A Note on "A Tight Lower Bound on the Number of Channels Required for Deadlock-Free Wormhole Routing"

Li Sheng and Jie Wu, Senior Member, IEEE

Abstract-In [1], Libeskind-Hadas provided a tight lower bound on the number of channels required by a broad class of deadlock-free wormhole routing algorithms. In this short note, we show a simpler proof of the tight lower bound.

Index Terms-Deadlock-free routing, interconnection networks, strongly connected digraphs.

1 Introduction

IN [1], Libeskind-Hadas provided a tight lower bound on the number of channels required by a deterministic or coherent deadlock-free routing algorithm. Given an interconnection network represented by a directed graph or a digraph $G=(N, C)$, where each vertex in N represents a node and each directed edge in C represents a unidirectional channel, Libeskind-Hadas showed that $|C| \geq 2|N|-2$ is the tight lower bound on the number of channels required for deadlock-free wormhole routing. Note that a digraph may contain self-loops and multiple edges from one vertex to another, although a digraph for an interconnection network normally does not contain self-loops.

In this short note, we first review some basic concepts, present the problem, and finally provide a simpler proof of a major result in [1]. Given a digraph, two vertices, u and v, are said to be strongly connected if there exist directed paths from u to v and from v to u. $e=(u, v) \in C$ represents a directed edge from u to v. The existence of a deterministic or coherent adaptive deadlock-free wormhole routing in a given interconnection network $G=(N, C)$ is based on the following two requirements:

1. Strongly connected requirement: $G=(N, C)$ is strongly connected.
2. Strictly decreasing path requirement: There exists a deadlockfree labeling function $f: C \rightarrow\{1,2, \ldots,|C|\}$ such that, for every pair of vertices u and v in G, there exists a path $p=v_{0}, v_{1}, \ldots, v_{k}$ such that $v_{0}=u$ and $v_{k}=v$, and $f\left(v_{i-1}, v_{i}\right)>f\left(v_{j-1}, v_{j}\right)$ for $1 \leq i<j \leq k$.
Throughout this paper, $n=|N|$ represents the number of vertices in $G=(N, C)$ and $|C(G)|$, or simply $|C|$, represents the number of edges in G. For any vertex $v \in N$, we use $\operatorname{out}(v)=$ $\{(v, w): w \in N\}$ to denote the set of outgoing edges at vertex v and use $\operatorname{in}(v)=\{(u, v): u \in N\}$ to denote the set of incoming edges at vertex v. Given a labeling function $f: C \rightarrow\{1,2, \ldots,|C|\}$, for each vertex $v \in N$, let max-out-label of vertex v be $o(v)=\max \{f(e): e \in \operatorname{out}(v)\}$, and let min-in-label of vertex v be $i(v)=\min \{f(e): e \in \operatorname{in}(v)\}$. A directed path from u to v, with strictly decreasing labels (given by labeling function f) on the edges, is called a strictly decreasing path from u to v (with respect to f). Note that the labeling function does not need to be a one-to-one function. That is, it is possible that $f\left(e_{1}\right)=f\left(e_{2}\right)$ for $e_{1} \neq e_{2}$.

- L. Sheng is with the Department of Mathematics and Computer Science, Drexel University, Philadelphia, PA 19104.
- J. Wu is with the Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL 33431.
E-mail: jie@polaris.cse.fau.edu.
Manuscript received 17 Dec. 1998; accepted 26 July 2000.
For information on obtaining reprints of this article, please send e-mail to: tc@computer.org, and reference IEEECS Log Number 108484.

Lemma 1. Let $G=(N, C)$ be a strongly connected digraph with n vertices, with $f: C \rightarrow\{1,2, \cdots,|C|\}$ being a one-to-one labeling function on the edges. If $\min \{o(v): v \in N\} \geq n$, then $|C| \geq 2 n-1$.
Proof. Notice that, for two different vertices $u, v, o(u) \neq o(v)$ because $\operatorname{out}(u) \cap \operatorname{out}(v)=\emptyset$. Hence, $\{o(v): v \in N\}$ is a set of n distinct numbers, with each number being greater than or equal to n. Therefore, there exists a vertex v^{*} such that $o\left(v^{*}\right)=\max \{o(v): v \in N\} \geq 2 n-1$, which implies that $|C| \geq 2 n-1$.

We now present a major result and then the result in [1].
Theorem 2. Let $G=(N, C)$ be a strongly connected digraph with n vertices. Suppose there is a one-to-one labeling function $f: C \rightarrow$ $\{1,2, \cdots,|C|\}$ on the edges of G such that, for every pair of vertices u, v, there is a directed and strictly decreasing path from u to v. Then, $|C| \geq 2 n-2$.

Proof. Use vertex t to denote the vertex with the maximum min-inlabel. That is, $i(t)=\max \{i(v): v \in C\}$. Then, $i(t) \geq n$ because $i(t)$ is the maximum over n distinct numbers. Since there is a strictly decreasing path from any other vertex to t in G, we can construct a spanning subgraph G_{t} of G rooted to t as follows: For every vertex $v \neq t$, find a directed and strictly decreasing path from v to t and put all the edges on the path into G_{t}.

Analogously, using s to denote the vertex with the minimum max-out-label, we can construct a spanning subgraph G_{s} of G rooted from s as follows: For every vertex $u \neq s$, find a directed decreasing path from s to u and put all the edges on the path into G_{s}.

Based on Lemma 1, we may assume that $o(s) \leq n-1$ (otherwise, this theorem is proven). It is easy to see that $C\left(G_{s}\right) \cap C\left(G_{t}\right)=\emptyset$, otherwise, there would be an edge $(a, b) \in C\left(G_{s}\right) \cap C\left(G_{t}\right)$. This means that there is a directed and strictly decreasing path $p_{1}=s, s_{1}, \cdots, a, b$ in G_{s}, and there is a directed and strictly decreasing path $p_{2}=a, b, \cdots, t_{1}, t$ in G_{t}. Thus, we have

$$
n-1 \geq o(s) \geq f\left(s, s_{1}\right) \geq f(a, b) \geq f\left(t_{1}, t\right) \geq i(t) \geq n
$$

which is a contradiction. Therefore,

$$
|C| \geq\left|C\left(G_{s}\right)\right|+\left|C\left(G_{t}\right)\right| \geq(n-1)+(n-1)=2 n-2
$$

Theorem 3 [1]. Theorem 2 is still valid when the one-to-one labeling function f is replaced by a general labeling function g.
Proof. Let $e_{1}, e_{2}, \cdots, e_{|C|}$ be an order of edges in a nondecreasing order of their edge labels based on g, i.e., $g\left(e_{i}\right) \leq g\left(e_{j}\right)$ for $i<j$. We define a one-to-one labeling function f such that $f\left(e_{i}\right)=i$. It is easy to see that, for any $i \neq j, g\left(e_{i}\right)<g\left(e_{j}\right)$ implies that $f\left(e_{i}\right)<f\left(e_{j}\right)$. Then, a strict decreasing path in G with respect to g is also a strict decreasing path in G with respect to f. Therefore, for every pair of vertices u, v in G, there is a directed and strictly decreasing path from u to v with respect to f. Based on Theorem $2,|C| \geq 2 n-1$.

AcKNOWLEDGMENTS

The authors would like to thank R. Libeskind-Hadas for his valuable comments on improving the quality of the paper.

References

[1] R. Libeskind-Hadas, "A Tight Lower Bound on the Number of Channels Required for Deadlock-Free Wormhole Routing," IEEE Trans. Computers, vol. 47, no. 10, pp. 1,158-1,160, Oct. 1998.

