RESEARCH ARTICLE

Inverse optimal control for strict-feedforward nonlinear systems with input delays

Xiushan Cai^{1,4} | Cong Lin² | Leipo Liu³ | Xisheng Zhan⁴

Revised: 8 December 2017

¹College of Mathematics, Physics, and Information Engineering, Zhejiang Normal University, Jinhua 321004, China

²Xingzhi College, Zhejiang Normal University, Jinhua 321004, China

³College of Electric and Information Engineering, Henan University of Science and Technology, Luoyang 471003, China

⁴College of Mechatronics and Control Engineering, Hubei Normal University, Huangshi 435002, China

Correspondence

Xiushan Cai, College of Mathematics, Physics, and Information Engineering, Zhejiang Normal University, Jinhua 321004, China; or College of Mechatronics and Control Engineering, Hubei Normal University, Huangshi 435002, China. Email: xiushancai@163.com

Funding information

National Natural Science Foundation of China, Grant/Award Number: 61773350 and 61374077; Natural Science Foundation of Zhejiang Province of China, Grant/Award Number: LY17F030001; Science Fund for Distinguished Young Scholars of Hubei Province of China, Grant/Award Number: 2017CFA034

Summary

We consider inverse optimal control for strict-feedforward systems with input delays. A basic predictor control is designed for compensation for this class of nonlinear systems. Furthermore, the proposed predictor control is inverse optimal with respect to a meaningful differential game problem. For a class of linearizable strict-feedforward system, an explicit formula for compensation for input delay, which is also inverse optimal with respect to a meaningful differential game problem, is also acquired. A cart with an inverted pendulum system is given to illustrate the validity of the proposed method.

KEYWORDS

actuator delay, explicit formula, inverse optimality, predictor feedback, strict-feedforward systems

1 | INTRODUCTION

The major progress on feedforward systems was in the work of Mazenc and Praly,¹ which introduced a Lyapunov approach for stabilization of feedforward systems. Further developments on feedforward systems have been acquired by other works.²⁻⁵ For strict-feedforward systems with actuator delay, not only global stability was obtained but also an explicit formula for the predictor state was presented in the work of Krstic.⁶

Predictor-based controls for linear systems with input delays were developed in other works.⁷⁻¹¹ For nonlinear systems with time-varying input delays,¹²⁻¹⁵ as well as wave actuator dynamics with moving boundaries,¹⁶⁻¹⁸ predictor controls have also been achieved. The implementation and approximation issues of predictor-feedback law can be found in the work of Karafyllis and Krstic.¹⁹

The inverse optimality concept is of significant practical importance because it allows the design of optimal control laws without the need to solve a Hamilton-Jacobi-Isaacs partial differential equation that may not be possible to solve.²⁰

In this paper, we extend the results in the work of Krstic⁶ to inverse the optimal control design for strict-feedforward systems. A basic predictor control is designed for compensation for input delay of this class of nonlinear systems first. Furthermore, it is shown that it is inverse optimal with respect to a meaningful differential game problem. An explicit formula for compensation for input delay of a class of linearizable strict-feedforward system, which is also inverse optimal with respect to a meaningful differential game problem, is also acquired.

Notation. We use the common definitions of class $\mathcal{K}, \mathcal{K}_{\infty}, \mathcal{KL}$ functions from the aforementioned work.⁶ For a vector $X \in \mathbb{R}^n, |X|$ denotes its usual Euclidean norm. For a scalar function $u(\cdot, t) \in L_2(0, 1), ||u(t)||$ denotes the norm given by $\left(\int_0^1 u^2(x, t) dx\right)^{1/2}$.

2 | GENERAL STRICT-FEEDFORWARD NONLINEAR SYSTEMS

Consider a strict-feedforward nonlinear system with actuator delay

:

$$\dot{Z}_1(t) = Z_2(t) + \varphi_1(Z_2(t), Z_3(t), \dots, Z_n(t)) + \phi_1(Z_2(t), Z_3(t), \dots, Z_n(t)) U(t - D)$$
(1)

$$\dot{Z}_{n-2}(t) = Z_{n-1}(t) + \varphi_{n-2} \left(Z_{n-1}(t), Z_n(t) \right) + \phi_{n-2} \left(Z_{n-1}(t), Z_n(t) \right) U(t-D)$$
(3)

$$\dot{Z}_{n-1}(t) = Z_n(t) + \phi_{n-1}(Z_n(t))U(t-D)$$
(4)

$$\dot{Z}_n(t) = U(t - D), \tag{5}$$

for short,

$$\dot{Z}_{i}(t) = Z_{i+1}(t) + \varphi_{i}\left(\underline{Z}_{i+1}(t)\right) + \phi_{i}\left(\underline{Z}_{i+1}(t)\right)U(t-D),$$
(6)

where $i = 1, 2, ..., n, \underline{Z}_j = [Z_j, Z_{j+1}, ..., Z_n]^T, Z_{n+1}(t) = U(t-D), \phi_n = 1, \phi_i(0) = 0, (\partial \varphi_i(0)/\partial Z_j) = 0, \varphi_i(Z_{i+1}, 0, ..., 0) = 0,$ for i = 1, 2, ..., n - 1, j = i + 1, ..., n, and $\underline{Z}_1 \in \mathbb{R}^n$ is the state vector, U is a scalar control input, and $D \in \mathbb{R}^+$ is an actuator delay.

2.1 | Predictor control for general strict-feedforward nonlinear systems

The nominal control design (D = 0) for system (6) is given by Krstic⁶ as

$$U(t) = \alpha_1 \left(Z(t) \right), \tag{7}$$

where

$$\vartheta_{n+1} = 0, \quad \alpha_{n+1} = 0, \tag{8}$$

and

$$h_i\left(\underline{Z}_i\right) = Z_i - \vartheta_{i+1}\left(\underline{Z}_{i+1}\right),\tag{9}$$

$$\varpi_i\left(\underline{Z}_{i+1}\right) = \phi_i - \sum_{j=i+1}^{n-1} \frac{\partial \vartheta_{i+1}}{\partial Z_j} \phi_j - \frac{\partial \vartheta_{i+1}}{\partial Z_n},\tag{10}$$

$$\alpha_i\left(\underline{Z}_i\right) = \alpha_{i+1} - \overline{\omega}_i h_i,\tag{11}$$

$$\vartheta_{i}\left(\underline{Z}_{i}\right) = -\int_{0}^{\infty} \left[\zeta_{i}^{\left[i\right]}\left(\tau,\underline{Z}_{i}\right) + \varphi_{i-1}\left(\underline{\zeta}_{i}^{\left[i\right]}\left(\tau,\underline{Z}_{i}\right)\right) + \phi_{i-1}\left(\underline{\zeta}_{i}^{\left[i\right]}\left(\tau,\underline{Z}_{i}\right)\right)\alpha_{i}\left(\underline{\zeta}_{i}^{\left[i\right]}\left(\tau,\underline{Z}_{i}\right)\right)\right] \mathrm{d}\tau,\tag{12}$$

for i = n, n - 1, ..., 2, 1, and the notation in the integrand of (12) refers to the solutions of the subsystem(s)

$$\frac{\mathrm{d}}{\mathrm{d}\tau}\zeta_{j}^{[i]} = \zeta_{j+1}^{[i]} + \varphi_{j}\left(\underline{\zeta}_{j+1}^{[i]}\right) + \phi_{j}\left(\underline{\zeta}_{j+1}^{[i]}\right)\alpha_{i}\left(\underline{\zeta}_{i}^{[i]}\right),\tag{13}$$

for j = i, i + 1, ..., n at time τ , starting from the initial condition \underline{X}_i . Note that the last of the ϑ 's that need to be computed is $\vartheta_2(\vartheta_1 \text{ is not defined})$.

WILEV

Using a transport partial differential equation for representing the actuator state, we represent system (6) as

$$\dot{Z}_{i}(t) = Z_{i+1}(t) + \varphi_{i}\left(\underline{Z}_{i+1}(t)\right) + \varphi_{i}\left(\underline{Z}_{i+1}(t)\right)u(0,t),$$
(14)

$$u_t(x,t) = u_x(x,t),\tag{15}$$

$$u(D,t) = U(t),\tag{16}$$

where $i = 1, 2, \dots, n$, and u(x, t) = U(t + x - D).

The backstepping transformation is given as

;

$$w(x,t) = u(x,t) - \alpha_1(p(x,t)),$$
(17)

where $p(x, t) = [p_1(x, t), p_2(x, t), \dots, p_n(x, t)]^T, x \in [0, D]$ is defined by

$$\frac{\partial p_1(x,t)}{\partial x} = p_2(x,t) + \varphi_1\left(p_2(x,t), p_3(x,t), \cdots, p_n(x,t)\right) + \phi_1\left(p_2(x,t), p_3(x,t), \cdots, p_n(x,t)\right) u(x,t)$$
(18)

$$\frac{\partial p_{n-2}(x,t)}{\partial x} = p_{n-1}(x,t) + \varphi_{n-2}\left(p_{n-1}(x,t), p_n(x,t)\right) + \phi_{n-2}(p_{n-1}(x,t), p_n(x,t))u(x,t)$$
(20)

$$\frac{\partial p_{n-1}(x,t)}{\partial x} = p_n(x,t) + \phi_{n-1}(p_n(x,t))u(x,t)$$
(21)

$$\frac{\partial p_n(x,t)}{\partial x} = u(x,t) \tag{22}$$

with an initial condition

$$p_i(0,t) = Z_i(t), i = 1, 2, \cdots, n.$$
 (23)

From (18)-(23), we have

÷

$$p_n(x,t) = Z_n(t) + \int_0^x u(y,t) dy,$$
(24)

$$p_{n-1}(x,t) = Z_{n-1}(t) + \int_0^x (p_n(y,t) + \phi_{n-1}(p_n(y,t)) u(y,t)) \,\mathrm{d}y, \tag{25}$$

for $i = n - 2, n - 3, \dots, 2, 1$, and the predictor solution is obtained recursively as

$$p_i(x,t) = Z_i(t) + \int_0^x \left(p_{i+1}(y,t) + \varphi_i\left(p_{i+1}(y,t), \cdots, p_n(y,t) \right) + \phi_i\left(p_{i+1}(y,t), \cdots, p_n(y,t) \right) u(y,t) \right) dy.$$
(26)

A basic predictor feedback control law for system (14)-(16) is given as

$$U(t) = \frac{c}{c+1} \alpha_1 \left(P(t) \right) = U^*(t), \tag{27}$$

where c > 0 is sufficiently large, and $P(t) = [p_1(D, t), p_2(D, t), \dots, p_n(D, t)]^T$ is acquired by (24)-(26) for x = D.

Under the backstepping transformation (17), system (14)-(16) is transferred to a target system as

$$Z_{i}(t) = Z_{i+1}(t) + \varphi_{i}\left(\underline{Z}_{i+1}(t)\right) + \phi_{i}\left(\underline{Z}_{i+1}(t)\right)\left(w(0,t) + \alpha_{1}\left(Z(t)\right)\right)$$
(28)

$$w_t(x,t) = w_x(x,t) \tag{29}$$

$$w(D,t) = U(t) - \alpha_1 (p(D,t)).$$
(30)

Noting that $p(D, t) = [p_1(D, t), p_2(D, t), \dots, p_n(D, t)]^T$ with the control law (27), (30) can be rewritten as

$$w(D,t) = -\frac{1}{c+1}\alpha_1(P(t)).$$
(31)

The inverse transformation of (17) is given for all $x \in [0, D]$ by

$$u(x,t) = w(x,t) + \alpha_1 (q(x,t)),$$
(32)

where $q(x, t) = [q_1(x, t), q_2(x, t), ..., q_n(x, t)]^T, x \in [0, D]$ is defined by

$$\frac{\partial q_1(x,t)}{\partial x} = q_2(x,t) + \varphi_1 \left(q_2(x,t), q_3(x,t), \cdots, q_n(x,t) \right) + \phi_1 \left(q_2(x,t), q_3(x,t), \cdots, q_n(x,t) \right) \left(w(x,t) + \alpha_1 \left(q(x,t) \right) \right)$$
(33)

(34)

$$\frac{\partial q_{n-2}(x,t)}{\partial x} = q_{n-1}(x,t) + \varphi_{n-2} \left(q_{n-1}(x,t), q_n(x,t) \right) + \phi_{n-2} \left(q_{n-1}(x,t), q_n(x,t) \right) \left(w(x,t) + \alpha_1 \left(q(x,t) \right) \right)$$
(35)

CAI ET AL.

$$\frac{\partial q_{n-1}(x,t)}{\partial x} = q_n(x,t) + \phi_{n-1} \left(q_n(x,t) \right) \left(w(x,t) + \alpha_1 \left(q(x,t) \right) \right)$$
(36)

2979

WII FY-

$$\frac{\partial q_n(x,t)}{\partial x} = w(x,t) + \alpha_1 \left(q(x,t) \right) \tag{37}$$

with an initial condition

$$q_i(0,t) = Z_i(t), i = 1, 2, \cdots, n.$$
 (38)

Under the inverse transformation (32), the target system (28), (29), (31) is transferred to system (14)-(16).

2.2 | Stability analysis of the closed-loop system

Denote the diffeomorphic transformation defined by (9)-(13) as

$$\xi(t) = H(Z(t)). \tag{39}$$

Lemma 1. There exists a class \mathcal{K} function σ^* such that

$$\|p(t)\|_{L_{\infty}[0,D]} \le \sigma^*(|Z(t)| + \|u(t)\|)$$
(40)

for all $t \ge 0$.

Proof. Using similar arguments to the proof in the work of Krstic,⁶ it can be deduced. \Box

Lemma 2. There exists a class \mathcal{K}_{∞} function $\underline{\sigma}$ such that

$$|Z(t)| + ||u(t)|| \le \underline{\sigma}(|Z(t)| + ||w(t)||)$$
(41)

for all $t \ge 0$.

Proof. Using similar arguments to the proof in the work of Krstic,⁶ it can be deduced.
$$\Box$$

Lemma 3. There exists a class \mathcal{K} function $\overline{\sigma}$ such that

$$|Z(t)| + ||w(t)|| \le \overline{\sigma}(|Z(t)| + ||u(t)||)$$
(42)

for all $t \ge 0$.

Proof. Using similar arguments to the proof in the work of Krstic,⁶ it can be deduced. \Box Note that α_1 is continuous with $\alpha_1(0) = 0$, and there exists a class \mathcal{K}_{∞} function ρ_1 such that

$$\alpha_1^2(p(D,t)) \le \varrho_1(|p(D,t)|).$$
(43)

Using Lemmas 1 and 2, we have

$$\alpha_{1}^{2}(p(D,t)) \leq \varrho_{1}(|p(D,t)|) \\
\leq \varrho_{1}(\sigma^{*}(|Z(t)| + ||u(t)||)) \\
\leq \varrho_{1}\left(\sigma^{*}\left(\underline{\sigma}(|Z(t)| + ||w(t)||)\right)\right)$$
(44)

for all $t \ge 0$.

Denote $\varphi = \rho_1 \circ \sigma^* \circ \sigma$, it is easy to know that

$$\alpha_1^2(p(D,t)) \le \varphi(2|Z(t)|) + \varphi(2||w(t)||)$$
(45)

for all $t \ge 0$.

Now, we turn our attention to the target system and prove the following result on stability in the sense of its norm.

Lemma 4. Consider the target system (28), (29), (31). If there exists an M > 0 such that

$$\varphi(2|Z(t)|) \le M\alpha_1^2(Z(t)), \tag{46}$$

$$\varphi(2\|w(t)\|) \le M\|w(t)\|^2, \tag{47}$$

for all $t \ge 0$, then there exists $c_1^* > 0$, for all $c > c_1^*$, the target system (28), (29), (31) is asymptotically stable, that is, there exists a \mathcal{KL} function β_1 such that

$$|Z(t)| + ||w(t)|| \le \beta_1(|Z(0)| + ||w(0)||, t)$$
(48)

for all $t \geq 0$.

CAI ET AL.

Proof. Consider (28) along with the diffeomorphic transformation $\xi(t) = H(Z(t))$ defined by (39). With the observation that $Z_{i+1} + \varphi_i + \varphi_i \alpha_{i+1} = \sum_{j=i+1}^n \frac{\partial \theta_{i+1}}{\partial Z_j} (Z_{j+1} + \varphi_j + \varphi_j \alpha_{j+1})$, it is easy to verify that $\dot{\xi}_i = \varpi_i(\alpha_1 + w(0, t) + \sum_{j=i+1}^n \varpi_i \xi_i)$, noting from (11) that $\alpha_1 = -\sum_{j=1}^n \varpi_i \xi_i$, we get $\dot{\xi}_i = -\varpi_i^2 \xi_i - \sum_{j=1}^{i-1} \varpi_i \varpi_j \xi_j + \varpi_i w(0, t)$, and it implies that $\dot{\xi}_1 = -\varpi_1^2 \xi_1 + \varpi_1 w(0, t)$. Taking a Lyapunov function $S(t) = \frac{1}{2} \sum_{i=1}^n \xi_i^2(t) = \frac{1}{2} |H(Z)|^2$, we have that

$$\dot{S}(t) = -\frac{1}{2} \sum_{i=1}^{n} \varpi_{i}^{2} \xi_{i}^{2} - \frac{1}{2} \left(\sum_{i=1}^{n} \xi_{i} \varpi_{i} \right)^{2} + w(0, t) \sum_{i=1}^{n} \varpi_{i} \xi_{i}$$

$$\leq -\frac{1}{4} \sum_{i=1}^{n} \varpi_{i}^{2} \xi_{i}^{2} - \frac{1}{2} \left(\sum_{i=1}^{n} \xi_{i} \varpi_{i} \right)^{2} + n w^{2}(0, t).$$
(49)

Consider system (28), (29), (31), an overall Lyapunov function is given as follows:

$$V(t) = S(t) + n \int_0^D e^x w^2(x, t) \mathrm{d}x.$$
 (50)

With (49), we have that

$$\dot{V}(t) = \dot{S}(t) + 2n \int_{0}^{D} e^{x} w(x, t) w_{t}(x, t) dx$$

$$= \dot{S}(t) + n \int_{0}^{D} e^{x} dw^{2}(x, t)$$

$$= \dot{S}(t) + ne^{D} w^{2}(D, t) - nw^{2}(0, t) - n \int_{0}^{D} e^{x} w^{2}(x, t) dx$$

$$\leq -\frac{1}{4} \sum_{i=1}^{n} \overline{\varpi}_{i}^{2} \xi_{i}^{2} - \frac{1}{2} \left(\sum_{i=1}^{n} \xi_{i} \overline{\varpi}_{i} \right)^{2} + nw^{2}(0, t) + ne^{D} w^{2}(D, t) - n \int_{0}^{D} e^{x} w^{2}(x, t) dx$$

$$= -\frac{1}{4} \sum_{i=1}^{n} \overline{\varpi}_{i}^{2} \xi_{i}^{2} - \frac{1}{2} \left(\sum_{i=1}^{n} \xi_{i} \overline{\varpi}_{i} \right)^{2} + ne^{D} w^{2}(D, t) - n \int_{0}^{D} e^{x} w^{2}(x, t) dx.$$
(51)

With (31), we have

$$w^{2}(D,t) = \frac{1}{(c+1)^{2}} \alpha_{1}^{2}(P(t)).$$
(52)

Noting that $\alpha_1(Z(t)) = -\sum_{i=1}^n \varpi_i \xi_i$, we get

$$\dot{V}(t) \le -\frac{1}{4n}\alpha_1^2(Z(t)) - \frac{1}{2}\alpha_1^2(Z(t)) + \frac{ne^D\alpha_1^2(P(t))}{(c+1)^2} - n\|w(t)\|^2.$$
(53)

With the help of (46), (47), it holds

$$\dot{V}(t) \leq -\left(\frac{1}{4n} + \frac{1}{2}\right)\alpha_1^2(Z(t)) + \frac{ne^D\left(\varphi\left(2|Z(t)|\right) + \varphi\left(2||w(t)||\right)\right)}{(c+1)^2} - n||w(t)||^2$$

$$\leq -\left(\left(\frac{1}{4n} + \frac{1}{2}\right) - \frac{ne^DM}{(c+1)^2}\right)\alpha_1^2(Z(t)) - \left(n - \frac{ne^DM}{(c+1)^2}\right)||w(t)||^2.$$
(54)

Choosing

$$c_1^* = 2n\sqrt{2Me^{D/2}}$$
(55)

for all $c > c_1^*$, one has

$$\dot{V}(t) \le -\left(\frac{1}{8n} + \frac{1}{4}\right)\alpha_1^2(Z(t)) - \frac{n}{2}\|w(t)\|^2,\tag{56}$$

so the target system (28), (29), (31) is asymptotically stable. Since the function $\alpha_1^2(Z(t))$ is positive definite in Z(t), there exists a class \mathcal{K} function γ_1 such that $\dot{V}(t) \leq -\gamma_1(V(t))$. Then, there exists a class \mathcal{KL} function β_2 such that $V(t) \leq \beta_2(V(0), t)$ for all $t \geq 0$. With additional routine class \mathcal{K} calculations, one finds β_1 that completes the proof of the lemma.

Theorem 1. Consider the closed-loop system consisting of (14)-(16) together with the control law (27). If there exists a M > 0 such that (46), (47) hold, then there exists $c_1^* > 0$ given by (55), for all $c > c_1^*$, the closed-loop system of (14)-(16), (27) is asymptotically stable, that is, there exists a class \mathcal{KL} function β_3 such that

$$Z(t)| + ||u(t)|| \le \beta_3(|Z(0)| + ||u(0)||, t)$$
(57)

for all $t \ge 0$.

Proof. Using Lemmas 2, 3, and 4, we have

$$\begin{aligned} |Z(t)| + ||u(t)|| \\ &\leq \underline{\sigma} \left(|Z(t)| + ||w(t)|| \right) \\ &\leq \underline{\sigma} \left(\beta_1 \left(|Z(0)| + ||w(0)||, t \right) \right) \\ &\leq \underline{\sigma} \left(\beta_1 \left(\overline{\sigma} \left(|Z(0)| + ||u(0)|| \right), t \right) \right) \end{aligned}$$
(58)

for all $t \ge 0$. Denote that $\beta_3(s, t) = \underline{\sigma}(\beta_1(\overline{\sigma}(s), t))$, (57) is drawn. Hence, the closed-loop system of (14)-(16), (27) is asymptotically stable.

Theorem 2. Consider the closed-loop system consisting of (1)-(5) together with the control law (27). If there exists an M > 0 such that (46), (47) hold, then there exists $c_1^* > 0$ given by (55), for all $c > c_1^*$, the closed-loop system of (1)-(5), (27) is asymptotically stable, that is, there exists a class \mathcal{KL} function β_4 such that

$$|Z(t)| + \left(\int_{t-D}^{t} U^{2}(\theta) d\theta\right)^{1/2} \le \beta_{4} \left(||Z(0)|| + \left(\int_{-D}^{0} U^{2}(\theta) d\theta\right)^{1/2}, t \right)$$
(59)

for all $t \ge 0$.

Proof. Using Theorem 1, we get

$$|Z(t)| + \left(\int_{t-D}^{t} U^{2}(\theta) d\theta\right)^{1/2}$$

= $|Z(t)| + ||u(t)||$
 $\leq \beta_{3} (|Z(0)| + ||u(0)||, t)$
= $\beta_{3} \left(|Z(0)| + \left(\int_{-D}^{0} U^{2}(\theta) d\theta\right)^{1/2}, t\right)$ (60)

for all $t \ge 0$. Choosing $\beta_4 = \beta_3$, (59) is obtained. Hence, the closed-loop system of (1)-(5), (27) is asymptotically stable.

2.3 | Inverse optimal control for general strict-feedforward nonlinear systems

Theorem 3. Consider the closed-loop system consisting of (14)-(16) together with the control law (27). If there exists an M > 0 such that (46), (47) hold, then there exists $c_1^{**} > c_1^* > 0$, for all $c > c_1^{**}$, the control law (27) minimizes the cost functional

$$J = \lim_{t \to \infty} \left(\gamma V(t) + \int_0^t \left(L(\tau) + \frac{\gamma n e^D}{c} U^2(\tau) \right) d\tau \right), \tag{61}$$

where V(t) is given by (50), and L is a functional of $(Z(t), U(\theta))$ for all $t - D \le \theta \le t$ such that

$$L(t) \ge \gamma \left(\frac{\alpha_1^2(Z(t))}{8n} + \frac{n}{2} \|w(t)\|^2 \right)$$
(62)

for an arbitrary $\gamma > 0$.

Proof. Let

$$L(t) = -\frac{\gamma n e^{D}}{c+1} \alpha_{1}^{2} \left(P(t)\right) + \gamma \left(\frac{1}{2} \sum_{i=1}^{n} \varpi_{i}^{2} \xi_{i}^{2} + \frac{1}{2} \left(\sum_{i=1}^{n} \xi_{i} \varpi_{i}\right)^{2} - w(0,t) \sum_{i=1}^{n} \varpi_{i} \xi_{i} + n w^{2}(0,t) + n \int_{0}^{D} e^{x} w^{2}(x,t) dx\right).$$
(63)

2981

It can be deduced that

$$L(t) \ge -\frac{\gamma n e^{D}}{c+1} \alpha_{1}^{2}(P(t)) + \frac{\gamma}{4} \sum_{i=1}^{n} \varpi_{i}^{2} \xi_{i}^{2} + \frac{\gamma}{2} \left(\sum_{i=1}^{n} \xi_{i} \varpi_{i} \right)^{2} + n\gamma \int_{0}^{D} e^{x} w^{2}(x, t) \mathrm{d}x.$$
(64)

With the help of (46), (47), there exists

$$e_1^{**} = 8n^2 M e^D \tag{65}$$

for all $c > c_1^{**}$, one has

$$L(t) \ge \frac{\gamma}{8n} \alpha_1^2(Z(t)) + \frac{n\gamma}{2} ||w(t)||^2$$
(66)

for any $t \ge 0$.

With the help of (49), (51), after some calculations, and noting $U^*(t) = \frac{c}{c+1}\alpha_1(P(t))$, we have

$$\begin{split} L(t) &= -\frac{\gamma n e^{D}}{c+1} \alpha_{1}^{2}(P(t)) + \gamma \left(\frac{1}{2} \sum_{i=1}^{n} \varpi_{i}^{2} \xi_{i}^{2} + \frac{1}{2} \left(\sum_{i=1}^{n} \xi_{i} \varpi_{i} \right)^{2} - w(0,t) \sum_{i=1}^{n} \varpi_{i} \xi_{i} + n w^{2}(0,t) + n \int_{0}^{D} e^{gx} w^{2}(x,t) dx \right) \\ &= -\frac{\gamma n e^{D}}{c+1} \alpha_{1}^{2}(P(t)) + \gamma n e^{D} w^{2}(D,t) - \gamma \dot{V}(t) \\ &= -\frac{\gamma n e^{D}}{c+1} \alpha_{1}^{2}(P(t)) + \gamma n e^{D} (U(t) - \alpha_{1}(P(t)))^{2} - \gamma \dot{V}(t) \\ &= -\frac{\gamma n e^{D}(c+1)}{c^{2}} (U^{*}(t))^{2} + \gamma n e^{D} \left(U(t) - \frac{c+1}{c} U^{*}(t) \right)^{2} - \gamma \dot{V}(t) \\ &= \frac{\gamma n e^{D}}{c} (U^{*}(t))^{2} + \gamma n e^{D} \left((U(t) - U^{*}(t))^{2} - \frac{2}{c} U(t) U^{*}(t) \right) - \gamma \dot{V}(t), \end{split}$$
(67)

and hence, it can be deduced that

$$\gamma V(t) + \int_0^t \left(L(\tau) + \frac{\gamma n e^D}{c} U^2(\tau) \right) d\tau = \gamma V(0) + \gamma \int_0^t n e^D \left(1 + \frac{1}{c} \right) \left(U(t) - U^*(t) \right)^2 d\tau$$
(68)

so the minimum of (61) is reached with

$$U(t) = U^*(t) \tag{69}$$

such that

$$J = \gamma V(0). \tag{70}$$

Remark 1. c_1^{**} given by (65) is bigger than c_1^* defined by (55).

3 | LINEARIZABLE STRICT-FEEDFORWARD SYSTEMS

From the work of Krstic,⁶ it was shown that a strict-feedforward system (1)-(5) for D = 0 is linearizable provided the following assumption is satisfied.

Assumption 1. The functions $\varphi_i(\underline{Z}_{i+1})$ and $\varphi_i(\underline{Z}_{i+1})$ can be written as $\varphi_{n-1}(Z_n) = \theta'_n(Z_n)$ and $\varphi_{n-1}(Z_n) = 0$, and

$$\phi_i\left(\underline{Z}_{i+1}\right) = \sum_{j=i+1}^{n-1} \frac{\partial \theta_{i+1}\left(\underline{Z}_{i+1}\right)}{\partial Z_j} \phi_j\left(\underline{Z}_{j+1}\right) + \frac{\partial \theta_{i+1}\left(\underline{Z}_{i+1}\right)}{\partial Z_n} \tag{71}$$

$$\varphi_{i}\left(\underline{Z}_{i+1}\right) = \sum_{j=i+1}^{n-1} \frac{\partial \theta_{i+1}\left(\underline{Z}_{i+1}\right)}{\partial Z_{j}} \left(Z_{j+1} + \varphi_{j}\left(\underline{Z}_{j+1}\right)\right) - \theta_{i+2}\left(\underline{Z}_{i+2}\right)$$
(72)

for $i = n-2, \ldots, 1$, using some C^1 scalar-valued functions $\theta_i(\underline{Z}_i)$ satisfying $\theta_i(0) = (\partial \theta_i(0)/\partial Z_j) = 0$, for $i = 2, \ldots, n, j = i, \ldots, n$.

The nominal control design (D = 0) for linearizable strict-feedforward (1)-(5) is given by Krstic⁶ as

$$U(t) = \alpha_1 \left(Z(t) \right), \tag{73}$$

where $\vartheta_{n+1} = 0$, $\alpha_{n+1} = 0$, and, for i = n, n - 1, ..., 2, 1,

$$\alpha_i\left(\underline{Z}_i\right) = -\sum_{j=i}^n \left(Z_j - \vartheta_{j+1}\left(\underline{Z}_{j+1}\right)\right),\tag{74}$$

$$\zeta_n^{[i]}\left(\tau,\underline{Z}_i\right) = e^{-\tau} \sum_{k=0}^{n-i} \frac{(-\tau)^k}{k!} \left(Z_{n-k} - \vartheta_{n-k+1}\left(\underline{Z}_{n-k+1}\right) \right)$$
(75)

$$\zeta_{j}^{[i]}\left(\tau,\underline{Z}_{i}\right) = e^{-\tau} \sum_{k=0}^{j-i} \frac{(-\tau)^{k}}{k!} \left(Z_{j-k} - \vartheta_{j-k+1}\left(\underline{Z}_{j-k+1}\right)\right) + \vartheta_{j+1}\left(\zeta_{j+1}^{[i]}\left(\tau,\underline{Z}_{i}\right)\right)$$
(76)

$$\vartheta_{i}\left(\underline{Z}_{i}\right) = -\int_{0}^{\infty} \left[\zeta_{i}^{\left[i\right]}\left(\tau,\underline{Z}_{i}\right) + \varphi_{i-1}\left(\underline{\zeta}_{i}^{\left[i\right]}\left(\tau,\underline{Z}_{i}\right)\right) + \phi_{i-1}\left(\underline{\zeta}_{i}^{\left[i\right]}\left(\tau,\underline{Z}_{i}\right)\right)\alpha_{i}\left(\underline{\zeta}_{i}^{\left[i\right]}\left(\tau,\underline{Z}_{i}\right)\right)\right] \mathrm{d}\tau. \tag{77}$$

3.1 | Predictor control for linearizable strict-feedforward systems

Consider the linearizable strict-feedforward system with actuator delay

$$\dot{Z}_{i}(t) = Z_{i+1}(t) + \varphi_{i}\left(\underline{Z}_{i+1}(t)\right) + \phi_{i}\left(\underline{Z}_{i+1}(t)\right)u(0,t)$$
(78)

$$u_t(x,t) = u_x(x,t) \tag{79}$$

$$u(D,t) = U(t), \tag{80}$$

where i = 1, 2, ..., n.

With the diffeomorphic transformation h = G(Z) defined by

$$h_n = Z_n \tag{81}$$

$$h_{i} = \sum_{j=i}^{n} {\binom{n-i}{j-i}} (-1)^{j-i} \left(Z_{j} - \vartheta_{j+1} \left(\underline{Z}_{j+1} \right) \right), i = n-1, n-2, \dots, 1$$
(82)

and ϑ_i , j = 1, 2, ..., n given by (74)-(77), system (78)-(80) is transferred to the following system:

$$h_i(t) = h_{i+1}(t), i = 1, 2, ..., n-1,$$
(83)

$$\dot{h}_n(t) = u(0, t)$$
 (84)

$$u_t(x,t) = u_x(x,t) \tag{85}$$

$$u(D,t) = U(t). \tag{86}$$

The predictor feedback for system (83)-(86) is

$$U(t) = \frac{c}{c+1} \alpha_1 \left(G^{-1} \left(\eta(D, t) \right) \right) = -\frac{c}{c+1} \sum_{i=1}^n \binom{n}{i-1} \eta_i(D, t) = U^*(t), \tag{87}$$

where c > 0 is sufficiently large, and $\eta(D, t) = [\eta_1(D, t), \dots, \eta_n(D, t)]^T$ is given by

$$\frac{\partial}{\partial x}\eta_i(x,t) = \eta_{i+1}(x,t), \, i = 1, 2, \dots, n-1,$$
(88)

$$\frac{\partial}{\partial x}\eta_n(x,t) = u(x,t) \tag{89}$$

with initial condition $\eta(0, t) = h(t)$ for x = D.

It can be deduced that

$$\eta_i(x,t) = \sum_{j=i}^n \frac{x^{j-i}}{(j-i)!} h_j(t) + \int_0^x \frac{(x-y)^{n+1-i}}{(n+1-i)!} u(y,t) \mathrm{d}y,\tag{90}$$

for i = 1, 2, ..., n. By (81)-(82), we have

$$\eta_{i}(x,t) = \sum_{j=i}^{n} \frac{x^{j-i}}{(j-i)!} \sum_{l=j}^{n} \binom{n-j}{l-j} (-1)^{l-j} \left(Z_{l} - \vartheta_{l+1} \left(\underline{Z}_{l+1} \right) \right) + \int_{0}^{x} \frac{(x-y)^{n+1-i}}{(n+1-i)!} u(y,t) \mathrm{d}y, \tag{91}$$

for i = 1, 2, ..., n. Hence, the feedback law for system (83)-(86) can be rewritten as

$$U(t) = -\frac{c}{c+1} \sum_{i=1}^{n} \binom{n}{i-1} \left(\sum_{j=i}^{n} \frac{D^{j-i}}{(j-i)!} \sum_{l=j}^{n} \binom{n-j}{l-j} (-1)^{l-j} \left(Z_{l} - \vartheta_{l+1} \left(\underline{Z}_{l+1} \right) \right) + \int_{0}^{D} \frac{(D-y)^{n+1-i}}{(n+1-i)!} u(y,t) \mathrm{d}y \right).$$
(92)

Noting that u(x, t) = U(x + t - D), the predictor control law for system (78)-(80) is

$$U(t) = -\frac{c}{c+1} \sum_{i=1}^{n} \binom{n}{i-1} \left(\sum_{j=i}^{n} \frac{D^{j-i}}{(j-i)!} \sum_{l=j}^{n} \binom{n-j}{l-j} (-1)^{l-j} \left(Z_{l} - \vartheta_{l+1} \left(\underline{Z}_{l+1} \right) \right) \int_{t-D}^{t} \frac{(D-y)^{n+1-i}}{(n+1-i)!} U(\sigma) d\sigma \right),$$
(93)

where c > 0 is sufficiently large.

Next, we will prove that the closed-loop system consisting of (78)-(80) together with the control law (93) is asymptotically stable.

With a diffeomorphic transformation

$$\xi_{n-i} = \sum_{j=0}^{i} {\binom{i}{j}} h_{n-j}, \quad i = 0, 1, 2, \dots, n-1,$$
(94)

system (83)-(86) is transferred to

$$\dot{\xi}_i(t) = \sum_{j=i+1}^n \xi_j(t) + u(0,t), \, i = 1, 2, \dots, n-1$$
(95)

$$\dot{\xi}_n(t) = u(0,t) \tag{96}$$

$$u_t(x,t) = u_x(x,t) \tag{97}$$

$$u(D,t) = U(t), \tag{98}$$

and it can be deduced that

$$\sum_{i=1}^{n} \binom{n}{i-1} h_i(t) = \sum_{i=1}^{n} \xi_i(t).$$
(99)

The infinite-dimensional backstepping transformation is defined as follows:

$$w(x,t) = u(x,t) + \sum_{i=1}^{n} \binom{n}{i-1} \eta_i(x,t),$$
(100)

where $\eta_i(x, t), i = 1, 2, ..., n$ are given by (90).

Noting that $\eta_i(0, t) = h_i(t)$, with the help of (87), (98)-(100), system (95)-(98) is transferred to the target system

$$\dot{\xi}_i(t) = -\sum_{j=1}^i \xi_j(t) + w(0, t), \, i = 1, 2, \dots, n$$
(101)

$$w_t(x,t) = w_x(x,t) \tag{102}$$

$$w(D,t) = \frac{1}{c} \sum_{i=1}^{n} {n \choose i-1} \eta_i(D,t).$$
(103)

The inverse backstepping transformation of (100) is defined as follows:

$$u(x,t) = w(x,t) - \sum_{i=1}^{n} \varpi_i(x,t),$$
(104)

where

$$\frac{\partial}{\partial x}\varpi_i(x,t) = -\sum_{j=1}^i \varpi_j(x,t) + w(x,t), \, i = 1, 2, \dots, n$$
(105)

with initial condition $\varpi_i(0, t) = \xi(t)$.

Under the inverse backstepping transformation (104), the target system (101)-(103) is transferred to system (95)-(98).

Lemma 5. Consider the target system (101)-(103), there exists $c^* > 0$ such that system (101)-(103) is asymptotically stable for all $c > c^*$, that is, there exist R > 0, $\overline{\lambda} > 0$, such that for all $c > c^*$,

$$|\xi(t)|^{2} + ||w(t)||^{2} \le Re^{-\lambda t} (|\xi(0)|^{2} + ||w(0)||^{2})$$
(106)

2985

for all $t \ge 0$.

Proof. Denote

$$A = \begin{bmatrix} -1 & 0 & 0 & \cdots & 0 \\ -1 & -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ -1 & -1 & \cdots & -1 & 0 \\ -1 & -1 & -1 & \cdots & -1 \end{bmatrix}, B = \begin{bmatrix} 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix}.$$
 (107)

Since *A* is a Hurwitz matrix, for any a positive matrix *Q*, there exists a positive matrix *P* such that $AP + PA^T = -Q$. Considering system (101)-(103), an overall Lyapunov function is given as follows:

$$V(t) = \xi^T P \xi + l \int_0^D e^x w^2(x, t) \mathrm{d}x,$$
(108)

where $l > \frac{2\lambda_{\max}(PBB^TP)}{\lambda_{\min}(Q)}$. We have that

$$\begin{split} \dot{V}(t) &= \xi^{T} \left(AP + PA^{T} \right) \xi + 2\xi^{T} PBw(0,t) + 2l \int_{0}^{D} e^{x} w(x,t) w_{t}(x,t) dx \\ &= -\xi^{T} Q\xi + 2\xi^{T} PBw(0,t) + 2l \int_{0}^{D} e^{x} w(x,t) w_{t}(x,t) dx \\ &\leq -\lambda_{\min}(Q) \xi^{T} \xi + \frac{\lambda_{\min}(Q)}{2\lambda_{\max}(PBB^{T}P)} \xi^{T} PBB^{T} P\xi + \frac{2\lambda_{\max}(PBB^{T}P)}{\lambda_{\min}(Q)} w^{2}(0,t) + l \int_{0}^{D} e^{x} dw^{2}(x,t) \\ &\leq -\frac{\lambda_{\min}(Q)}{2} \xi^{T} \xi + \frac{2\lambda_{\max}(PBB^{T}P)}{\lambda_{\min}(Q)} w^{2}(0,t) + le^{D} w^{2}(D,t) - l w^{2}(0,t) - l \int_{0}^{D} e^{x} w^{2}(x,t) dx \\ &\leq -\frac{\lambda_{\min}(Q)}{2} \xi^{T} \xi + le^{D} w^{2}(D,t) - l \int_{0}^{D} e^{x} w^{2}(x,t) dx \\ &\leq -\frac{\lambda_{\min}(Q)}{2} |\xi|^{2} + le^{D} w^{2}(D,t) - l ||w(t)||^{2}. \end{split}$$

From (103), we have

$$w^{2}(D,t) = \frac{1}{c^{2}} \left(\sum_{i=1}^{n} \binom{n}{i-1} \eta_{i}(D,t) \right)^{2}.$$
(110)

Using (90), we get

$$\eta_{i}(D,t) \leq \left| \sum_{j=i}^{n} \frac{D^{j-i}}{(j-i)!} h_{j}(t) \right| + \left| \int_{0}^{D} \frac{(D-y)^{n+1-i}}{(n+1-i)!} u(y,t) dy \right|$$

$$\leq e^{D} |h(t)| + \frac{D^{n+1-i}}{(n+1-i)!} \sqrt{D} ||u(t)||$$

$$\leq e^{D} |h(t)| + \max\left\{ D, \frac{D^{2}}{2!}, \dots, \frac{D^{n}}{n!} \right\} \sqrt{D} ||u(t)||,$$

(111)

so

$$w^{2}(D,t) \leq \frac{1}{c^{2}}(2^{n}-1)^{2} \left(2e^{2D}|h(t)|^{2}+2\zeta D||u(t)||^{2}\right),$$
(112)

where

$$\varsigma = \left(\max\left\{ D, \frac{D^2}{2!}, \dots, \frac{D^n}{n!} \right\} \right)^2.$$
(113)

It can be deduced that the inverse of (94) is

$$h_{n-i}(t) = \sum_{j=0}^{i} (-1)^{i+j} \begin{pmatrix} i \\ j \end{pmatrix} \xi_{n-j}(t), \quad i = 0, 1, 2, \dots, n-1,$$
(114)

2986

CAI ET AL.

and after some calculation, we have

'ILEY⁻

$$|h(t)| \le \frac{\sqrt{4^n - 1}}{\sqrt{3}} |\xi(t)|. \tag{115}$$

It is easy to get from (105) that

$$\varpi(x,t) = e^{Ax}\xi(t) + \int_0^x e^{A(x-s)} Bw(s,t) \mathrm{d}s,$$
(116)

where *A* and *B* are given by (107). Furthermore, we get

$$\begin{split} |\varpi(x,t)|^{2} &\leq 2e^{2|A|x}|\xi(t)|^{2} + 2\left|\int_{0}^{x} e^{A(x-s)}Bw(s,t)ds\right|^{2} \\ &\leq 2e^{2|A|x}|\xi(t)|^{2} + 2\int_{0}^{x} \left|e^{A(x-s)}B\right|^{2}ds\int_{0}^{x}w^{2}(s,t)ds \\ &\leq 2e^{2|A|x}|\xi(t)|^{2} + 2|B|^{2}\int_{0}^{x} e^{2|A|(x-s)}ds\int_{0}^{x}w^{2}(s,t)ds \\ &= 2e^{2|A|x}|\xi(t)|^{2} + |B|^{2}\frac{e^{2|A|x}-1}{|A|}\int_{0}^{x}w^{2}(s,t)ds. \end{split}$$
(117)

Using (104), we have

$$u^{2}(x,t) \leq 2w^{2}(x,t) + 2\left(\sum_{i=1}^{n} \varpi_{i}(x,t)\right)^{2}$$

$$\leq 2w^{2}(x,t) + 2n\sum_{i=1}^{n} \varpi_{i}^{2}(x,t)$$

$$= 2w^{2}(x,t) + 2n|\varpi(x,t)|^{2}.$$
(118)

By (117), (118), it can be deduced that

$$\|u(t)\|^{2} \leq 2\|w(t)\|^{2} + \frac{2n\left(e^{2|A|D} - 1\right)}{|A|}|\xi(t)|^{2} + \frac{2n|B|^{2}}{|A|}\left(\frac{e^{2|A|D} - 1}{2|A|} - D\right)\|w(t)\|^{2}.$$
(119)

With the help of (112), (115), (119), we arrive at

$$\begin{split} w^{2}(D,t) &\leq \frac{1}{c^{2}}(2^{n}-1)^{2} \left(\frac{2e^{2D}(4^{n}-1)}{3}|\xi(t)|^{2}+2\varsigma D||u(t)||^{2}\right) \\ &\leq \frac{2(2^{n}-1)^{2}}{c^{2}} \frac{e^{2D}(4^{n}-1)}{3}|\xi(t)|^{2} \\ &+ \frac{2(2^{n}-1)^{2}}{c^{2}} \varsigma D\left(2|w(t)|^{2}+\frac{2n\left(e^{2|A|D}-1\right)}{|A|}|\xi(t)|^{2}+\frac{2n|B|^{2}}{|A|}\left(\frac{e^{2|A|D}-1}{2|A|}-D\right)|w(t)|^{2}\right) \\ &= \frac{2(2^{n}-1)^{2}}{c^{2}} \left(\frac{e^{2D}(4^{n}-1)}{3}+\frac{2n\varsigma D\left(e^{2|A|D}-1\right)}{|A|}\right)|\xi(t)|^{2} \\ &+ \frac{4(2^{n}-1)^{2}}{c^{2}} \varsigma D\left(1+\frac{n|B|^{2}}{|A|}\left(\frac{e^{2|A|D}-1}{2|A|}-D\right)\right)|w(t)|^{2}, \end{split}$$
(120)

where ς is given by (113). Using (109), (120), we get

$$\dot{V}(t) \leq -\frac{\lambda_{\min}(Q)}{2} |\xi(t)|^{2} + \frac{2(2^{n}-1)^{2} l e^{D}}{c^{2}} \left(\frac{e^{2D}(4^{n}-1)}{3} + \frac{2n\zeta D\left(e^{2|A|D}-1\right)}{|A|} \right) |\xi(t)|^{2} + \frac{4l e^{D}(2^{n}-1)^{2}}{c^{2}} \zeta D\left(1 + \frac{n|B|^{2}}{|A|} \left(\frac{e^{2|A|D}-1}{2|A|} - D \right) \right) |w(t)|^{2} - l||w(t)||^{2}.$$

$$(121)$$

Choosing

$$c^{*} = 2\sqrt{2}(2^{n} - 1)e^{\frac{D}{2}} \max\left\{\sqrt{\frac{le^{2D}(4^{n} - 1)}{3\lambda_{\min}(Q)} + \frac{2nl\zeta D\left(e^{2|A|D} - 1\right)}{|A|\lambda_{\min}(Q)}}, \sqrt{\zeta D\left(1 + \frac{n|B|^{2}}{|A|}\left(\frac{e^{2|A|D} - 1}{2|A|} - D\right)\right)}\right\}$$
(122)

for all $c > c^*$, we get

$$\dot{V}(t) \leq -\frac{\lambda_{\min}(Q)}{4} |\xi(t)|^2 - \frac{l}{2} ||w(t)||^2$$

$$\leq -\min\left\{\frac{\lambda_{\min}(Q)}{4}, \frac{l}{2}\right\} \left\{ |\xi(t)|^2 + ||w(t)||^2 \right\}.$$
(123)

With (108), we have

$$\min \{\lambda_{\min}(P), l\} (|\xi(t)|^{2} + ||w(t)||^{2})$$

$$\leq V(t)$$

$$\leq \max \{\lambda_{\max}(P), le^{D}\} (|\xi(t)|^{2} + ||w(t)||^{2}).$$
(124)

Thus, from (123), (124), it holds that

$$\dot{V}(t) \le -\overline{\lambda}V(t) \tag{125}$$

2987

with

$$\overline{\lambda} = \frac{\min\left\{\frac{\lambda_{\min}(Q)}{4}, \frac{l}{2}\right\}}{\max\left\{\lambda_{\max}(P), le^{D}\right\}}.$$
(126)

We arrive at

$$V(t) \le e^{-\lambda t} V(0)$$

$$\le e^{-\overline{\lambda}t} \max\left\{\lambda_{\max}(P), le^{D}\right\} \left(|\xi(0)|^{2} + ||w(0)||^{2}\right).$$
(127)

With the help of (124), we have

$$\begin{aligned} |\xi(t)|^{2} + ||w(t)||^{2} &\leq \frac{V(t)}{\min\{\lambda_{\min}(P), l\}} \\ &\leq \frac{\max\{\lambda_{\max}(P), le^{D}\}}{\min\{\lambda_{\min}(P), l\}} e^{-\overline{\lambda}t} \left(|\xi(0)|^{2} + ||w(0)||^{2}\right). \end{aligned}$$
(128)

Thus, for all $c > c^*$, we get (106) where $c^*, \overline{\lambda}$ are given by (122) and (126), respectively, and $R = \frac{\max\{\lambda_{\max}(P), le^D\}}{\min\{\lambda_{\min}(P), l\}}$. The proof is completed.

Lemma 6. Considering system (83)-(86), there exists $c^* > 0$ such that system (83)-(86) is asymptotically stable for all $c > c^*$, that is, there exist $\overline{R} > 0$, $\overline{\lambda} > 0$, such that for all $c > c^*$,

$$|h(t)|^{2} + ||u(t)||^{2} \le \overline{R}e^{-\overline{\lambda}t} \left(|h(0)|^{2} + ||u(0)||^{2}\right)$$
(129)

for all $t \ge 0$.

Proof. With the help of (94), we get

$$|\xi(t)| \le \frac{\sqrt{4^n - 1}}{\sqrt{3}} |h(t)|.$$
(130)

Using (90), we have

$$\eta_{i}(x,t) \leq \left| \sum_{j=i}^{n} \frac{x^{j-i}}{(j-i)!} h_{j}(t) \right| + \left| \int_{0}^{x} \frac{(x-y)^{n+1-i}}{(n+1-i)!} u(y,t) dy \right|$$

$$\leq e^{x} |h(t)| + \frac{x^{n+1-i}}{(n+1-i)!} \sqrt{x} ||u(t)||$$

$$\leq e^{x} |h(t)| + \max\left\{ x, \frac{x^{2}}{2!}, \dots, \frac{x^{n}}{n!} \right\} \sqrt{x} ||u(t)||$$

$$\leq e^{x} |h(t)| + e^{x} \sqrt{x} ||u(t)||,$$
(131)

with i = 1, 2, ..., n. By (100), it can be deduced that

$$\|w(t)\|^{2} = \int_{0}^{D} w^{2}(x, t) dx$$

$$\leq 2 \int_{0}^{D} u^{2}(x, t) dx + 2 \int_{0}^{D} \left(\sum_{i=1}^{n} {n \choose i-1} \eta_{i}(x, t) \right)^{2} dx$$

$$\leq 2 \|u(t)\|^{2} + 4(2^{n} - 1)^{2} \int_{0}^{D} \left(e^{2x} |h(t)|^{2} + e^{2x} x \|u(t)\|^{2} \right) dx$$

$$= \left(2 + 2(2^{n} - 1)^{2} \left(De^{2D} - e^{2D} + 1 \right) \right) \|u(t)\|^{2} + 2(2^{n} - 1)^{2} (e^{2D} - 1)|h(t)|^{2}.$$
(132)

We deduce from (115), (119) that

$$\begin{aligned} |h(t)|^{2} + ||u(t)||^{2} &\leq \left(\frac{4^{n} - 1}{3} + \frac{2n\left(e^{2|A|D} - 1\right)}{|A|}\right) |\xi(t)|^{2} \\ &+ \left(2 + \frac{2n|B|^{2}}{|A|}\left(\frac{e^{2|A|D} - 1}{2|A|} - D\right)\right) ||w(t)||^{2} \\ &\leq \Lambda_{1}\left(|\xi(t)|^{2} + ||w(t)||^{2}\right), \end{aligned}$$
(133)

where

$$\Lambda_1 = \max\left\{\frac{4^n - 1}{3} + \frac{2n\left(e^{2|A|D} - 1\right)}{|A|}, 2 + \frac{2n|B|^2}{|A|}\left(\frac{e^{2|A|D} - 1}{2|A|} - D\right)\right\}.$$
(134)

Using Lemma 5, there exist R > 0, $\overline{\lambda} > 0$, such that for all $c > c^*$,

$$|h(t)|^{2} + ||u(t)||^{2} \leq \Lambda_{1} \left(|\xi(t)|^{2} + ||w(t)||^{2} \right)$$

$$\leq \Lambda_{1} R e^{-\bar{\lambda}t} \left(|\xi(0)|^{2} + ||w(0)||^{2} \right)$$
(135)

for all $t \ge 0$. With the help of (115), (132), we get

$$\begin{aligned} |h(t)|^{2} + ||u(t)||^{2} &\leq \Lambda_{1} R e^{-\lambda t} \left(|\xi(0)|^{2} + ||w(0)|||^{2} \right) \\ &\leq \Lambda_{1} R e^{-\overline{\lambda} t} \left(\frac{4^{n} - 1}{3} + 2(2^{n} - 1)^{2}(e^{2D} - 1) \right) |h(0)|^{2} \\ &+ \Lambda_{1} R e^{-\overline{\lambda} t} \left(2 + 2(2^{n} - 1)^{2}(De^{2D} - e^{2D} + 1) \right) ||u(0)||^{2} \\ &\leq \Lambda_{1} \Lambda_{2} R e^{-\overline{\lambda} t} \left(|h(0)|^{2} + ||u(0)||^{2} \right) \end{aligned}$$
(136)

for all $t \ge 0$, with

$$\Lambda_2 = \max\left\{\frac{4^n - 1}{3} + 2(2^n - 1)^2 \left(e^{2D} - 1\right), 2 + 2(2^n - 1)^2 \left(De^{2D} - e^{2D} + 1\right)\right\}.$$
(137)

Denote

$$\overline{R} = R\Lambda_1\Lambda_2,\tag{138}$$

(129) is drawn. The proof is completed.

Theorem 4. Consider the closed-loop system consisting of (78)-(80) together with the control law (87). Under Assumption 1, there exist $c^* > 0$ and a \mathcal{KL} function β_5 , such that for all $c > c^*$,

$$|Z(t)|^{2} + \int_{t-D}^{t} U^{2}(\sigma) d\sigma \le \beta_{5} \left(|Z(0)|^{2} + \int_{-D}^{0} U^{2}(\sigma) d\sigma, t \right)$$
(139)

for all $t \ge 0$.

Proof. With the diffeomorphic transformation h(t) = G(Z(t)) defined by (81)-(82), there exist \mathcal{K} functions γ_1, γ_2 such that

$$|Z(t)|^{2} = |G^{-1}(h(t))|^{2} \le \gamma_{1}(|h(t)|^{2}), \qquad (140)$$

$$|h(t)|^{2} = |G(Z(t))|^{2} \le \gamma_{2} \left(|Z(t)|^{2} \right).$$
(141)

Using Lemma 6, there exists $c^* > 0$ such that the closed-loop system (78)-(80) together with the control law (87) holds that

$$\begin{aligned} |Z(t)|^{2} + \int_{t-D}^{t} U^{2}(\sigma) d\sigma &= |Z(t)|^{2} + ||u(t)||^{2} \\ &\leq \gamma_{1} \left(|h(t)|^{2} \right) + ||u(t)||^{2} \\ &\leq \gamma_{3} \left(|h(t)|^{2} + ||u(t)||^{2} \right) \\ &\leq \gamma_{3} \left(\overline{R} e^{-\overline{\lambda} t} \left(|h(0)|^{2} + ||u(0)||^{2} \right) \right) \\ &\leq \gamma_{3} \left(\overline{R} e^{-\overline{\lambda} t} \left(\gamma_{2} (|Z(0)|^{2}) + ||u(0)||^{2} \right) \right) \\ &\leq \gamma_{3} \left(\overline{R} e^{-\overline{\lambda} t} \left(\gamma_{4} \left(|Z(0)|^{2} + ||u(0)||^{2} \right) \right) \right) \\ &\leq \gamma_{3} \left(\overline{R} e^{-\overline{\lambda} t} \left(\gamma_{4} \left(|Z(0)|^{2} + \int_{-D}^{0} U^{2}(\sigma) d\sigma \right) \right) \right) \right) \end{aligned}$$

2989

for all $t \ge 0$, with $\gamma_3(s) = \gamma_1(s) + s$, $\gamma_4(s) = \gamma_2(s) + s$. Choosing $\beta_5(s, t) = \gamma_3(\overline{R}e^{-\overline{\lambda}t}(\gamma_4(s)))$, where $\overline{\lambda}$, \overline{R} are given by (126), (138), respectively, (139) is obtained. The proof is completed.

3.2 | Inverse optimal control for linearizable strict-feedforward systems

Theorem 5. Consider the closed-loop system consisting of (78)-(80) together with the control law (87). Under Assumption 1, there exists a sufficiently large $c^{**} > c^* > 0$, for all $c > c^{**}$, the control law (87) minimizes the cost functional

$$J = \lim_{t \to \infty} \left(\gamma V(t) + \int_0^t \left(L(\tau) + \frac{\gamma l e^D}{c} U^2(\tau) \right) d\tau \right)$$
(143)

where $l > \frac{2\lambda_{\max}(PBB^TP)}{\lambda_{\min}(Q)}$, and *L* is a functional of $(Z(t), U(\theta))$, for all $t - D \le \theta \le t$, such that

$$L(t) \ge l\gamma \left(\frac{\lambda_{\min}(Q)}{4} |\xi(t)|^2 + \frac{1}{2} ||w(t)||^2\right)$$
(144)

for an arbitrary $\gamma > 0$.

Proof. Let

$$L(t) = -\frac{\gamma l e^{D}}{c+1} \alpha_{1}^{2} \left(G^{-1} \left(\eta(D,t) \right) \right) - \gamma \left(-\xi^{T}(t) Q\xi(t) + 2\xi^{T}(t) PBw(0,t) - lw^{2}(0,t) - l \int_{0}^{D} e^{x} w^{2}(x,t) dx \right),$$
(145)

where $l > \frac{2\lambda_{\max}(PBB^TP)}{\lambda_{\min}(Q)}$. It can be deduced that

$$L(t) \geq -\frac{\gamma l e^{D}}{c+1} \alpha_{1}^{2} \left(G^{-1} \left(\eta(D,t) \right) \right) - \gamma \left(-\lambda_{\min}(Q) \xi^{T}(t) \xi(t) + \frac{\lambda_{\min}(Q)}{2\lambda_{\max}(PBB^{T}P)} \xi^{T}(t) PBB^{T}P\xi(t) + \frac{2\lambda_{\max}\left(PBB^{T}P \right)}{\lambda_{\min}(Q)} \psi^{2}(0,t) - l w^{2}(0,t) - l \int_{0}^{D} e^{x} w^{2}(x,t) dx \right)$$

$$\geq -\frac{\gamma l e^{D}}{c+1} \alpha_{1}^{2} \left(G^{-1} \left(\eta(D,t) \right) \right) + \frac{\gamma \lambda_{\min}(Q)}{2} |\xi(t)|^{2} + l\gamma ||w(t)||^{2}.$$
(146)

From (87), (111), we know

$$\begin{aligned} \alpha_1^2 \left(G^{-1} \left(\eta(D, t) \right) \right) &= \left(-\sum_{i=1}^n \binom{n}{i-1} \eta_i(D, t) \right)^2 \\ &\leq (2^n - 1)^2 \left(e^D |h(t)| + \max\left\{ D, \frac{D^2}{2!}, \dots, \frac{D^n}{n!} \right\} \sqrt{D} ||u(t)|| \right)^2 \\ &\leq (2^n - 1)^2 \left(2e^{2D} |h(t)|^2 + 2e^{2D} D ||u(t)||^2 \right). \end{aligned}$$
(147)

With the help of (115), (119), we arrive at

WILEY

$$\begin{aligned} \alpha_1^2 \left(G^{-1} \left(\eta(D, t) \right) \right) &\leq 2e^{2D} (2^n - 1)^2 \left(|h(t)|^2 + D||u(t)||^2 \right) \\ &\leq 2e^{2D} (2^n - 1)^2 \left(\frac{4^n - 1}{3} + \frac{2nD \left(e^{2|A|D} - 1 \right)}{|A|} \right) |\xi(t)|^2 \\ &+ 4De^{2D} (2^n - 1)^2 \left(1 + \frac{n|B|^2}{|A|} \left(\frac{e^{2|A|D} - 1}{2|A|} - D \right) \right) ||w(t)||^2. \end{aligned}$$

$$(148)$$

Choosing

2990

$$c^{**} = \max\left\{\frac{8le^{3D}(2^n - 1)^2 \left(\frac{4^n - 1}{3} + \frac{2nD(e^{2|A|D} - 1)}{|A|}\right)}{\lambda_{\min}Q}, 8De^{3D}(2^n - 1)^2 \left(1 + \frac{n|B|^2}{|A|} \left(\frac{e^{2|A|D} - 1}{2|A|} - D\right)\right), c^*\right\},\tag{149}$$

where c^* is given by (122), for all $c > c^{**}$, by (146), (148), it holds

$$L(t) \ge \frac{l\gamma\lambda_{\min}(Q)}{4} |\xi(t)|^2 + \frac{l\gamma}{2} ||w(t)||^2.$$
(150)

Noting $U^*(t) = \frac{c}{c+1} \alpha_1(G^{-1}(\eta(D, t)))$, after some calculations, we have

$$\begin{split} L(t) &= -\frac{\gamma l e^{D}}{c+1} \alpha_{1}^{2} \left(G^{-1}(\eta(D,t)) \right) - \gamma \left(-\xi^{T}(t) Q\xi(t) + 2\xi^{T}(t) PBw(0,t) - lw^{2}(0,t) - l \int_{0}^{D} e^{x} w^{2}(x,t) dx \right) \\ &= -\frac{\gamma l e^{D}}{c+1} \alpha_{1}^{2} \left(G^{-1}(\eta(D,t)) \right) + \gamma l e^{D} w^{2}(D,t) - \gamma \dot{V}(t) \\ &= -\frac{\gamma l e^{D}}{c+1} \alpha_{1}^{2} \left(G^{-1}(\eta(D,t)) \right) + \gamma l e^{D} \left(U(t) - \alpha_{1} \left(G^{-1}(\eta(D,t)) \right) \right)^{2} - \gamma \dot{V}(t) \\ &= -\frac{\gamma l e^{D}(c+1)}{c^{2}} (U^{*}(t))^{2} + \gamma l e^{D} \left(U(t) - \frac{c+1}{c} U^{*}(t) \right)^{2} - \gamma \dot{V}(t) \\ &= \frac{\gamma l e^{D}}{c} (U^{*}(t))^{2} + \gamma l e^{D} \left((U(t) - U^{*}(t))^{2} - \frac{2}{c} U(t) U^{*}(t) \right) - \gamma \dot{V}(t), \end{split}$$

and hence, it can be deduced that

$$\gamma V(t) + \int_0^t \left(L(\tau) + \frac{\gamma l e^D}{c} U^2(\tau) \right) d\tau = \gamma V(0) + \gamma l e^D \int_0^t \left(1 + \frac{1}{c} \right) (U(t) - U^*(t))^2 d\tau$$
(152)

so the minimum of (143) is reached with

$$U(t) = U^*(t)$$
 (153)

such that

$$J = \gamma V(0). \tag{154}$$

The proof is completed.

4 | EXAMPLE

Example 1. Consider a strict-feedforward nonlinear system given by Krstic⁶ as

$$\dot{Z}_1(t) = Z_2(t) + Z_3^2(t) \tag{155}$$

$$\dot{Z}_2(t) = Z_3(t) + Z_3(t)U(t - D)$$
(156)

$$\dot{Z}_3(t) = U(t - D),$$
(157)

where $Z_1, Z_2, Z_3 \in R$ are the states, *U* is a scalar control input, and $D \in R^+$ is an actuator delay. It is illustrated in the aforementioned work⁶ that the overall system (155)-(157) is not linearizable.

The nominal control design (D = 0) for system (155)-(157) is obtained by Krstic⁶ as

$$U(t) = -Z_{1}(t) - 3Z_{2}(t) - 3Z_{3}(t) - \frac{3}{8}Z_{2}^{2}(t) + \frac{3}{4}Z_{3}(t) \left(-Z_{1}(t) - 2Z_{2}(t) + \frac{1}{2}Z_{3}(t) + \frac{1}{2}Z_{2}(t)Z_{3}(t) + \frac{5}{8}Z_{3}^{2}(t) - \frac{1}{8}Z_{3}^{3}(t) - \frac{3}{8}\left(Z_{2} - \frac{Z_{3}^{2}}{2}\right)^{2} \right).$$
(158)

By Theorem 2, the predictor control for system (155)-(157) is designed as

$$U(t) = \frac{c}{c+1}U_1(t) = U^*(t),$$
(159)

where c > 0 is sufficiently large and

$$U_{1}(t) = -P_{1}(t) - 3P_{2}(t) - 3P_{3}(t) - \frac{3}{8}P_{2}^{2}(t) + \frac{3}{4}P_{3}(t) \left(-P_{1}(t) - 2P_{2}(t) + \frac{1}{2}P_{3}(t) + \frac{1}{2}P_{2}(t)P_{3}(t) + \frac{5}{8}P_{3}^{2}(t) - \frac{1}{8}P_{3}^{3}(t) - \frac{3}{8}\left(P_{2} - \frac{P_{3}^{2}}{2}\right)^{2} \right),$$
(160)

and $P_1(t) = p_1(D, t)$, $P_2(t) = p_2(D, t)$, and $P_3(t) = p_3(D, t)$ are provided for x = D by

$$p_1(x,t) = Z_1(t) + \int_0^x \left(p_2(y,t) + p_3^2(y,t) \right) dy$$
(161)

$$p_2(x,t) = Z_2(t) + \int_0^x \left(p_3(y,t) + p_3^2(y,t)u(y,t) \right) dy$$
(162)

$$p_3(x,t) = Z_3(t) + \int_0^x u(y,t) \mathrm{d}y.$$
(163)

Responses of the states of system (155)-(157) under the control law (159) are shown for c = 100 in Figure 1. One can observe that the closed-loop system is asymptotically stable. By Theorem 3, the control law (159) is inverse optimal.

Example 2. Consider a cart with an inverted pendulum system given by Wei²¹ as follows:

$$(m_1 + m_2)\ddot{q}_1 + m_2 l\cos(q_2)\ddot{q}_2 = m_2 l\sin(q_2)\dot{q}_2^2 + F$$
(164)

$$\cos(q_2)\ddot{q}_1 + l\ddot{q}_2 = g\sin(q_2),\tag{165}$$

where m_1 and q_1 are the mass and position of the cart; m_2 , l, and $q_2 \in (-\pi/2, \pi/2)$ are the mass, length of the link,

FIGURE 1 Responses of the states $X_1(t), X_2(t), X_3(t)$ of system (155)-(157) with the control law (159) for initial conditions as $X_1(0) = 0, X_2(0) = 0.3, X_3(0) = 0.2$ and $U(\theta) = 0$, for $\theta \in [0, 1]$

2992 V

'ILEY⁻

and angle of the pole, respectively, and g = 9.8 is the acceleration of gravity. Let $\dot{q}_2 = p_2$, $\dot{p}_2 = u$. Applying the feedback law (see the work of Wei²¹)

$$F = -ul\left(m_1 + m_2 \sin^2(q_2)\right) / \cos(q_2) + (m_1 + m_2)g \tan(q_2) - m_2 l \sin(q_2)\dot{q}_2^2$$
(166)

and with the following global change of coordinates

$$x_1 = \lambda \left(q_1 + l \ln \left(\frac{1 + \tan(q_2/2)}{1 - \tan(q_2/2)} \right) \right)$$
(167)

$$x_2 = \dot{q}_1 + (l/\cos(q_2)) p_2, \tag{168}$$

we get

$$\dot{x}_1 = \lambda x_2 \tag{169}$$

$$\dot{x}_2 = \tan(q_2) \left(g + \frac{l}{\cos(q_2)} p_2^2 \right)$$
 (170)

$$\dot{q}_2 = p_2 \tag{171}$$

$$\dot{p}_2 = u, \tag{172}$$

where $\lambda > 0$. To map the upper half-plane to *R*, we use another global change of coordinates and control as follows:

$$x_3 = \tan(q_2) \tag{173}$$

$$x_4 = (1 + \tan^2(q_2)) p_2 \tag{174}$$

$$\nu = \left(1 + x_3^2\right)u + \frac{2x_3x_4^2}{\left(1 + x_3^2\right)} + \left(gx_3 + \frac{g}{2}x_4\right)\sqrt{1 + x_3^2}.$$
(175)

Finally, the dynamics of the cart-pole system is transformed into the following (assuming l = 1):

$$\dot{x}_1 = \lambda x_2 \tag{176}$$

$$\dot{x}_2 = x_3 \left(g + \frac{x_4^2}{\left(1 + x_3^2\right)^{3/2}} \right)$$
(177)

$$\dot{x}_3 = x_4 \tag{178}$$

$$\dot{x}_4 = -(gx_3 + (g/2)x_4)\sqrt{1 + x_3^2} + \nu.$$
(179)

From the aforementioned work,²¹ the control law

$$v = v_1 + v_2 \tag{180}$$

$$\nu_1 = -2x_4 - x_3 - \left(1/\sqrt{1 + x_3^2}\right) z_1 \tag{181}$$

$$z_1 = x_2 + \left(x_4/\sqrt{1+x_3^2}\right) + (g/2)x_3 \tag{182}$$

$$v_2 = \mu_2^{-1} \left(\frac{1}{2} x_3 \sqrt{1 + x_3^2} - x_4 \sqrt{1 + x_3^2} - \frac{1}{2} x_2 \right) - \mu_2 z_2$$
(183)

$$z_2 = x_1 - N_2 \tag{184}$$

$$N_{2} = -x_{2} - \frac{g}{2}x_{3} - \frac{1}{2g}x_{4} - \frac{x_{4}}{\sqrt{1 + x_{3}^{2}}} - \frac{5}{4} \left(\frac{x_{3}\sqrt{1 + x_{3}^{2}}}{2} + \frac{1}{2}\ln\left(x_{3} + \sqrt{1 + x_{3}^{2}}\right) \right)$$
(185)

$$\mu_2 = \frac{1}{2g} + \frac{1}{\sqrt{1 + x_3^2}} \tag{186}$$

globally asymptotically stabilizes system (176)-(179).

We consider system (176)-(179) with input delay as follows:

$$\dot{x}_1 = \lambda x_2 \tag{187}$$

$$\dot{x}_2 = x_3 \left(g + \frac{x_4^2}{\left(1 + x_3^2\right)^{3/2}} \right)$$
(188)

$$\dot{x}_3 = x_4 \tag{189}$$

$$\dot{x}_4 = -\left(gx_3 + (g/2)x_4\right)\sqrt{1 + x_3^2} + U(t - D),\tag{190}$$

where $D \in \mathbb{R}^+$ is an actuator delay.

By Theorem 2, the control law for system (187)-(190) is given by

$$U(t) = \frac{c}{c+1}U_1(t) = U^*(t),$$
(191)

where c > 0 is sufficiently large, and $U_1(t) = v(t)$ is given as (180)-(186) by replacing $x_i(t)$, i = 1, 2, 3, 4, with $P_i(t)$, i = 1, 2, 3, 4, with $P_i(t)$, i = 1, 2, 3, 4, and $P_1(t) = p_1(D, t)$, $P_2(t) = p_2(D, t)$, $P_3(t) = p_3(D, t)$, and $P_4(t) = p_4(D, t)$ are provided for x = D by

$$p_1(x,t) = x_1(t) + \int_0^x \lambda p_2(y,t) dy$$
(192)

$$p_2(x,t) = x_2(t) + \int_0^x \left(p_3(y,t)(g + \frac{p_4^2(y,t)}{\left(1 + p_3^2(y,t)\right)^{3/2}} \right) dy$$
(193)

$$p_3(x,t) = x_3(t) + \int_0^x p_4(y,t) dy$$
(194)

$$p_4(x,t) = x_4(t) + \int_0^x -(gp_3(y,t) + (g/2)p_4(y,t))\sqrt{1 + p_3^2(y,t)} + u(y,t)dy.$$
(195)

Figures 2 and 3 show the simulation results for the cart-pole system with the initial state $(q_1, p_1, q_2, p_2) = (5, 0, \pi/3, 0)$ (ie, $(x_1, x_2, x_3, x_4) = (2.5 + 0.5 \ln(\frac{\sqrt{3}+1}{\sqrt{3}-1}), 0, \sqrt{3}, 0)$), and c = 100. In Figure 4, clearly, the control law (191) stabilizes the inverted pendulum in its upright position after a rather short time. The parameters are chosen as $m_1 = m_2 = l = 1$.

FIGURE 2 State trajectory of system (187)-(190)

FIGURE 4 Position of the cart-pole system (164)-(165)

5 | CONCLUSIONS

Inverse optimal control for strict-feedforward systems with input delays is studied in this paper. A basic predictor control is designed for compensation for this class of nonlinear systems. Furthermore, it is shown that it is inverse optimal with respect to a meaningful differential game problem. For a class of linearizable strict-feedforward system, an explicit formula for compensation for input delay, which is also inverse optimal with respect to a meaningful differential game problem, is also obtained. A cart with an inverted pendulum system is given to illustrate the validity of the proposed method.

ORCID

Xiushan Cai http://orcid.org/0000-0001-9698-9148

REFERENCES

- 1. Mazenc F, Praly L. Adding integrations, saturated controls, and stabilization of feedforward systems. *IEEE Trans Autom Control*. 1996;41(11):1559-1578.
- 2. Sepulchre R, Jankovic M, Kokotovic PV. Integrator forwarding: a new recursive nonlinear robust design. Automatica. 1997;33(5):979-984.
- 3. Arcak M, Teel A, Kokotovic PV. Robust nonlinear control of feedforward systems with unmodeled dynamics. *Automatica*. 2001;37(2):265-272.
- 4. Xudong Y. Universal stabilization of feedforward nonlinear systems. Automatica. 2003;39(10):141-147.
- 5. Krstic M. Feedback linearizability and explicit integrator forwarding controllers for classes of feedforward systems. *IEEE Trans Autom Control.* 2004;49(10):1668-1682.
- 6. Krstic M. Input delay compensation for forward complete and strict-feedforward nonlinear systems. *IEEE Trans Autom Control*. 2010;55(2):287-303.
- 7. Krstic M. Lyapunov tools for predictor feedbacks for delay systems: inverse optimality and robustness to delay mismatch. *Automatica*. 2008;44(11):2930-2935.
- 8. Artstein Z. Linear systems with delayed controls: a reduction. IEEE Trans Autom Control. 1982;27(4):869-879.
- 9. Manitius AZ, Olbrot AW. Finite spectrum assignment problem for systems with delays. IEEE Trans Autom Control. 1979;24(4):541-553.

- 10. Mondie S, Michiels W. Finite spectrum assignment of unstable time-delay systems with a safe implementation. *IEEE Trans Autom Control.* 2003;48(12):2207-2212.
- 11. Bresch-Pietri D, Petit N. Robust compensation of a chattering time-varying input delay. Paper presented at: 53rd IEEE Conference on Decision and Control; 2014; Los Angeles, CA.
- 12. Mazenc F, Malisoff M, Niculescu SI. Stability and control design for time-varying systems with time-varying delays using a trajectory based approach. SIAM J Control Optim. 2017;55(1):533-556.
- 13. Bekiaris-Liberis N, Krstic M. Compensation of time-varying input and state delays for nonlinear systems. J Dyn Syst Meas Control. 2012;134(1):1-14.
- 14. Bekiaris-Liberis N, Krstic M. Robustness of nonlinear predictor feedback laws to time- and state-dependent delay perturbations. *Automatica*. 2013;49(6):1576-1590.
- 15. Cai X, Lin Y, Liu L. Universal stabilisation design for a class of non-linear systems with time-varying input delays. *IET Control Theory Appl.* 2015;9(10):1481-1490.
- 16. Bekiaris-Liberis N, Krstic M. Compensation of wave actuator dynamics for nonlinear systems. *IEEE Trans Autom Control.* 2014;59(6):1555-1570.
- 17. Cai X, Krstic M. Nonlinear control under wave actuator dynamics with time-and state-dependent moving boundary. *Int J Robust Nonlinear Control*. 2015;25(2):222-253.
- 18. Cai X, Krstic M. Nonlinear stabilization through wave PDE dynamics with a moving uncontrolled boundary. Automatica. 2016;68:27-38.
- 19. Karafyllis I, Krstic M. Predictor Feedback for Delay Systems: Implementations and Approximations. Cham, Switzerland: Springer; 2016.
- 20. Krstic M, Li Z. Inverse optimal design of input-to-state stabilizing nonlinear controllers. IEEE Trans Autom Control. 1998;43(3):336-350.
- 21. Wei X. The optimal stabilization of cart-pole system: A modified forwarding control method. Paper presented at: Proceedings of the IITA International Conference on Services Science, Management and Engineering; 2009; Zhangjiajie, China.

How to cite this article: Cai X, Lin C, Liu L, Zhan X. Inverse optimal control for strict-feedforward nonlinear systems with input delays. *Int J Robust Nonlinear Control*. 2018;28:2976–2995. https://doi.org/10.1002/rnc.4062