
Minimizing Transmission and Processing Delay in a
NFV-based Network

Yang Chen and Jie Wu
Center for Networked Computing, Temple University, USA

Email: {yang.chen, jiewu}@temple.edu

Abstract—Software middleboxes, also called Virtual Network
Functions (VNFs), are replacing expensive traditional hardwares
in implementing network services. Multiple middleboxes process-
ing flows in a specific order form a service chain. Current works
mostly focus on the service chain deployment problem and pay
little attention to the flow scheduling of a deployed service chain,
resulting in a poor control of the flow completion times. However,
a high performance network always has a strict requirement of
the flow completion time. In this paper, we build a transmission
and processing delay model to formulate the communication
latency behavior of flows being processed by middleboxes. We
aim to minimize the flow completion time in two aspects: the
longest completion time (makespan) and the average completion
time. We propose an optimal solution for each aspect when there
are only two middleboxes in the service chain. With a service
chain with an arbitrary length, we first prove the NP-hardness
of our problem in both aspects and then design two corresponding
heuristic algorithms, which are extended from our proposed
optimal solutions for a service chain with a length of two.
Extensive simulations are conducted to evaluate the performance
of our algorithms in various scenarios.

Index Terms—Middlebox, transmission delay, processing time,
service chain.

I. INTRODUCTION

Network Function Virtualization (NFV) is changing the
way we implement the network functions from expensive
hardwares to software middleboxes, called Virtual Network
Functions (VNFs). These (software) middleboxes are executed
on switch-connected servers. Middleboxes play an increas-
ingly important role in modern networks [1]. As Software
Defined Networking (SDN) emerges, so does a tendency to
incorporate SDN and NFV in concerted ecosystems [2]. With
the intense requirement of high performance networks, SDN
manoeuvres through NFV traffic and schedules flows to be
processed by middleboxes [3]. However, most current works
focus on the VNF deployment and pay little attention to flow
scheduling (the order of flows to be processed by a service
chain), resulting in a poor control of the flow completion time.

The flow completion time is important to evaluating the
performance of the network, which is highly demanded nowa-
days [4]. The service chain with multiple middleboxes makes
the flow processing order problem more complicated. This is
because different flows on each middlebox of the service chain
have various processing times. A flow cannot start (or finish)
being processed in a middlebox of a service chain before
its starting (or finishing) time of its previous middlebox plus
the transmission delay between these two middleboxes. Addi-

m1 m2
d1
... ...

m3
d2

s

s'

d

d'

f

f'

Fig. 1: An illustration example.

XXXXXXXXFlows
Middleboxes

m1 m2 m3

f 3 4 5
f ′ 4 3 2

TABLE I: Processing times.

tionally, the link transmission delay between the locations of
deployed middleboxes is necessary to take into consideration,
which further complicates our problem.

We illustrate the importance of the flow processing order
in an example, shown in Fig. 1. Circles denote switches and
rectangles denote middleboxes deployed on switch-connected
servers. Suppose there are three middleboxes m1,m2, and m3

in the service chain and two flows f (source s, destination d,
and the dash-line path) and f ′ (source s′, destination d′, and
the dot-line path) that request to be processed by the service
chain. We omit the drawings of servers and switches with
no middlebox deployed. The processing time of each flow on
each middlebox is shown in Tab. I. The transmission delay
between m1 and m2 is d1 = 1 and the transmission delay
between m2 and m3 is d2 = 2. Because of the transmission
delay between two middleboxes, a flow cannot start (or finish)
being processed in the middlebox mi, before its starting (or
finishing) time of the middlebox mi−1 plus the transmission
delay between these two middleboxes. It means that there is
a delay for f ′ to process on m2 and m3 by the processing on
m1. More specifically, the completion time of f ′ in middlebox
m2 cannot be less than the completion time of f ′ in middlebox
m1 plus the delay d1, which is 4+ 1 = 5. The same situation
occurs to the completion time of f ′ in middlebox m3, which
is 5+2 = 7. This illustrates that the processing times of f ′ in
middleboxes m2 and m3 are longer than its given processing
times, because of the transmission delays. Thus, if flow f
is scheduled before flow f ′, the makespan is 10, which is
shown in Fig. 2(a). If flow f ′ is scheduled before flow f , the
makespan is 12, which is shown in Fig. 2(b). The difference
comes from the constraint on the completion times between
adjacent middleboxes in the service chain.

In this paper, we aim at minimizing the total transmission

d1

fm1

m2

m3

d2

f

f

.

f '

f '

f '

(a) f before f ′.

m1

m2

m3

d2

f

f

d1 d1 d2
..

f '

f '

f '

f

(b) f ′ before f .

Fig. 2: Different scheduling orders.

delay and processing delay in two aspects: makespan (the
longest completion time) and the average completion time
(the total completion time of all flows divided by the number
of flows). We build a flow transmission time and processing
delay model to formulate the latency behavior and control
the flow processing sequence in the network. We are given
a deployed service chain with the processing times of flows
and transmission delays between middleboxes. We propose
two optimal solutions when there are only two services in the
service chain. With a service chain of an arbitrary length, two
heuristic algorithms are designed with insights.

The remainder of this paper is organized as follows. Sec-
tion II surveys related works. Section III describes model
and problem formulation. Section IV introduces our optimal
algorithms to arrange flows for a service chain with only two
middleboxes. In Section V, we handle cases with an arbitrary
number of middleboxes in a service chain and propose two
heuristic algorithms with insights. Section VI includes simu-
lations. Section VII concludes the paper.

II. RELATED WORK

Many data center applications are sensitive to latency.
One source of latency is network congestion as throughput-
intensive applications cause queuing at switches that delays
traffic from latency-sensitive applications. Existing techniques
to combat the queuing problem include prioritizing flows such
that packets from latency-sensitive flows can “jump” the queue
[5], centrally scheduling all flows for every server so that
no flow has to queue [6], and pacing end host packets to
achieve a guaranteed bandwidth for guaranteed queuing [7].
These techniques assume that the shortest path forwarding
is used. Data center fabrics have rich path-redundancy, so
non-shortest paths can be exploited to use path redundancy
and spare capacity for mitigating network congestion [8]. As
policy chaining rules can effectively shape the network traffic
(packets need to follow policy paths), they can be chained
over non-shortest paths to mitigate congestion-led queuing.
This is possible because propagation delay on physical links
is predictable and smaller than queueing delays.

A classic problem, flow shop [9], inspires our work. Flow
shop assumes that all phases are set up in series and that
jobs have to follow the same route to be executed. Our
problem resembles the flow shop, but there is transmission
delay between every two phases. [10] provides an optimal
solution for minimizing the makespan with only two phases
in a flow shop problem. It also proves that the general flow
shop problem with k phases (k > 2) is NP-complete. In
contrast to the makespan objective, results with regard to the
average completion time objective are much harder to obtain.

m2
p2j

d1
m1
p1j

(a) Two ordered services.

m1 mi m(i+1)
di

... ... m(2i)
p1j pij pi+1j p2ij

(b) Multiple ordered services.

Fig. 3: A service chain.

Minimizing the average completion time with two phases
is already strongly NP-hard. Zheng et al. in [11] provide
an optimal solution when all jobs can be paired, which is
restrictive. Furthermore, all above works assume that there is
no transmission delay between phases.

III. MODEL AND FORMULATION

A. Network Model

Before formulating the problem, we first present our model
of the directed network, G = (V,E), where V = {v} is
a set of vertices (i.e., switches) and E = {e} is a set of
directed edges (i.e., links). We use v to denote a single vertex,
and evv′ as the edge from vertex v to vertex v′. Middleboxes
are deployed in the network. A service chain is an ordered
middlebox set where each flow needs to be processed in a
fixed order. We are given a set of unsplittable flows F = {fj},
because flow splitting may not be feasible for applications that
are sensitive to TCP packet ordering (e.g. video applications).
Additionally, split flows can be treated as multiple unsplittable
flows. We use fj to denote a single flow j and pji to denote
the processing time of fj on a middlebox mi. The completion
time of flow fj on a middlebox mj is represented as Cj .
When flows are transmitting through edges, there are delays.
We assume the delay between two middleboxes mi and mi+1

in a service chain is di, which is identical for all flows. In this
paper, we only consider the deterministic processing behavior
of packets in the queuing model [12], in which the processing
time of each flow f is a constant.

To analyze processing behaviors of flows in middleboxes,
a queuing model is employed in [13], and we extend it in
this paper. Furthermore, the serving behavior in our queuing
model would be more complex, as we would consider various
middleboxes for different network functions. Therefore, we
adopt two queuing models according to different processing
behaviors of packets: the deterministic model and the expo-
nential model [12]. In the deterministic model, the processing
time is denoted by pj . In the exponential model, it follows
an exponential distribution with a rate λj [14]. The expected
processing time is 1/λj .

B. Problem Formulation

In this paper, we schedule flows to be processed by a service
chain. We have two different objectives: (1) minimizing the
makespan; and (2) minimizing the average completion time.
The definitions are as follows:

Definition 1: The makespan Cmax is defined as
maxfj∈F (C

j), ∀f ∈ F , equivalent to the completion time of
the last flow to finish being processed by the last middlebox
in the service chain.

Algorithm 1 Two Set Order Schedule (TSOS)

In: Flow processing times pj1 and pj2, ∀fj ∈ F and the
transmission delay d;

Out: The flow scheduling order;

1: Calculate the value of pj2 − p
j
1, ∀fj ∈ F ;

2: Sort flows in decreasing order of pj2 − p
j
1;

3: return The flow scheduling order.

fi fj

fi fj

m1
m2

(a) A pair.
d

fi fj

fi fj

m1
m2

d
(b) A pair with a delay.

Fig. 4: Pairing flows.

Definition 2: The average completion time is defined as
1
|F |

∑
fj∈F C

j , which is the total completion time of all flows
divided by the number of flows. (|·| denotes the set cardinality)

We formulate our problem as follows:

min Cmax or
1

|F |
∑
fj∈F

Cj (1)

IV. A SERVICE CHAIN WITH TWO MIDDLEBOXES

In this section, we study the case of the service chain
that only includes two middleboxes shown in Fig. 3(a). The
processing time of flow fj on middlebox 1 is pj1 and its
processing time on middlebox 2 is pj2.

A. Minimizing the makespan

To minimize the makespan, we propose an optimal algo-
rithm, called the Two Set Order Schedule (TSOS), in Alg. 1.
We are given the processing time of each flow on the two
middleboxes. We need to decide the processing order of all
flows on the service chain with two middleboxes. The order
of flows is returned in line 3. As the sorting of flows costs
|F | log |F |, its time complexity is O(|F | log |F |).

Theorem 1: The TSOS algorithm is optimal for scheduling
flows in a service chain with only two middleboxes.

Proof: The shortest makespan is no less than d +
max{

∑
fj∈F p

j
1,
∑

fj∈F p
j
2}. This is because at the least, all

flows need to be processed i order by both middleboxes and
the transmission delay d is the extra time. We need to find
a schedule that is able to keep at least the second middlebox
busy, which is the bottleneck of the scheduling. Moreover, we
also need to avoid prolonging the processing time because of
the transmission delay. If the completion time on the second
middlebox is larger than the completion time on the first
middlebox plus d, there is no need to prolong the time and
the second middlebox is kept busy. Thus, we sort the value
of pj2 − p

j
1, ∀fj ∈ F in increasing order to extend the start

time on the second middlebox. Thus, our algorithm has the
least extension of the completion time of the last flow on the
second middlebox, i.e. the minimum makespan. �

Algorithm 2 Pairwise Schedule (PS)

In: Flow processing times pj1 and pj2, ∀fj ∈ F and the
transmission delay d;

Out: The flow scheduling order;

1: Sort all flows in increasing order of max{pj1, p
j
2};

2: for each subset of flows with the same max{pj1, p
j
2} do

3: Reorder flows by iteratively taking out a pair of flows
of argmaxi(p

j
2 − p

j
1) and argmaxi(p

j
1 − p

j
2);

4: return The flow scheduling order.

2

...

k-11

Processing order
Group

Fig. 5: Multiple middleboxes.

B. Minimizing the average completion time

We present a pair-based scheduling policy. For clear pre-
sentation, the following definitions are introduced:

Definition 3: fi and fj are a pair, if pi1 = pj2 and pi2 = pj1.
The definition of pair comes from [11], which is for

MapReduce optimization [15]. The pair in [11] is shown in
4(a), in which there is no delay between the starting time of
one flow in two stages. However, there is a delay between two
middleboxes in a service chain. In this paper, the pair with
a delay is shown in 4(b); the delay is between the starting
time of one flow in two stages. In order to minimize the
average completion time, we propose an optimal algorithm,
called the Pairwise Schedule (PS), in Alg. 2. Line 1 sorts flows
in the increasing order of max{pj1, p

j
2}. Lines 2-3 pair flows by

iteratively taking out a pair of flows of argmaxi(p
j
2−p

j
1) and

argmaxi(p
j
1−p

j
2). The order of flows is returned in line 4. The

processing order is illustrated in Fig. 5. As the sorting of flows
costs |F | log |F |, the time complexity of the PS algorithm is
O(|F | log |F |). It works well when a large portion of flows
can be paired. Its optimality is stated as follows:

Theorem 2: The proposed Alg. 2 is optimal for scheduling
flows if all flows can be executed pairwise in its optimal
schedule. For each pair, the flow with pj2 > pj1 is executed
before the flow with pj2 < pj1.

Proof: We prove by induction. Let us start with a basic
case, where F only includes two flows that can form a pair
(denoted as f1 and f2). Suppose f1 has p11 < p12 and f2 has
p21 > p22. We have two schedules: schedule one executes f1
before f2, and schedule two executes f2 before f1 . Then, the
flow makespans of f1 and f2 are shown as follows:

Completion time C1 C2

f1 before f2 d+ p12 max(p11 + p21, p
1
2 + p22) + d

f2 before f1 d+ p21 + p12 d+ p22

We have p12 = p21 according to the definition of pair. Since
f1 is p11 < p12, we have p11 + p21 < p12 + p22. Hence, schedule
one has a smaller average flow makespan by executing the flow
with pj1 < pj2 before the flow with pk1 > pk2 . For induction,
let us consider an existing schedule of S. It executes flows

f1m1

m2 f '

d
.

f2 F*

F*f1 f2 .
(a) Sequence 1.

m1

m2

d

F*
F* f1

f1 f2

f2

.
(b) Sequence 2.

m1

m2 f '

d
. F*

F*

f2

f2f1

f1 .
(c) Sequence 3.

f1m1

m2 f '

m1

m2

d
d
.

m1

m2 f '

d
.

m1

m2 f '.
d
.

f2 F*

F*

F*

F*

F*

F*

F*

F*

f1

f1
f1

f1

f1

f1

f1f2

f2
f2

f2

f2

f2

f2

.

.

.

(d) Sequence 4.

Fig. 6: An illustration for the proof of Theorem 2.

that can form a pair. Let F ∗ denote a subset of F that is
consecutively executed pairwise in S. Let τ denote the average
flow makespan of F ∗; however, it is calculated from the
execution time of F ∗. Let t∗ denote the total processing time
of middlebox m1. Since flows in F ∗ are strongly paired, t∗ is
also the total processing time of middlebox m2. The induction
step adds one more pair of flows to schedule S (i.e. f1 with
p11 < p12 and f2 with p21 > p22). As shown in Fig. 6, there exists
four possible sequences to incorporate f1 and f2 into S: S1

executes f1 and f2 before F ∗; S2 executes f1 and f2 after
F ∗; S3 executes f1 before F ∗, and f2 after F ∗ ; S4 executes
f2 before F ∗, and f1 after F ∗. S1 and S2 execute f1 and f2
in a pairwise manner, while S3 and S4 execute f1 and f2 in
an interwoven manner. Suppose f1, f2, and F ∗ are scheduled
at time t0 then their makespans are:

Time C1 C2 C∗

S1 t0 + p12 + d t0 + p12 + p22 + d t0 + p12 + p22 + τ + d

S2 t0 + p12 + t∗ + d t0 + p12 + p22 + t∗ + d t0 + τ + d

S3 t0 + p12 + d t0 + p12 + p22 + t∗ + d t0 + τ + p12 + d

S4 t0 + p12 + p21 + t∗ + d t0 + p21 + d t0 + p21 + τ + d

It is trivial that S4 is always worse than S3, due to its
under-utilization of middlebox m1. Meanwhile, the average
flow completion time of S1, S2, and S3 are shown as follows:

S1 : t0 +

[
|F ∗|·(p11+p21)

]
+
[
p12+(p

1
1+p

2
1)+|F ∗|·τ

]
|F ∗|+ 2

+ d

S2 : t0 +

[
2t∗

]
+
[
p12+(p

1
1+p

2
1)+|F ∗|·τ

]
|F ∗|+ 2

+ d (2)

S3 : t0 +

[
|F ∗|·p12+t∗

]
+
[
p12+(p

1
1+p

2
1)+|F ∗|·τ

]
|F ∗|+ 2

+ d

Here, |F ∗| denotes the number of flows in F ∗. A notable
point is |F ∗| · (p11 + p21) < |F ∗ | · 2p12 according to the
definitions of f1 and f2. We have the following inequality:
|F∗|·(p1

2+p2
2)+2t∗

2 ≤ |F
∗|·2p1

2+2t∗

2 = |F ∗| · p12 + t∗. The mean of
two unequal numbers is always larger than the smaller of these
two numbers. Therefore, we have: min{|F ∗|·(p12+p22), 2t∗} ≤
|F ∗| · p12 + t∗. The two equations indicate that either S1 or
S2 has the smallest average flow makespan. Hence, f1 and f2
should be pairwise executed, when being incorporated into F ∗.
By induction, flows that can form a pair should be pairwise
executed in the optimal schedule. We also conclude that, for

each pair, middlebox m1 is executed before middlebox m2.
Therefore, the proof of the theorem is complete. �

Theorem 3: The proposed Pairwise Schedule algorithm is
optimal when all flows are simultaneously pj2 < pj1 (or pj2 > pj1
or pj2 = pj1).

Proof: When all flows in F simultaneously have pj1 >
pj2, ∀fj ∈ F , middlebox m2 has almost no impact on the
flow makespan except the transmission delay. This is because
the middlebox m2 is always underutilized for each flow. At
this time, Alg. 2 schedules flows according to their pj1. It is
trivial that flows with a shorter processing time pj1 should be
executed earlier to minimize the average flow makespan, since
these smaller flows can finish earlier. When all flows in F are
simultaneously pj1 = pj2, ∀fj ∈ F or pj1 < pj2, ∀fj ∈ F , the
scenario is similar, and thus, the proof is complete. �

We can also construct a new flow set of F ′ from F . Each
pair of flows in F (say fi and fj) is mapped to a flow in
F ′. The mapped flow in F ′ has map and shuffle workloads
of pi1 + pj1 and pi2 + pj2, respectively. By the definition of a
pair, we have pi1 + pj1 = pi2 + pj2. Therefore, each flow in
F ′ is balanced. Basically, F ′ is constructed by merging each
pair of flows in F . According to Theorem 1 in [11], when F
can be decomposed to pairs of flows, flows that can form a
pair are executed pairwise in the optimal schedule of F . The
optimal schedule for F ′ is the same as the one for F . While
each flow in F ′ is balanced, it is trivial that flows with lighter
workloads should be executed earlier to minimize the average
flow makespan, since these smaller flows can finish earlier.
If a flow with a heavier workload is executed before a flow
with a lighter workload, then a swap of their execution orders
always leads to a smaller average flow makespan. Hence, Alg.
2 is optimal when F can be decomposed to pairs of flows or
when all flows are simultaneously pj2 < pj1 (or pj2 > pj1 or
pj2 = pj1).

A potential problem in Alg. 2 is the flow processing time
granularity when flows cannot be perfectly strongly paired.
Line 3 in Alg. 2 pairs jobs with the same dominant processing
time, i.e., the same max(pj1, p

j
2). If each flow has a unique

dominant processing time, then the pairing process is skipped
and thus becomes useless. To control the granularity, we
additionally introduce a discretization process before applying
Alg. 2. Let δ denote the discretization step, and let the first and
second processing times on the two middleboxes of each flow
be rounded to the nearest multiple of δ. A larger δ represents
a coarser processing time granularity with more flows sharing
the same dominant processing time. A smaller δ brings fine-
grained processing time, where fewer flows share the same
dominant processing time.

V. A SERVICE CHAIN WITH MULTIPLE MIDDLEBOXES

In this section, we study the case of the service chain
including more than two middleboxes (multiple middleboxes),
which is shown in Fig. 3(b). We illustrate the relationship
among processing times, delays, and two flows in Fig. 7.

A. Minimizing the makespan

d1

fi fj

fi fj

m1
m2

fi fj

fi fj

m3

m4

d2 d3

TABLE II: Processing times.

m1 m2 m3 m4

f1 1 2 3 4
f2 2 1 3 4
f3 2 2 4 6
f4 1 5 5 3

Fig. 7: Multiple middleboxes in a service chain.
Algorithm 3 Slope Heuristic Algorithm (SHA)

In: Flow processing times pji , ∀fj ∈ F,mi ∈ M and the
transmission delay di ∈ D;

Out: The flow scheduling order;

1: pji = pji + di;
2: Sort flows in decreasing order of Aj = −

∑|M |
i=1(|M | −

(2i− 1))pji ;
3: return The flow scheduling order.

For more than two middleboxes in the chain, it is NP-hard to
optimally schedule the flows. We propose an algorithm, called
Slope Heuristic Algorithm (SHA), which is extended from the
TSOS algorithm. The transmission delay between two adjacent
middleboxes are accumulated, shown in Fig. 7. A slope index
is computed for each flow. The slope index Aj for flow fj
is defined as Aj = −

∑|M |
i=1(|M | − (2i − 1))(pji + di). The

flows are then sequenced in decreasing order of their slope
indices. The insight is extended from the TSOS algorithm.
It is already clear that flows with small processing times on
the first middlebox instance and large processing times on the
second middlebox instance should be positioned more towards
the beginning of the sequence. Similarly, flows with large
processing times on the first middlebox instance and small
processing times on the second middlebox instance should
be positioned more towards the end of the sequence. The
slope index is large if the processing times on the downstream
middlebox instances are large relative to the processing times
on the upstream middlebox instances; the slope index is small
if the processing times on downstream middlebox instances are
relatively small compared to those on the upstream middlebox
instances. We are given the processing times of each flow on
all middleboxes in the service chain as well as the transmission
delay on each link. We need to decide the processing order
of all flows on the service chain. Line 1 handles the link
transmission delay as part of the processing time on the
middlebox before that link. Line 2 sorts flows in decreasing
order of Aj = −

∑|M |
i=1(|M | − (2i − 1))(pji + di). The order

of flows is returned in line 4. As the sorting of flows costs
|F | log |F |, the time complexity of SHA is also O(|F | log |F |).

For better understanding, we use a service chain with four
middleboxes as an example, shown in Fig. 7. The transmission
delays are d1 = 2, d2 = 3, and d3 = 1, respectively. There are
four flows, whose processing times are shown in Tab. II. By
applying the SHA algorithm, we calculate each new processing
time value, such as p11 = p11 + d1 = 1 + 2 = 3. Then we
calculate the slope index for each flow, such as A1 = −(4−1)·
p11−(4−3)·p12−(4−5)·p13−(4−7)·p14 = −3·3−5+4+3·4 = 2.

Algorithm 4 Pairwise Heuristic Schedule (PHS)

In: Flow processing times pji , ∀fj ∈ F,mi ∈ M and the
transmission delay di ∈ D;

Out: The flow scheduling order;

1: Bj
1 =

∑|M |/2
i=1 (pji + di);

2: Bj
2

∑|M |
i=(|M |/2+1)(p

j
i + di)

3: Sort all flows in increasing order of max{Bj
1, B

j
2};

4: for each subset of flows with the same max{Bj
1, B

j
2} do

5: Reorder flows by iteratively taking out a pair of flows
of argmax(Bj

2 −B
j
1) and argmax(Bj

1 −B
j
2);

6: return The flow scheduling order.

Similarly, we get A2 = 0, A3 = 6, and A4 = −2. Next we
sort the slope indices in decreasing order and return the order
as f4, f2, f1, and f3. The makespan is 23.

B. Minimizing the average completion time

In order to minimize the average completion time, we
propose a heuristic algorithm, called the Pairwise Heuristic
Schedule (PHS), in Alg. 4, which is extended from our PS
algorithm. We are given the processing time of each flow on
each middlebox of the service chain. We need to decide the
processing order of all flows on the service chain. The insight
of the algorithm is to pair flows with the sum of processing
times and transmission delays in each half part of the service
chain. In Alg. 4, lines 1-2 define two metrics in order to handle
the middlebox processing time and the link transmission delay.
Line 3 sorts the flow orders based on the two metrics. Lines
4-5 pair flows. The order of flows is returned in line 6. As the
sorting of flows costs |F | log |F |, the time complexity of PHS
is O(|F | log |F |).

For better understanding, we also use a service chain with
four middleboxes as an example, shown in Fig. 7. The settings
are the same as the last subsection. By applying the PHS
algorithm, we calculate Bj

1 and Bj
2 for each flow. For example,

B1
1 = p11 + d1 + p12 + d2 = 1 + 2 + 2 + 3 = 8. Similarly, we

get B1
2 = 8, B2

1 = 8, B2
2 = 8, B3

1 = 9, B3
2 = 11, B4

1 = 11
and B4

2 = 9. We sort max{Bj
1, B

j
2} in increasing order as

f1, f2, f3 and f4. Next we make f1 and f2 a pair, and f3
and f4 a pair. The scheduling order is f1, f2, f3, and f4. The
average completion time is 16.75.

VI. SIMULATION EVALUATION

A. Settings

We conduct simulations based on Facebook Data-center
Network flow distribution [16], which has been widely used
to report the realistic traffic in Facebook’s data centers. We
conduct the flow scheduling on two service chains. One is
with only two middleboxes and the other one is with six
middleboxes. The transmission delays between every two
middleboxes are randomly chosen ranging from 1 to 10, which
is scaled based on the relationship of the transmission delay
and the flow processing time in our experiments. We also

1000 2000 3000 4000 5000 6000
Number of flows

1.2

1.4

1.6

1.8

2
M

ak
es

pa
n

104

Random
SPT
LPT
TSOS
PS

(a) Makespan.

1000 2000 3000 4000 5000 6000
Number of flows

0

5000

10000

15000

Av
er

ag
e

co
m

pl
et

io
n

tim
e

Random
SPT
LPT
TSOS
PS

(b) Average completion time.

Fig. 8: A service chain with only two middleboxes.

1000 2000 3000 4000 5000 6000
Number of flows

1.4

1.6

1.8

2

2.2

M
ak

es
pa

n

104

Random
SPT
LPT
SHA
PHS

(a) Makespan.

1000 2000 3000 4000 5000 6000
Number of flows

0

0.5

1

1.5

2
Av

er
ag

e
co

m
pl

et
io

n
tim

e
104

Random
SPT
LPT
SHA
PHS

(b) Average completion time.

Fig. 9: A service chain with six middleboxes.

measure the makespan as well as the average completion time
in the simulations based on the varied number of flows being
served in the same service chain. The total number of flows
ranges from 1,000 to 6,000 with a stride of 1,000.

B. Results

We show the results of the service chain with two mid-
dleboxes in Fig. 8. Since the TSOS algorithm is optimal, it
achieves the best performance in the makespan, shown in Fig.
8(a). It is worth mentioning that our proposed PS algorithm has
the second best performance, which indicates its excellence.
In terms of the average completion time, Fig. 8(b) shows that
PS algorithm has the lowest average completion time for all
situations though the results of the algorithm SPT are similar.
This indicates the importance of the total processing time
when we schedule flows that aim to minimize the average
completion time. Additionally, the average completion time of
the PS algorithm is at least 60.1% less than SPT algorithm’s
when there are at least 1,000 flows.

The results for when there are six middleboxes are shown
in Fig. 9. The performance difference among algorithms is not
obvious. However, as the time complexity of all our proposed
algorithms is low, it is still reasonable to apply our algorithms.
Specifically, Fig. 9(a) shows the results of the makespan.
When there are 3,000 flows, the increment of the makespan
is larger than in Fig. 8(a). Additionally, when the number
of flows changes from 5,000 to 6,000, the makespan of the
TSOS algorithm increases by 17.5% in Fig. 9(a) while the
makespan of SHA algorithm in Fig. 8(a) only increases its
makespan by 12.7%. In Fig. 9(b), the performance of our
proposed algorithm SHA is better than in Fig. 8(b). It is worth
mentioning that algorithm Random is not the worst in all
experiments. This is because the two objectives are conflicting
with each other; for example, LPT and SPT always have
reverse performances when we minimize the makespan and

the average completion time. The average completion times
of PHS and SPT are quite close.

VII. CONCLUSION

We study the flow scheduling problem of being served by
a service chain in order to improve the quality of service. We
aim to minimize the transmission delay and processing delay
in two aspects: makespan and the total completion time. We
build a transmission and processing delay model to formulate
latency behaviors and control the flow processing sequence in
the network. We propose two optimal solutions when there are
only two services in the service chain. With a service chain
of an arbitrary length, two heuristic algorithms are designed.

VIII. ACKNOWLEDGMENT

This research was supported in part by NSF grants CNS
1824440, CNS 1828363, CNS 1757533, CNS 1629746, CNS-
1651947, CNS 1564128.

REFERENCES

[1] Y. Chen and J. Wu, “Nfv middlebox placement with balanced
set-up cost and bandwidth consumption,” in ICPP 2018.

[2] S. Fayazbakhsh, V. Sekar, M. Yu, and J. Mogul, “Flowtags:
Enforcing network-wide policies in the presence of dynamic
middlebox actions,” in HotSDN 2013.

[3] Y. Chen, J. Wu, and B. Ji, “Virtual network function deployment
in tree-structured networks,” in ICNP 2018.

[4] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and
resource optimization with network function virtualization,”
IEEE Transactions on Communications, vol. 64, no. 9, pp.
3746–3758, 2016.

[5] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson,
A. W. Moore, S. Hand, and J. Crowcroft, “Queues don’t matter
when you can JUMP them!” in NSDI 2015.

[6] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fu-
gal, “Fastpass: A centralized ”zero-queue” datacenter network,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, 2014.

[7] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo: Pre-
dictable message latency in the cloud,” in SIGCOMM 2015.

[8] F. P. Tso, G. Hamilton, R. Weber, C. S. Perkins, and D. P.
Pezaros, “Longer is better: Exploiting path diversity in data
center networks,” in ICDCS 2013.

[9] S. M. Johnson, “Optimal two- and three-stage production
schedules with setup times included,” Naval Research Logistics
Quarterly, vol. 1, 1954.

[10] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems.
Springer Publishing Company, Incorporated, 2008.

[11] H. Zheng, Z. Wan, and J. Wu, “Optimizing mapreduce frame-
work through joint scheduling of overlapping phases,” in IC-
CCN 2016.

[12] P. Duan, Q. Li, Y. Jiang, and S. T. Xia, “Toward latency-aware
dynamic middlebox scheduling,” in ICCCN 2015.

[13] A. Abdou, A. Matrawy, and P. C. van Oorschot, “Taxing the
queue: Hindering middleboxes from unauthorized large-scale
traffic relaying,” IEEE Communications Letters, vol. 19, no. 1,
pp. 42–45, 2015.

[14] M. Pinedo, Scheduling - Theory, Algorithms, and Systems, 2008.
[15] J. Dean and S. Ghemawat, “Mapreduce: Simplified data pro-

cessing on large clusters,” Commun. ACM, vol. 51, no. 1, pp.
107–113, 2008.

[16] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside
the social network’s (datacenter) network,” in SIGCOMM 2015,
pp. 123–137.

