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1. Introduction
l Network Function Virtualization (NFV)

¡ Virtualizing network functions into software modules

l Middlebox: software implementation of network services
¡ Improve performance:

l Web proxy, load balancer
¡ Enhance security:

l Firewall, IDS/IPS

l Service chain
¡ Multiple middleboxes in a specific processing order
¡ Example



2.  Our Model
l Problem

¡ Flow contention on a service chain

l Flow communication latency behaviors
¡ Middlebox processing time

l Distinct value for different flows on different middleboxes
¡ Link transmission delay

l Constant value for all flows on a single link

l Objective: minimizing flow completion time in two aspects
¡ Minimize the makespan (longest flow completion time)
¡ Minimize the average flow completion time
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Abstract—Software middleboxes, also called Virtual Network
Functions (VNFs), are replacing expensive traditional hardwares
in implementing network services. Multiple middleboxes pro-
cessing flows in a specific order form a service chain. Flows
request to be served by several middleboxes. Current works
pay little attention to the flow processing order of the service
chain, resulting in a poor control of the flow completion time.
However, the requirements of high performance networks are
becoming more and more intense. In this paper, we build a
transmission and processing delay model to formulate latency
behaviours and aim to minimize the flow completion time in
two aspects respectively: the makespan (the longest completion
time) and the average completion time. We propose two optimal
solutions when there are only two services in the service chain.
With a service chain of an arbitrary length, we first prove the
NP-hardness of our problem and two heuristic algorithms are
designed with insights. Real testbed experiments and extensive
simulations are conducted to evaluate the performance of our
proposed algorithms in various scenarios.

Index Terms—Middleboxes, delay, processing sequence, service
chain.

I. INTRODUCTION

Network Function Virtualization (NFV) is changing the
way we implement the network functions from expensive
hardwares to software middleboxes, called Virtual Network
Functions (VNFs) [1]. These (software) middleboxes are ex-
ecuted on switch-connected servers. Middleboxes play an in-
creasingly important role in modern networks [2]. As Software
Defined Networking (SDN) emerges, so does a tendency to
incorporate SDN and NFV in concerted ecosystems [3]. With
the intense requirement of high performance networks, SDN
manoeuvres through NFV traffic and allows the flow order to
be processed by the middleboxes [4].

Multiple middleboxes processing flows in a specific order
form a service chain. Most current works mainly study the
middlebox placement problem of choosing service locations
in the network. Stratos [5] is proposed as a controllable and
scalable framework for the efficient deployment of virtual
middleboxes. OpenNF [6] enforces the functions of NFV with
SDN, and provides a rich set of NFV/SDN APIs (move, copy,
share, etc.) for software middleboxes management, which
makes it feasible to dynamically schedule the middleboxes
according to the changing traffic. ClickOS [7] is put forward
to improve the running efficiency of virtual middleboxes by
optimizing the underlying Virtual Machines. ClickOS can
launch the middlebox software within about 30ms, which
makes it possible for dynamically deployment (add, delete,

m1 m2
d1
... ...

m3
d2

s

s'

d

d'

f

f'

Fig. 1: An illustrating example.

XXXXXXXXFlows
Middleboxes

m1 m2 m3

f 3 4 5
f 0 4 3 2

TABLE I: Processing times.

etc.) of middleboxes according to online changing traffic.
However, they pay little attention to the flow scheduling
sequence of the middleboxes, resulting in a poor control
of the flow completion time. The flow completion time is
important to evaluate the performance of the network, which is
highly demanded nowadays. The service chain with multiple
middleboxes makes the flow scheduling more complicated
because of various processing times of different flows on each
middlebox. Link transmission delays between the locations of
deployed middleboxes are necessarily taken into consideration.

We illustrate the importance of scheduling order in an
example, shown in Fig. 1. Circles denote the switches and
rectangles denote middleboxes deployed on switch-connected
servers. Suppose there are three middleboxes m1,m2 and m3

in the service chain and two flows f (source s, destination
d, and dash-line path) and f

0 (source s
0, destination d

0, and
dot-line path) request to be processed by the service chain. We
omit the drawings of servers and switches with no middlebox
deployed. The processing time of each flow on each middlebox
is shown in the Tab. I. The transmission delay between m1

and m2 is d1 = 1 and the transmission delay between m2

and m3 is d2 = 2. Because of the transmission delay between
two middleboxes, a flow cannot start (finish) being processed
in the middlebox mi before its starting (finishing) time of
the middlebox mi�1 plus the transmission delay between
two middleboxes. If flow f is scheduled before flow f

0, the
makespan is 10, which is shown in Fig. 2(a). If flow f

0 is
scheduled before flow f , the makespan is 12, which is shown
in Fig. 2(b). The difference comes from the constraint of
the completion times between adjacent middleboxes in the
service chain. More specifically, the completion time of f
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Fig. 2: Different scheduling orders.

in middlebox m2 cannot be less than the completion time of
f
0 in middlebox m1 plus the delay d1, which is 4 + 1 = 5.

The same situation happens to the completion time of f
0 in

middlebox m3, which is 5 + 2 = 7. This illustrates that the
processing times of f 0 in middleboxes m2 and m3 are longer
than the given times, because of the transmission delays.

In this paper, we aim at minimizing the transmission delay
and processing delay in two aspects: makespan and the total
completion time. We build a transmission and processing
delay model to formulate latency behaviours and control the
flow processing sequence in the network. We are given a
deployed service chain with the processing times of flows
and transmission delays between middleboxes. We propose
two optimal solutions when there are only two services in
the service chain. With a service chain of an arbitrary length,
two heuristic algorithms are designed with insights. Extensive
simulations and experiments are conducted to evaluate the
performance of our proposed algorithms in various scenarios.

The remainder of this paper is organized as follows. Section
II surveys related works. Section III describes the model and
formulates the problem. Section IV introduces our optimal
algorithms to arrange flows for a service chain with only two
middleboxes. In Section V, we handle cases with an arbitrary
number of middleboxes in a service chain and propose two
heuristic algorithms with insights. Section VI includes the
experiments and simulations. Section VII concludes the paper.

II. RELATED WORK

Many data centre applications are sensitive to latencies.
One source of latency is network congestion as throughput-
intensive applications cause queueing at switches that delays
traffic from latency-sensitive applications. Existing techniques
to combat queueing are to prioritise flows such that pack-
ets from latency-sensitive flows can jump the queue [8]; to
centrally schedule all flows for every server so that no flow
has to queue [9]; or to pace end host packets to achieve
guaranteed bandwidth for guaranteed queueing [10]. These
techniques assume shortest path forwarding. Today‘s data
center fabrics have rich path-redundancy in nature, so non-
shortest paths can be exploited to use path redundancy and
spare capacity for mitigating network congestion [11]. As
policy rules chaining can effectively shape the network traffic
(packets need to follow policy path), they can be chained over
non-shortest paths to mitigate congestion-led queueing since
propagation delay on physical links is predictable and smaller
than queueing delay.

Most researches on middlebox placement focus on de-
ploying a chain of middlebox instances whose middleboxes
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Fig. 3: A service chain.

conform to a strict serving sequence as a totally-ordered set.
In [12], they propose a context-free language to formalize
the chaining of network functions and describe the middlebox
resource allocation problem as a mixed integer quadratically
constrained program. Rami et al. [13] locate middleboxes in
a way that minimizes both the new middlebox setup cost and
the distance cost between flows’ paths and middleboxes and
provide near optimal approximation algorithms to guarantee a
placement with a theoretical-proven performance. Flowtag [3]
uses SDN to support service chaining by redefining certain
packet header fields as tags to track flows for middleboxes.
Both [14] and [15] aim to maximize the number of requests
for each service chain. [14] proposes a systematic way to tune
the proper link and server resource usages in the joint problem
of middleboxmiddleboxes placement and path selection. Li el
at. [15] present the design and implementation of NFV-RT,
a system that dynamically provisions resources in an NFV
environment to provide timing guarantees so that the assigned
flows meet their deadlines.

A classic problem, flow shop [16], inspires our work. Flow
shop assumes that all phases are set up in series and that
jobs have to follow the same route to be executed. When we
ignore the transmission delay, our problem is similar to the
flow shop. [17] provides an optimal solution for minimizing
the makespan with only two phases. It also proves that the
general flow shop problem with k phases (k > 2) is NP-
complete. In contrast to the makespan objective, results with
regard to the average completion time objective are much
harder to obtain. Minimizing the average completion time with
two phases is already strongly NP-hard. Almost all existing
work focus on heuristic algorithms [18, 19]. Zheng et al.
in [20] provide an optimal solution when all jobs can be
strong paired, which is restrictive. Furthermore, there is no
transmission delay between phases.

III. MODEL AND FORMULATION

In this section, we first propose our network model and then
formulate our problem.

A. Network Model

Before formulating the problem, we first present our model
of the directed network, G = (V,E), where V = {v} is a set
of vertices (i.e., switches) and E = {e} is a set of directed
edges (i.e., links). We use v to denote a single vertex, and
evv0 as the edge from vertex v to vertex v

0. Middleboxes
are deployed in the network. A service chain M = {mi}
is an ordered middlebox set, where each flow needs to be
processed in a fixed order. We are given a set of unsplittable
flows F = {fj}, because flow splitting may not be feasible
for applications that are sensitive to TCP packet ordering (e.g.
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in middlebox m2 cannot be less than the completion time of
f
0 in middlebox m1 plus the delay d1, which is 4 + 1 = 5.

The same situation happens to the completion time of f
0 in

middlebox m3, which is 5 + 2 = 7. This illustrates that the
processing times of f 0 in middleboxes m2 and m3 are longer
than the given times, because of the transmission delays.

In this paper, we aim at minimizing the transmission delay
and processing delay in two aspects: makespan and the total
completion time. We build a transmission and processing
delay model to formulate latency behaviours and control the
flow processing sequence in the network. We are given a
deployed service chain with the processing times of flows
and transmission delays between middleboxes. We propose
two optimal solutions when there are only two services in
the service chain. With a service chain of an arbitrary length,
two heuristic algorithms are designed with insights. Extensive
simulations and experiments are conducted to evaluate the
performance of our proposed algorithms in various scenarios.

The remainder of this paper is organized as follows. Section
II surveys related works. Section III describes the model and
formulates the problem. Section IV introduces our optimal
algorithms to arrange flows for a service chain with only two
middleboxes. In Section V, we handle cases with an arbitrary
number of middleboxes in a service chain and propose two
heuristic algorithms with insights. Section VI includes the
experiments and simulations. Section VII concludes the paper.

II. RELATED WORK

Many data centre applications are sensitive to latencies.
One source of latency is network congestion as throughput-
intensive applications cause queueing at switches that delays
traffic from latency-sensitive applications. Existing techniques
to combat queueing are to prioritise flows such that pack-
ets from latency-sensitive flows can jump the queue [8]; to
centrally schedule all flows for every server so that no flow
has to queue [9]; or to pace end host packets to achieve
guaranteed bandwidth for guaranteed queueing [10]. These
techniques assume shortest path forwarding. Today‘s data
center fabrics have rich path-redundancy in nature, so non-
shortest paths can be exploited to use path redundancy and
spare capacity for mitigating network congestion [11]. As
policy rules chaining can effectively shape the network traffic
(packets need to follow policy path), they can be chained over
non-shortest paths to mitigate congestion-led queueing since
propagation delay on physical links is predictable and smaller
than queueing delay.

Most researches on middlebox placement focus on de-
ploying a chain of middlebox instances whose middleboxes
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conform to a strict serving sequence as a totally-ordered set.
In [12], they propose a context-free language to formalize
the chaining of network functions and describe the middlebox
resource allocation problem as a mixed integer quadratically
constrained program. Rami et al. [13] locate middleboxes in
a way that minimizes both the new middlebox setup cost and
the distance cost between flows’ paths and middleboxes and
provide near optimal approximation algorithms to guarantee a
placement with a theoretical-proven performance. Flowtag [3]
uses SDN to support service chaining by redefining certain
packet header fields as tags to track flows for middleboxes.
Both [14] and [15] aim to maximize the number of requests
for each service chain. [14] proposes a systematic way to tune
the proper link and server resource usages in the joint problem
of middleboxmiddleboxes placement and path selection. Li el
at. [15] present the design and implementation of NFV-RT,
a system that dynamically provisions resources in an NFV
environment to provide timing guarantees so that the assigned
flows meet their deadlines.

A classic problem, flow shop [16], inspires our work. Flow
shop assumes that all phases are set up in series and that
jobs have to follow the same route to be executed. When we
ignore the transmission delay, our problem is similar to the
flow shop. [17] provides an optimal solution for minimizing
the makespan with only two phases. It also proves that the
general flow shop problem with k phases (k > 2) is NP-
complete. In contrast to the makespan objective, results with
regard to the average completion time objective are much
harder to obtain. Minimizing the average completion time with
two phases is already strongly NP-hard. Almost all existing
work focus on heuristic algorithms [18, 19]. Zheng et al.
in [20] provide an optimal solution when all jobs can be
strong paired, which is restrictive. Furthermore, there is no
transmission delay between phases.

III. MODEL AND FORMULATION

In this section, we first propose our network model and then
formulate our problem.

A. Network Model

Before formulating the problem, we first present our model
of the directed network, G = (V,E), where V = {v} is a set
of vertices (i.e., switches) and E = {e} is a set of directed
edges (i.e., links). We use v to denote a single vertex, and
evv0 as the edge from vertex v to vertex v

0. Middleboxes
are deployed in the network. A service chain M = {mi}
is an ordered middlebox set, where each flow needs to be
processed in a fixed order. We are given a set of unsplittable
flows F = {fj}, because flow splitting may not be feasible
for applications that are sensitive to TCP packet ordering (e.g.
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3. A Service Chain with Two Middleboxes
l Objective: minimizing makespan

l Solution
¡ Two Set Order Schedule (TSOS)

l Solution steps
¡ Sort flows in decreasing order of 𝑝" − 𝑝$

l Insight
¡ Inspired by the classic flow shop[1] problem

l Optimal solution for two machines
¡ Make the second middlebox not idle
¡ Smallest completion time extension for the last flow

[1] S. M. Johnson, “Optimal two- and three-stage production schedules with 
setup times included,” Naval Research Logistics Quarterly, 1954.



3. A Service Chain with Two Middleboxes
l Objective: minimizing average completion time
l Solution

¡ Pairwise Schedule (PS)

l Solution steps
¡ Sort flows in increasing order of max

(
{𝑝$

(, 𝑝"
(}

¡ For flows with same max
(
{𝑝$

(, 𝑝"
(}

l Select flows with max
(
{𝑝"

( − 𝑝$
(} and max

(
{𝑝$

( − 𝑝"
(} as a pair

l Pair flows and processing order illustrations

Algorithm 1 Two Set Order Schedule (TSOS)

In: Flow processing times p
j
1 and p

j
2, 8fj 2 F and the

transmission delay d;
Out: The flow scheduling order;

1: Calculate the value of pj2 � p
j
1, 8fj 2 F ;

2: Sort flows in decreasing order of pj2 � p
j
1;

3: return The flow scheduling order.

fi fj

fi fj
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d
(b) A pair with a delay.

Fig. 4: Pairing flows.

Definition 2: The average completion time is defined as
1
|F |

P
fj2F C

j , which is the total completion time of all flows
divided by the number of flows. (|·| denotes the set cardinality)

We formulate our problem as follows:

min Cmax or
1

|F |
X

fj2F

C
j (1)

IV. A SERVICE CHAIN WITH TWO MIDDLEBOXES

In this section, we study the case of the service chain
that only includes two middleboxes shown in Fig. 3(a). The
processing time of flow fj on middlebox 1 is p

j
1 and its

processing time on middlebox 2 is p
j
2.

A. Minimizing the makespan

To minimize the makespan, we propose an optimal algo-
rithm, called the Two Set Order Schedule (TSOS), in Alg. 1.
We are given the processing time of each flow on the two
middleboxes. We need to decide the processing order of all
flows on the service chain with two middleboxes. The order
of flows is returned in line 3. As the sorting of flows costs
|F | log |F |, its time complexity is O(|F | log |F |).

Theorem 1: The TSOS algorithm is optimal for scheduling
flows in a service chain with only two middleboxes.

Proof: The shortest makespan is no less than d +
max{

P
fj2F p

j
1,
P

fj2F p
j
2}. This is because at the least, all

flows need to be processed i order by both middleboxes and
the transmission delay d is the extra time. We need to find
a schedule that is able to keep at least the second middlebox
busy, which is the bottleneck of the scheduling. Moreover, we
also need to avoid prolonging the processing time because of
the transmission delay. If the completion time on the second
middlebox is larger than the completion time on the first
middlebox plus d, there is no need to prolong the time and
the second middlebox is kept busy. Thus, we sort the value
of p

j
2 � p

j
1, 8fj 2 F in increasing order to extend the start

time on the second middlebox. Thus, our algorithm has the
least extension of the completion time of the last flow on the
second middlebox, i.e. the minimum makespan. ⌅

Algorithm 2 Pairwise Schedule (PS)

In: Flow processing times p
j
1 and p

j
2, 8fj 2 F and the

transmission delay d;
Out: The flow scheduling order;

1: Sort all flows in increasing order of max{pj1, p
j
2};

2: for each subset of flows with the same max{pj1, p
j
2} do

3: Reorder flows by iteratively taking out a pair of flows
of argmaxi(p

j
2 � p

j
1) and argmaxi(p

j
1 � p

j
2);

4: return The flow scheduling order.
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B. Minimizing the average completion time

We present a pair-based scheduling policy. For clear pre-
sentation, the following definitions are introduced:

Definition 3: fi and fj are a pair, if pi1 = p
j
2 and p

i
2 = p

j
1.

The definition of pair comes from [11], which is for
MapReduce optimization [15]. The pair in [11] is shown in
4(a), in which there is no delay between the starting time of
one flow in two stages. However, there is a delay between two
middleboxes in a service chain. In this paper, the pair with
a delay is shown in 4(b); the delay is between the starting
time of one flow in two stages. In order to minimize the
average completion time, we propose an optimal algorithm,
called the Pairwise Schedule (PS), in Alg. 2. Line 1 sorts flows
in the increasing order of max{pj1, p

j
2}. Lines 2-3 pair flows by

iteratively taking out a pair of flows of argmaxi(p
j
2�p

j
1) and

argmaxi(p
j
1�p

j
2). The order of flows is returned in line 4. The

processing order is illustrated in Fig. 5. As the sorting of flows
costs |F | log |F |, the time complexity of the PS algorithm is
O(|F | log |F |). It works well when a large portion of flows
can be paired. Its optimality is stated as follows:

Theorem 2: The proposed Alg. 2 is optimal for scheduling
flows if all flows can be executed pairwise in its optimal
schedule. For each pair, the flow with p

j
2 > p

j
1 is executed

before the flow with p
j
2 < p

j
1.

Proof: We prove by induction. Let us start with a basic
case, where F only includes two flows that can form a pair
(denoted as f1 and f2). Suppose f1 has p

1
1 < p

1
2 and f2 has

p
2
1 > p

2
2. We have two schedules: schedule one executes f1

before f2, and schedule two executes f2 before f1 . Then, the
flow makespans of f1 and f2 are shown as follows:

Completion time C1 C2

f1 before f2 d+ p12 max(p11 + p21, p
1
2 + p22) + d

f2 before f1 d+ p21 + p12 d+ p22

We have p
1
2 = p

2
1 according to the definition of pair. Since

f1 is p
1
1 < p

1
2, we have p

1
1 + p

2
1 < p

1
2 + p

2
2. Hence, schedule

one has a smaller average flow makespan by executing the flow
with p

j
1 < p

j
2 before the flow with p

k
1 > p

k
2 . For induction,

let us consider an existing schedule of S. It executes flows
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Definition 2: The average completion time is defined as
1
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j , which is the total completion time of all flows
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In this section, we study the case of the service chain
that only includes two middleboxes shown in Fig. 3(a). The
processing time of flow fj on middlebox 1 is p
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1 and its

processing time on middlebox 2 is p
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A. Minimizing the makespan

To minimize the makespan, we propose an optimal algo-
rithm, called the Two Set Order Schedule (TSOS), in Alg. 1.
We are given the processing time of each flow on the two
middleboxes. We need to decide the processing order of all
flows on the service chain with two middleboxes. The order
of flows is returned in line 3. As the sorting of flows costs
|F | log |F |, its time complexity is O(|F | log |F |).

Theorem 1: The TSOS algorithm is optimal for scheduling
flows in a service chain with only two middleboxes.

Proof: The shortest makespan is no less than d +
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the transmission delay d is the extra time. We need to find
a schedule that is able to keep at least the second middlebox
busy, which is the bottleneck of the scheduling. Moreover, we
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the transmission delay. If the completion time on the second
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middlebox plus d, there is no need to prolong the time and
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B. Minimizing the average completion time

We present a pair-based scheduling policy. For clear pre-
sentation, the following definitions are introduced:

Definition 3: fi and fj are a pair, if pi1 = p
j
2 and p

i
2 = p

j
1.

The definition of pair comes from [11], which is for
MapReduce optimization [15]. The pair in [11] is shown in
4(a), in which there is no delay between the starting time of
one flow in two stages. However, there is a delay between two
middleboxes in a service chain. In this paper, the pair with
a delay is shown in 4(b); the delay is between the starting
time of one flow in two stages. In order to minimize the
average completion time, we propose an optimal algorithm,
called the Pairwise Schedule (PS), in Alg. 2. Line 1 sorts flows
in the increasing order of max{pj1, p

j
2}. Lines 2-3 pair flows by

iteratively taking out a pair of flows of argmaxi(p
j
2�p
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1) and
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2). The order of flows is returned in line 4. The

processing order is illustrated in Fig. 5. As the sorting of flows
costs |F | log |F |, the time complexity of the PS algorithm is
O(|F | log |F |). It works well when a large portion of flows
can be paired. Its optimality is stated as follows:

Theorem 2: The proposed Alg. 2 is optimal for scheduling
flows if all flows can be executed pairwise in its optimal
schedule. For each pair, the flow with p

j
2 > p
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1 is executed

before the flow with p
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2 < p
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1.

Proof: We prove by induction. Let us start with a basic
case, where F only includes two flows that can form a pair
(denoted as f1 and f2). Suppose f1 has p
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2 and f2 has
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2
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2
2. We have two schedules: schedule one executes f1

before f2, and schedule two executes f2 before f1 . Then, the
flow makespans of f1 and f2 are shown as follows:

Completion time C1 C2

f1 before f2 d+ p12 max(p11 + p21, p
1
2 + p22) + d

f2 before f1 d+ p21 + p12 d+ p22

We have p
1
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2
1 according to the definition of pair. Since

f1 is p
1
1 < p

1
2, we have p

1
1 + p

2
1 < p

1
2 + p

2
2. Hence, schedule

one has a smaller average flow makespan by executing the flow
with p

j
1 < p

j
2 before the flow with p

k
1 > p

k
2 . For induction,

let us consider an existing schedule of S. It executes flows



4. A Service Chain with Multiple Middleboxes
l Objective: minimizing makespan
l Problem complexity: NP-hard
l Solution

¡ Slope Heuristic Algorithm (SHA)

l Solution insights
¡ Cut the service chain into two same-length parts
¡ Each part as a “new” middlebox
¡ Modification of processing times
¡ Apply our proposed Alg. TSOS

l Illustration
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Fig. 2: Different scheduling orders.

delay and processing delay in two aspects: makespan (the
longest completion time) and the average completion time
(the total completion time of all flows divided by the number
of flows). We build a flow transmission time and processing
delay model to formulate the latency behavior and control
the flow processing sequence in the network. We are given
a deployed service chain with the processing times of flows
and transmission delays between middleboxes. We propose
two optimal solutions when there are only two services in the
service chain. With a service chain of an arbitrary length, two
heuristic algorithms are designed with insights.

The remainder of this paper is organized as follows. Sec-
tion II surveys related works. Section III describes model
and problem formulation. Section IV introduces our optimal
algorithms to arrange flows for a service chain with only two
middleboxes. In Section V, we handle cases with an arbitrary
number of middleboxes in a service chain and propose two
heuristic algorithms with insights. Section VI includes simu-
lations. Section VII concludes the paper.

II. RELATED WORK

Many data center applications are sensitive to latency.
One source of latency is network congestion as throughput-
intensive applications cause queuing at switches that delays
traffic from latency-sensitive applications. Existing techniques
to combat the queuing problem include prioritizing flows such
that packets from latency-sensitive flows can “jump” the queue
[5], centrally scheduling all flows for every server so that
no flow has to queue [6], and pacing end host packets to
achieve a guaranteed bandwidth for guaranteed queuing [7].
These techniques assume that the shortest path forwarding
is used. Data center fabrics have rich path-redundancy, so
non-shortest paths can be exploited to use path redundancy
and spare capacity for mitigating network congestion [8]. As
policy chaining rules can effectively shape the network traffic
(packets need to follow policy paths), they can be chained
over non-shortest paths to mitigate congestion-led queuing.
This is possible because propagation delay on physical links
is predictable and smaller than queueing delays.

A classic problem, flow shop [9], inspires our work. Flow
shop assumes that all phases are set up in series and that
jobs have to follow the same route to be executed. Our
problem resembles the flow shop, but there is transmission
delay between every two phases. [10] provides an optimal
solution for minimizing the makespan with only two phases
in a flow shop problem. It also proves that the general flow
shop problem with k phases (k > 2) is NP-complete. In
contrast to the makespan objective, results with regard to the
average completion time objective are much harder to obtain.

m2
p2j

d1
m1
p1j

(a) Two ordered services.

m1 mi m(i+1)
di

... ... m(2i)
p1j pij pi+1j p2ij

(b) Multiple ordered services.

Fig. 3: A service chain.

Minimizing the average completion time with two phases
is already strongly NP-hard. Zheng et al. in [11] provide
an optimal solution when all jobs can be paired, which is
restrictive. Furthermore, all above works assume that there is
no transmission delay between phases.

III. MODEL AND FORMULATION

A. Network Model

Before formulating the problem, we first present our model
of the directed network, G = (V,E), where V = {v} is
a set of vertices (i.e., switches) and E = {e} is a set of
directed edges (i.e., links). We use v to denote a single vertex,
and evv0 as the edge from vertex v to vertex v

0. Middleboxes
are deployed in the network. A service chain is an ordered
middlebox set where each flow needs to be processed in a
fixed order. We are given a set of unsplittable flows F = {fj},
because flow splitting may not be feasible for applications that
are sensitive to TCP packet ordering (e.g. video applications).
Additionally, split flows can be treated as multiple unsplittable
flows. We use fj to denote a single flow j and p

j
i to denote

the processing time of fj on a middlebox mi. The completion
time of flow fj on a middlebox mj is represented as C

j .
When flows are transmitting through edges, there are delays.
We assume the delay between two middleboxes mi and mi+1

in a service chain is di, which is identical for all flows. In this
paper, we only consider the deterministic processing behavior
of packets in the queuing model [12], in which the processing
time of each flow f is a constant.

To analyze processing behaviors of flows in middleboxes,
a queuing model is employed in [13], and we extend it in
this paper. Furthermore, the serving behavior in our queuing
model would be more complex, as we would consider various
middleboxes for different network functions. Therefore, we
adopt two queuing models according to different processing
behaviors of packets: the deterministic model and the expo-
nential model [12]. In the deterministic model, the processing
time is denoted by p

j . In the exponential model, it follows
an exponential distribution with a rate �

j [14]. The expected
processing time is 1/�j .

B. Problem Formulation

In this paper, we schedule flows to be processed by a service
chain. We have two different objectives: (1) minimizing the
makespan; and (2) minimizing the average completion time.
The definitions are as follows:

Definition 1: The makespan Cmax is defined as
maxfj2F (Cj), 8f 2 F , equivalent to the completion time of
the last flow to finish being processed by the last middlebox
in the service chain.



4. A Service Chain with Multiple Middleboxes
l Objective: minimizing average completion time
l Problem complexity

¡ Harder than makespan
¡ NP-hard

l Solution
¡ Pairwise Heuristic Schedule (PHS)

l Solution insights
¡ Cut the service chain into two same-length parts
¡ Each part as a “new” middlebox
¡ Modification of processing times
¡ Apply our proposed Alg. PS



5. Simulation
l Comparison algorithms

¡ Random
l Rank flow randomly

¡ SPT
l Rank flows by total processing times in increasing order

¡ LPT
l Rank flows by total processing times in decreasing order

l Our algorithms
Two middleboxes Multiple middleboxes

Makespan TSOS PS

Avg completion time SHA PHS



Simulation settings
l Facebook data center flow distribution

¡ #flow: ranging from 1000 to 6000

l Service chain
¡ Include two or six middleboxes
¡ Flow processing time ranging from 2 to 10

l Link transmission delay
¡ Ranging 1 to 10



Simulation Results

l TSOS achieves the smallest makespan because of its optimality in a 
service chain with only two middleboxes

l PS has the lowest average completion time
l The total processing time is important for minimizing the average 

completion time
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Fig. 8: A service chain with only two middleboxes.
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Fig. 9: A service chain with six middleboxes.

measure the makespan as well as the average completion time
in the simulations based on the varied number of flows being
served in the same service chain. The total number of flows
ranges from 1,000 to 6,000 with a stride of 1,000.

B. Results
We show the results of the service chain with two mid-

dleboxes in Fig. 8. Since the TSOS algorithm is optimal, it
achieves the best performance in the makespan, shown in Fig.
8(a). It is worth mentioning that our proposed PS algorithm has
the second best performance, which indicates its excellence.
In terms of the average completion time, Fig. 8(b) shows that
PS algorithm has the lowest average completion time for all
situations though the results of the algorithm SPT are similar.
This indicates the importance of the total processing time
when we schedule flows that aim to minimize the average
completion time. Additionally, the average completion time of
the PS algorithm is at least 60.1% less than SPT algorithm’s
when there are at least 1,000 flows.

The results for when there are six middleboxes are shown
in Fig. 9. The performance difference among algorithms is not
obvious. However, as the time complexity of all our proposed
algorithms is low, it is still reasonable to apply our algorithms.
Specifically, Fig. 9(a) shows the results of the makespan.
When there are 3,000 flows, the increment of the makespan
is larger than in Fig. 8(a). Additionally, when the number
of flows changes from 5,000 to 6,000, the makespan of the
TSOS algorithm increases by 17.5% in Fig. 9(a) while the
makespan of SHA algorithm in Fig. 8(a) only increases its
makespan by 12.7%. In Fig. 9(b), the performance of our
proposed algorithm SHA is better than in Fig. 8(b). It is worth
mentioning that algorithm Random is not the worst in all
experiments. This is because the two objectives are conflicting
with each other; for example, LPT and SPT always have
reverse performances when we minimize the makespan and

the average completion time. The average completion times
of PHS and SPT are quite close.

VII. CONCLUSION

We study the flow scheduling problem of being served by
a service chain in order to improve the quality of service. We
aim to minimize the transmission delay and processing delay
in two aspects: makespan and the total completion time. We
build a transmission and processing delay model to formulate
latency behaviors and control the flow processing sequence in
the network. We propose two optimal solutions when there are
only two services in the service chain. With a service chain
of an arbitrary length, two heuristic algorithms are designed.
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Simulation Results

l Performance difference is not obvious
l Average completion time is larger than two middleboxes with the same 

number of flows
l SHA performs best in makespan while PHS is the best in average 

completion time
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measure the makespan as well as the average completion time
in the simulations based on the varied number of flows being
served in the same service chain. The total number of flows
ranges from 1,000 to 6,000 with a stride of 1,000.

B. Results
We show the results of the service chain with two mid-

dleboxes in Fig. 8. Since the TSOS algorithm is optimal, it
achieves the best performance in the makespan, shown in Fig.
8(a). It is worth mentioning that our proposed PS algorithm has
the second best performance, which indicates its excellence.
In terms of the average completion time, Fig. 8(b) shows that
PS algorithm has the lowest average completion time for all
situations though the results of the algorithm SPT are similar.
This indicates the importance of the total processing time
when we schedule flows that aim to minimize the average
completion time. Additionally, the average completion time of
the PS algorithm is at least 60.1% less than SPT algorithm’s
when there are at least 1,000 flows.

The results for when there are six middleboxes are shown
in Fig. 9. The performance difference among algorithms is not
obvious. However, as the time complexity of all our proposed
algorithms is low, it is still reasonable to apply our algorithms.
Specifically, Fig. 9(a) shows the results of the makespan.
When there are 3,000 flows, the increment of the makespan
is larger than in Fig. 8(a). Additionally, when the number
of flows changes from 5,000 to 6,000, the makespan of the
TSOS algorithm increases by 17.5% in Fig. 9(a) while the
makespan of SHA algorithm in Fig. 8(a) only increases its
makespan by 12.7%. In Fig. 9(b), the performance of our
proposed algorithm SHA is better than in Fig. 8(b). It is worth
mentioning that algorithm Random is not the worst in all
experiments. This is because the two objectives are conflicting
with each other; for example, LPT and SPT always have
reverse performances when we minimize the makespan and

the average completion time. The average completion times
of PHS and SPT are quite close.

VII. CONCLUSION

We study the flow scheduling problem of being served by
a service chain in order to improve the quality of service. We
aim to minimize the transmission delay and processing delay
in two aspects: makespan and the total completion time. We
build a transmission and processing delay model to formulate
latency behaviors and control the flow processing sequence in
the network. We propose two optimal solutions when there are
only two services in the service chain. With a service chain
of an arbitrary length, two heuristic algorithms are designed.
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6. Conclusion and Future Work
l Flow contention on the same service chain
l Objectives on flow completion times

¡ Makespan
¡ Average completion time

l Solutions
¡ With only two middleboxes

l optimal solutions
¡ With multiple (>2) middleboxes

l heuristic solutions

l Future Work
¡ Performance-guaranteed solution
¡ Statistic processing time model
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