into RL decision-making problem?

演示者
演示文稿备注
We propose ADQN to make efficient offloading decisions. We first show the system overview.
Generally, each base station has a large service area, and users may be in the coverage of several base stations. As illustrated in this figure, user U2 is in the coverage of 3base stations such that U2 can offload workload to 3 edge servers, they are E1, E3, and E4. Thus, which base station is expected as the optimal choice to connect should be taken into consideration.
[click]
Specifically, we divide the total time into many slots. For each mobile device, jobs are released at each slot. These jobs are divided into multiple independent components, each of which corresponds to a proportion of workload. Then, the mobile users adopt the well-trained ADQN to make a quick decision including target edge server and proportion.
[click]
However, transforming the computation offloading problem into RL decision-making problem is challenging.

Thus, the action is the combination of target edge server and target proportion.

Challenge

State Q network Q value

Agent Environment

Reward

Action

Observe next state from environment

#Definition?

#Definition?

#How to define and extract?

#Training methodology?

演示者
演示文稿备注
The first challenge is how to define a comprehensive state observed from environment? How to design an effective reward function that could reflect the actual value for each action?
The specific state and reward function all have significant effect to the final performance, thus should be hand-crafted.
The most stubborn problem is how to obtain numerous valuable training examples. Obviously, it impractical to collect from trial and error in real scenario.
To overcome these challenges, we next design a crafted DRL model.

Design
Definition of state
𝑎𝑎𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Definition of state
𝑠𝑠𝑡𝑡 = 𝑊𝑊, 𝑟𝑟𝑢𝑢𝑢𝑢1 ,⋯ , 𝑟𝑟𝑢𝑢𝑢𝑢𝑚𝑚, 𝑟𝑟𝑑𝑑𝑑𝑑1 ,⋯ , 𝑟𝑟𝑑𝑑𝑑𝑑𝑚𝑚,𝐶𝐶𝑙𝑙 ,𝐶𝐶1,⋯ ,𝐶𝐶𝑚𝑚

Definition of reward
The total cost of offloading workload to server 𝑗𝑗 from user 𝑖𝑖 is

𝑊𝑊𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 𝑇𝑇𝑖𝑖𝑖𝑖
(𝑙𝑙),𝑇𝑇𝑖𝑖𝑖𝑖

(𝑟𝑟) + β 𝐸𝐸𝑖𝑖𝑖𝑖
(𝑙𝑙) + 𝐸𝐸𝑖𝑖𝑖𝑖

(𝑟𝑟)

workload Network condition Available resource

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_1 = −𝑊𝑊𝑖𝑖𝑖𝑖 or

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_2 = 𝑊𝑊𝑙𝑙−𝑊𝑊𝑖𝑖𝑖𝑖

𝑊𝑊𝑙𝑙

delay energy

演示者
演示文稿备注
We aim to make an efficient offloading, thus we define the action as the combination of target edge server and target proportion.
At the same time, to have a comprehensive observed state from environment, we consider three key features, workload of application, link capacity of uplink and downlink, and available resources of local device and edge servers. Then, we define the weighted sum cost of energy and delay, and we hope to get a smaller cost, but in DRL, the agent aim to maximize the reward, thus it is a negative correlation between the cost and the ideal reward. Innovatively, we make some modification, and give the final definition of reward. In our experiment, we adopt reward two. Note that the reward may be a negative, we hope to reinforce the action with a positive reward, and degrade the action with negative reward.

Design
Training methodology (Deep Q Network)

Replay
Buffer

Expert
Buffer

Loss
Function

S ,a r
(, , , ')S a r S

(,)S a(, ;)Q S a θ

'
ˆmax (', '; ')a Q S a θ

'S
r

3
2

1

1 Supervised learning training

Copy parameters every N steps

2

'θ θ←
3

Perform gradient descent method
to update θ

input hidden output







input hidden output







environment

RL-agent

#Update policy: 𝑄𝑄 𝑠𝑠, 𝑎𝑎 ← 𝑄𝑄 𝑠𝑠, 𝑎𝑎 + 𝛼𝛼 𝑟𝑟 + 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚𝑎𝑎′𝑄𝑄 𝑠𝑠′, 𝑎𝑎′ − 𝑄𝑄(𝑠𝑠, 𝑎𝑎)

Behavior network

Target network

演示者
演示文稿备注
We adopt Deep Q Network to train our model. First of all, we get relative ideal weights through supervised learning with expert data. Then, we use the behavior network to interact with RL-agent to get a series of samples, and store them in the replay buffer. When the samples reach a specific number, we randomly sample a mini-batch of transitions with replay buffer mechanism, and perform gradient descent method to update the parameter of these two network. Every N steps, we replace the parameter of target network with behavior network parameters. Until the loss reaches the acceptable threshold, the networks are considered to be convergent.

Evaluation
Feasibility -> Superiority -> Impact factors of performance

演示者
演示文稿备注
Now, let’s see how well ADQN works in our simulation experiment. The specific parameter settings and detailed simulator design have been shown in this paper. We try to verify the feasibility and superiority of ADQN, and analyze some impact factors to its performance.

Evaluation
Feasibility -> Superiority -> Impact factors of performance

be
tt

er

be
tt

er

演示者
演示文稿备注
Firstly, we show its feasibility, with the increase of training steps, the loss function decreases gradually and finally converges, which means using the network to calculate the Q value is feasible. What’s more, compared with origin DQN, ADQN has a more ideal initial state and faster convergence speed.

Evaluation
Feasibility -> Superiority -> Impact factors of performance

Baselines:
• Random Offloading Policy
• Link Capacity Optimal Policy (LCOP).

• Computing capability Optimal Policy
(CCOP).

be
tt

er

演示者
演示文稿备注
Then, we set some baselines including the random offloading policy, link capacity optimal policy, and computing capability optimal policy. As it shows, due to the tradeoff between exploration and utilization, ADQN has a poor performance in the early stages, and its performance is not even as good as some greedy algorithms. While with the increase of training steps, the performance of ADQN has a significant improvement.

Evaluation
Feasibility -> Superiority -> Impact factors of performance

be
tt

er

be
tt

er

演示者
演示文稿备注
Finally, we analyze how the expert buffer size and learning rate affect the performance of ADQN. The more expert buffer, the better initial state is shows. However, the learning rate shows different rules, and the final learning rate should be selected in multiple tests.

Summary
• There are no “one-size-fits-all” solutions to solve computation offloading problem,

thus we consider adopting a learning method which makes use of history
experience.

• We transform the computation problem into a RL decision-making problem, and
give the specific definitions of action, state and reward, respectively.

• We design a simulation to show the feasibility and superiority of our proposed
ADQN, and analyze the impact factors for its performance.

• In the follow-up work, we focus to design a efficient simulator which is close to
the reality.

演示者
演示文稿备注
To sum up, we propose a learning method to realize computation offloading, and define the action, state, and reward, exactly. What’s more, we design some simulation experiments to evaluate its performance. In the follow-up work, we hope to design a efficient simulator to obtain more practical training date.

Thank you for your listening!

Q&A

	����When Learning Joins Edge: Real-time Proportional �Computation Offloading via Deep Reinforcement Learning��
	Background
	Related work
	Motivation
	Motivation
	Design
	Challenge
	Design
	Design
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Summary
	幻灯片编号 15

