
A Capacity-Aware Distributed Denial-of-Service
Attack in Low-Power and Lossy Networks

Rajorshi Biswas, Jie Wu, and Xiuqi Li
Department of Computer and Information Sciences

Temple University, Philadelphia, PA, USA

Abstract—Low-Power and Lossy Network (LLN) is composed
of embedded devices with limited power, memory, and processing
resources. LLN has a wide variety of applications including
industrial monitoring, connected home, health care, urban sensor
networks and environmental monitoring. LLN uses Routing
Protocol for Low-power and lossy networks (RPL) protocol. The
RPL maintains directed acyclic graphs for routing packets. By
exploiting some features, a Distributed Denial-of-Service (DDoS)
attack can be conducted easily. DDoS attacks are very popular
and well studied in the context of the Internet, but not in the
context of LLNs. In this paper, we propose a powerful DDoS
attack framework in LLNs. We formulate the attack as an
optimization problem for selecting an optimal set of attackers and
their targeted neighbors constrained by a limited link bandwidth.
We propose an optimal solution by transforming the optimization
problem into a max-flow problem. We provide simulations to
support our model.

Index Terms—Low-Power and Lossy Network, Distributed
Denial-of-Service, Security, Attack Strategy, Powerful DDoS attack

I. INTRODUCTION

In a denial-of-service attack (DoS attack) the attacker makes
a service or resource temporarily unavailable to its users.
DoS attacks are considered a federal crime and the penalty
includes years of imprisonment [1]. Usually DDoS attacks
are conducted by compromised machines called bots. Bots are
malicious programs in users’ computers. A coordinator called
the master controls the bots. The master commands the bots to
send a huge number of requests. Because of the huge number
of packets, the bandwidth of the victim becomes exhausted.

DDoS attacks are popular in traditional networks and a lot
of defense mechanisms are also available, such as [2, 3]. The
scope of DDoS is not limited to traditional networks only. One
of the potential playgrounds of DDoS is Low-Power and Lossy
Networks (LLNs). LLNs are composed of embedded devices
with limited memory, energy, and processing resources. The
interconnected links are also heterogeneous. Different links
can use different protocols including IEEE 802.15.4, bluetooth,
or low power Wi-Fi. The LLNs use Routing Protocol for
LLNs (RPL) for packet routing [4]. One or multiple directed
acyclic graphs (DAGs) are maintained by the roots of the
network. The roots are special devices with higher capability
and internet/WAN connectivity. The roots maintain destination
oriented DAGs (DODAGs) for routing packets. When a device
wants to send a packet to another, the packet is routed to
the root. After that, the root uses strict source routing to
deliver the packet to the destination. In strict source routing,
a packet header contains hop by hop routing information.
The intermediate nodes follow the routing information in the
header. When a node cannot deliver a packet with routing

A

R

C

BWAN N

M

F

G

K

H

Master

Regular link

DODAG link

Attack direction

Indirect connection

R Root

Fig. 1: A DDoS attack in a LLN.

information to the next hop, it drops the packet and sends an
error message to the source. The error message travels through
the root like regular packets.

The error messages in RPL bring a great opportunity for
DDoS attacks in LLNs. A malicious device can create many
packets with the wrong routing information and forward them
to its neighbors. When the packets arrive, they drop them and
send error messages to the source. When many error messages
come to the root, the capacity of links is exhausted at the root
and DoS occurs. Fig. 1 shows an attack scenario in LLN.
Nodes M , N , and K are attackers and they are controlled by
a coordinator called the master. The attackers are compromised
devices and the master can be one of them. The master’s goal
is to maximize the attack strength. The easiest way to achieve
this is to activate all the attackers. In reality, the strongest
attack can be launched by activating a subset of the attackers.
This is because each link has a limited bandwidth and attackers
can attack a limited number of neighbors. Attacking a neighbor
means sending packets with the wrong routing information at
the highest rate. For example, if the master selects N and
K, and they both attack F and G, then the attack intensity
will not be the highest. Assume an attacker can attack two
neighbors at the same time and the bandwidth of each link is
the same. This is because error messages from F for N and
K’s packets travel through link F → C which has a limited
bandwidth. Error messages from G travel back through link
G → N which is used for the attack. Therefore, the master
needs to select the attackers and the targeted neighbors wisely.

In this paper, we propose an attack framework called
Capacity-Aware DoS Attack in LLN (CADAL). To the best
of our knowledge, for the first time we treat the attack
as an optimization problem for selecting an optimal set of
attackers and their targeted neighbors under the condition
of limited link bandwidth. We assume that the capacity of
each link is the same and each attacker can attack a limited
number of neighbors simultaneously. We solve the problem
by transforming it into a max-flow problem. We conduct
simulations and the results support our model.

A

R

CB

WAN

ED F

(a) DODAG.

A RD

B FR

-

R B F

No route info

Source routing

route info added

(b) Packet routing.

B FR

R B F X

Wrong source routing

B FR

EMEM

(c) Error message.

Fig. 2: RPL routing in LLN.
The remainder of this paper is arranged as follows: Section

II reviews some related work. Section III introduces some
background information and the network model. Section IV
describes the proposed attack framework. In Section V, we
present some simulation results that demonstrate the effective-
ness of our proposed model. Section VI concludes the paper.

II. RELATED WORK

Though RPL is not new, its increased usage in IoT motivates
several research works in this field recently.

In a selective-forwarding attack [5], attacker nodes selec-
tively forward packets to disrupt routing paths. For example,
an attacker forwards all RPL control messages but drops the
other traffic. This attack can be launched with other attacks,
such as sinkhole attacks. One way to protect against selective-
forwarding attacks is to maintain multiple disjoint paths be-
tween the root and the destination nodes. The root needs
to dynamically select the paths. In [6], authors implemented
the selective-forwarding, sinkhole, hello flood, wormhole, and
clone ID attacks in LLN. All but the selective forwarding
attack are originally targeted at wireless sensor networks. They
propose a method for placing intrusion detection systems and
eliminating malicious nodes in the LLN.

In the storing mode of RPL, the packet is forwarded to
the least common ancestor of the source and destination. The
least common ancestor node uses the source routing like the
root. An attacker node generates a large number of packets
and forwards them to its neighbors so that the least common
ancestor needs to forward a considerable number of packets.
This drains the energy of that node. This kind of DDoS attack
is called energy depletion attack [7]. The authors also propose
a misbehavior-aware threshold detection scheme to prevent
the energy depletion attack. Other types of attacks include
sinkhole, application layer, jamming, and cloning of things
attacks [8, 9].

The work most related to ours is [10]. They first identify a
new DDoS attack in RPL-based LLNs, called a hatchetman
attack. The attackers send packets with the wrong routing
information to all of their neighbors. The error messages
created by the neighbors make DoS at the root of DODAG.
The hatchetman attack does not consider the limited bandwidth
of links. Because of the limited link bandwidth, many error
messages may be dropped before reaching the root. Besides,
the same number of error messages can be generated by
attacking a smaller number of neighbors.

III. NETWORK MODEL

In this section, we describe some background information
and wireless settings. There are several versions of RPL. We
present the version of RPL we are considering for our work.

A. RPL Summary

LLNs are composed of the constrained routers and intercon-
nections. LLN routers/devices operate with limited processing
power, memory, and battery power. Their interconnections
have high loss rates, low data rates, and instability. The
routers/devices do not store any routing table. There is a highly
capable gateway called the root which is connected to the
Internet. All the packets are routed through the root. The
root maintains a DAG called the destination oriented DAG
(DODAG) structure to route the packets. Other devices do not
store routing information. We divide the operations of RPL
into three parts: DODAG maintenance, packet routing, and
error handling.

DODAG Maintenance: To build a DODAG, the root first
broadcasts a control message to its neighbors. The control
message contains the rank of the root. The rank is basically
the number of hops from the root. The rank of the root is
0. When a neighbor receives that control message for the first
time it increases its rank and makes the sender its parent. Then
it broadcasts its rank to its neighbors. When a device decides
its parent it reports that information to the root. The root then
creates the DODAG by using the parents’ information from
each device. The DODAG indicates the network state, which
changes over time. Fig. 2(a) shows a DODAG for a LLN. In
the figure, R is the root and connected to WAN. The arrows
represent the parent relationship between two nodes.

Packet Routing: When a device wants to send a message
to another, it creates a packet and forwards it to its own parent.
The parent device forwards the packet to its own parent. When
the packet arrives at the root, the root finds out the path to the
destination and piggybacks that information in the header of
the packet. Then it forwards the packet to the next hop router
according to the path. When a router/device receives a packet
with routing information it forwards that packet to the next
hop according to that route information. Strict source routing
is used in RPL. It means that the routing information is the
hop by hop routers/devices information to the destination. The
forwarding routers/devices do not remove their own id during
forwarding. Fig. 2(b) shows packet routing in a LLN. In the
figure, D sends a message to F . D does not know the route,
so that it forwards the packet to its parent A. The packet does
not contain any routing information. A forwards the packet
to its own parent R. The root R knows the routing path to
F . So, it adds the routing information to the packet. Then,
R forwards the packet to the next hop. Intermediate nodes
follow the routing information in the packet header. Finally,
the packet arrives at the destination F .

Error Handling: In LLN links have low data rates and
instability. Packets suffer from high loss. If a router cannot
deliver a data packet to the next hop, then it creates an error
message and sends back to the source of the packet. The error

message contains a code of ”Error in Source Routing Header”.
The message follows the same packet routing rule. So, the
error message reaches the root, then it is source routed to the
source of the data packet. Fig. 2(c) shows a routing error in
RPL. D sends a packet with X being the destination. When the
packet arrives at R, it adds routing information {R,B, F,X}.
The packet arrives at F via B. Then, F tries to forward it to
X which is unavailable. Therefore, F drops the packet and
sends an error message to D. The error message is forwarded
to F ’s parent B. B sends it to its own parent R. Then R uses
source routing to send the message to D.

B. Wireless Settings

In LLNs, the capabilities of devices and interconnected links
are heterogeneous. For simplicity, we assume that there is only
one root. All devices are homogeneous and interconnected
wireless links have the same bandwidth. The attackers also
have the same capability as other devices. The attackers are
compromised devices that are controlled by the master. The
master resides either inside or outside the LLN. All the
attackers send their neighbors’ reporting paths to the master.
The reporting path of a node is the path from that node to
the root. The reporting path can be inferred by eavesdropping
on the packets of the neighbors. For example, node E can
eavesdrop on the packets which are forwarded from B to F .
Node E remains in the transmission range of B. Therefore,
any packet transmitted from B clearly reaches F . The packets
contain routing information (R → B → F) in their header.
The reporting path of F is simply the reverse of the routing
information (F → B → R). Sometimes it is not possible to
get all neighbors’ reporting paths. For example, node E cannot
get the reporting path of node D. This is because E is not A’s
neighbor, and D does not have any children. Therefore, A’s
forwarded packets do not reach E and D does not forward
any packet with routing information.

An attacker can attack a limited number of neighbors. If the
links with the neighbors are in different channels (different
frequencies) then it is possible to attack multiple neighbors at
the highest data rate. In real LLNs, the number of simultaneous
attacks is different for different attackers. For simplicity, we
assume that each attacker can attack the same number of
neighbors simultaneously.

IV. CAPACITY AWARE DDOS ATTACK IN LLN (CADAL)

In this section, we propose the CADAL framework. We for-
mulate an optimization for finding best target set of neighbors.

A. The Attack Optimization Problem

In the CADAL framework, the attackers report their neigh-
bors’ reporting paths to the master. The master combines the
reporting paths and forms a DAG. The DAG is not the same as
the real DODAG maintained by the root. This is because the
master cannot get the reporting paths of all nodes. Therefore,
the master does not have a global view of the DODAG. With
the partial DODAG information, the master wants to maximize
the strength of the attack against the root. At the same time,

R

E

B

N

J K

F H

L

Q

I

D

C

(a) Actual topology.

R

E

B

N

J K

F H

L

I

D

C

(b) Master’s view G.

R

1

1
E

B

J K

F H
I

D

C

S

(c) Max flow in G′.

Fig. 3: An example.

Algorithm 1 Find an Optimal Set of Target Neighbors
Input: The topology G = (V,E), the set of attackers A, the number of

simultaneous attacks launched per attacker P .
Output: An optimal mapping F and target nodes T .

1: Procedure: FIND-OPTIMAL-TARGET-SET(G,A, P)
2: Find the neighboring set NEI(a) for each a ∈ A.
3: Prune NEI(a) for each a ∈ A using elimination rules.
4: G′ ← TRANSFORM(G′, A, P)
5: Find ∀e∈E′Flow[e] using Ford-Fulkerson algorithm.
6: (T, F)← FIND-TARGET(G,A, F low)
7: return (T, F).

the master wants to attack the minimum number of neighbors.
Attacking a neighbor is associated with a cost. The cost is
energy consumption for computation and transmission.

The strength of an attack is determined by the rate of error
messages delivered to the root of a LLN. Let G = (V,E) be
the DAG formed from the received reporting paths and ∆ be
the degree of the root. Let R be the maximum data rate of a
link. If there are enough attackers, then the maximum possible
strength of the attack is R∆. For simplicity we assume that
R = 1. So, the maximum possible attack strength is ∆.

In the optimal scenario, the number of attacked neighbors
is equal to the maximum attack strength. The master needs to
find an optimal set of target neighbors and the attackers that
will produce the attack of strength ∆.

Let A be the set of attackers and T ⊂ NEIGHBOR(A) be
the set of target neighbors. P is the maximum number of
attacks that an attacker can launch simultaneously. F : T → A
is the mapping from the target to the attacker. For example,
F (t) denotes the attacker which attacks the node t. S(T) is
the strength achieved by target set T . The problem can be
expressed as the following:

minimize |T |
subject to ∀a∈A|F−1(a)| < P, S(T) = ∆

(1)

B. An Optimal Solution

We transform the optimization problem of finding a min-
imum set of target neighbors to a maximum flow problem.
Specifically, in the CADAL approach, we first eliminate
neighbors that don’t make much contribution to the goal of
achieving the maximum attack strength. Then we create a flow
graph by augmenting the reporting path graph with additional
nodes and edges. We use the Ford-Fulkerson algorithm to
compute the maximum flow. An optimal set of target neighbors
can be obtained based on the initial pruned neighbor set and
the maximum flow information. The entire approach is detailed

in Algorithm 1. Procedures TRANSFORM and FIND-TARGET
are not shown in detail to save space.

a) Neighbor Pruning: We first find the set of neighbors
of each attacker and eliminate some of them based on the two
rules. Rule 1: If an attacker has another attacker as a neighbor,
then this neighbor is removed from the target neighbor set.
An attacker is not a good target neighbor because it does not
have to be forced to create error messages. The master can
directly order to do so. Rule 2: If an attacker remains on all
of the reporting paths of a neighbor, then the neighbor can be
removed. The reason is similar to the previous case.

b) Flow Graph Creation: After pruning, we transform
G into a flow graph G′ = (V ′, E′). We keep all edges on the
reporting paths in G. We add a virtual source S to G′. Then
we connect S to each attacker by adding an edge from S to the
attacker. For each attacker, we add an edge from the attacker
to each neighbor in its pruned neighbor set. Each edge from
S gets the capacity P . All other edges get the capacity 1. The
capacity P is used to limit the outgoing flows at an attacker.
The outgoing flows can travel at most P links.

c) Optimal Target Set Computation: The flow from S
travels through the target neighbors in T . The outgoing flows
from an attacker also indicate the target to attacker assignment
F . The maximum flow in G′ is equal to the maximum strength
attack launched by the given set of attackers. The maximum
flow problem is solved using the Ford-Fulkerson algorithm.
It is a greedy algorithm that computes the maximum flow in
a flow network. With the maximum flow information, the set
of target neighbors T can be computed. For each attacker, we
find the links with flows. The node at the other end of each
link becomes the target of the attacker.

C. Example

Let us consider the topology in Fig. 3(a). The black arrows
form DODAG and the green lines are general links. We assume
that an attacker can attack at most two neighbors (P = 2) in
this example. Node R is the DODAG root. Nodes E, J , and
H are the attackers. After receiving the reporting paths of the
neighbors from the attackers, the master generates the partial
DAG G (Fig. 3(b)).

Next, we remove some of the nodes according to the
elimination rules. The neighbor sets of E, J , and H are
{J, F,B}, {E,F,K,N}, and {C, I, L,K, F}, respectively.
According to the elimination rule 1, we remove E from J’s
neighbor set and J from E’s neighbor set. According to the
elimination rule 2, we remove L from H’s and N from J’s
neighbor sets. Therefore, pruned neighbor sets of E, J , and
H are {F,B}, {F,K}, and {C, I,K, F}, respectively.

Then, we formulate G′ from G by first adding a virtual
source S. We add three edges from S to the attackers E, J ,
and H . The capacities of these edges are 2. Then we add some
more edges with capacity 1 from the attackers to their pruned
neighbors.

Next, we use the Ford-Fulkerson algorithm to find a max-
imum flow in G′, shown in Fig. 3(c) (marked as red). The
maximum flow is 3, which is the highest achievable attack

(a) Topology I. (b) Masters view G. (c) Flow graph G′.

(d) Topology II (e) Masters view G. (f) Flow graph G′.

Fig. 4: Topologies used in simulation.
strength in this scenario. The flow travels through the attackers
E and H . Therefore, the master will activate the attackers E
and H . As the flow travels to B from E, attacker E will attack
B. Similarly, the flow from H travels through C and I . So,
the attacker H will attack C and I . At this point we have
found our desired target set T = {B,C, I} and the mapping
function F (F (B) = E, F (C) = H , and F (I) = H).

Theorem 1. The complexity of Algorithm 1 is O(|V |2+|V |∆).

Proof. In Step 2 of Algorithm 1, finding neighbor sets of
all attackers takes O(N). Elimination based on rule 1 takes
O(|V |2). Elimination based on rule 2 needs O(|V |log(|V |))
time. Therefore, Step 3 takes O(|V |2) time. The creation of
the flow graph in Step 4 also takes O(|V |2) time. Step 5 takes
O(|V |∆) which is the running time for Ford-Fulkerson. Step
6 takes O(|V |2) time. Therefore, the overall running time of
Algorithm 1 is O(|V |2 + |V |∆).

Theorem 2. Algorithm 1 provides an optimal target set.

Proof. The procedure TRANSFORM converts the master’s
DAG G to flow graph G′ in such a way that each attacker’s
incoming edge has the capacity P and each outgoing edge
has the capacity 1. Therefore, no more than P links can carry
flows. So, the constraint that an attacker cannot attack more
than P neighbors simultaneously holds. Next we need to show
that the target set T is the minimum. Let us assume that there
is another set T ′ which is the minimum (|T | > |T ′|). As
each of the nodes in T (or T ′) has only one incoming link
and the capacity of each link is 1, the maximum flow is |T | or
|T ′|. According to the assumption |T | > |T ′|, the target set T ′

cannot produce an attack of the maximum strength. Therefore,
T ′ is not an optimal target set.

V. SIMULATION

A. Experimental settings

We conduct the experiments with a custom built Java
simulator. The main reason for doing so is efficiency. We
do not need to analyze transmission time, real bandwidth, or

TABLE I: Topology Parameters

Number of Topology I Topology II
Nodes 47 107

Attackers 6 9
Edges 131 558

Node degree 1-8 2-17
Degree of root 4 6

packet drops issues. We only need to count the attack strength
for different networks. The network topologies we use contain
47 − 107 devices. Using NS3 or other similar simulators for
this kind of simulation would take a long time. So, we build
our own Java simulator to get the results quickly.

We generate two random topologies for some experiments.
They are drawn in Fig. 4. The topologies are unit disk graphs.
We first consider a rectangular region of 500× 500 which is
divided into multiple 50 × 50 blocks. A specific number of
nodes are placed at random locations in each block. Links are
added between two nodes if their distance is less than 70 units.
The root is selected randomly at an edge. The locations of
the attackers are also selected randomly. Detailed information
about the topologies is listed in Table I.

We observe the attack strengths variation of CADAL by
changing different parameters, including the number of neigh-
bors an attacker can attack simultaneously (P), % of neighbors
known to an attacker, and neighborhood radius (or transmis-
sion range). Three attacker ratios, 5%, 10%, and 15%, are
used. We compare the performances of CADAL in both clus-
tered and uniform attacker distributions. We evaluate CADAL
against the random P -neighbor attack. All the numbers of the
plots are averages and standard deviations (SD) of 1, 000 runs.

B. Simulation Result

At first we change the number of neighbors an attacker can
attack simultaneously with three attacker ratios 5%, 10%, and
15%. There are 47 (or 107) nodes in Topology I (or Topology
II). 2, 4, and 7 (or 5, 10, and 16) nodes in Topology I (or
Topology II) are randomly selected as attackers. We vary P
from 1 to 10 and observe the attack strengths. The result is
shown in Fig. 5. The highest attack strength is with 15%
attackers, the lowest is 5%, and 10% is in between for all
P values. The higher the value of P , the more traffic can get
to the root. When P is greater than 3 in Topology I and more
than 4 in Topology II, the attack strength remains unchanged.
Therefore, highly capable attackers are not always needed to
launch powerful attacks.

Fig. 6 shows how the attack strength changes with the
location of the root. When the root is at one of the four corners
of the region, the average degree of the root is the lowest.
The number of disjoint paths from other nodes also decreases.
Therefore, the attack strength is the lowest when the root is
at any corner. When the root is at any edge of the region, the
average degree of the root is slightly higher than that of the
corner. The number of disjoint paths from other nodes also
increases a bit. As a result, we can produce slightly stronger
attack. The jump in the attack strength is observed when the
root resides at the center of the region. This is because the
number of disjoint paths from other nodes is the largest with

the root at the center. For this experiment, we set the attacker
ratio to 10%. For P = 1 the average attack strengths (and SD)
are 1.49 (and 0.50), 1.59 (and 0.49), and 1.83 (and 0.36) when
the root is at corner, edge, and center in Topology I. For P = 6
the average attack strengths (and SD) are 1.95 (and 1.03), 2.26
(and 0.85), and 3.80 (and 1.50) when the root is at corner,
edge, and center in Topology I. For P = 1 the average attack
strengths (and SD) are 2.24 (and 0.89), 2.94 (and 0.91), and
4.14 (and 0.76) when the root is at corner, edge, and center
in Topology II. For P = 10 the average attack strengths (and
SD) are 3.3 (and 2.11), 4.88 (and 1.63), and 10.21 (and 2.64)
when the root is at corner, edge, and center in Topology II.
So, the attack strength becomes 1-2 times in Topology I and
2-4 times in Topology II. The performance contrast is more
dramatic in dense topology than Topology I.

Fig. 7 illustrates the influence of different distributions of
attackers. To generate the clustered distribution, we calculate
the desired number of attackers from the attacker ratio. Then,
a node is picked up randomly and marked as an attacker with a
probability of 10%. The probability becomes 90% when there
is an attacker in that node’s neighborhood. For this experiment,
we set the attacker ratio to 10%. For P = 1, the average attack
strengths (and SD) are 1.81 (and 0.38), and 1.52 (and 0.49) for
uniform and clustered attacker distributions in Topology I. For
P = 6, the average attack strengths (and SD) are 2.48 (and
0.81) and 2.25 (and 0.80) for uniform and clustered attacker
distributions. For P = 1, the average attack strengths (and
SD) are 3.45 (and 0.88), and 2.41 (and 0.87) for uniform and
clustered attacker distributions in Topology II. For P = 10, the
average attack strengths (and SD) are 4.5 (and 1.39) and 3.70
(and 1.47) for uniform and clustered attacker distributions.
The attack becomes 1.07-1.19 times stronger in Topology I
and 0.82-1.43 times stronger in Topology II.

Fig. 8 compares performances between the CADAL and
random P -neighbor attack. In the random P -neighbor attack,
an attacker randomly selects its P neighbors and attacks them.
If the number of neighbors is less than P , then the attacker
attacks all of its neighbors. We set the attacker ratio to 10%.
The attack strengths of CADAL and random P -neighbor attack
are the same when the value of P is very high. This is because
the attacker attacks almost all the neighbors that are attacked
by the CADAL attack. When P is low, the random P -neighbor
attack does not select the most appropritate neighbors that
maximize the attack strength. As a result, it cannot produce
the strongest attack at lower P .

Fig. 9 shows the performance change with different neigh-
borhood knowledge of an attacker in CADAL. We randomly
select the desired percentage of neighbors for each attacker.
The master receives reporting paths of a percentage of the
neighbors. We vary the % of known neighbors from 10%
to 100%. The value of P is 2 for these experiments. The
attack strength linearly increases as the percentage of known
neighbors increases. This trend is the same for all three
attacker ratios and in both topologies.

Fig. 10 shows the impacts of different neighborhood radius
in CADAL. When the neighborhood radius increases, the

(a) Topology I. (b) Topology II.

Fig. 5: Attack strength for different P .

(a) Topology I. (b) Topology II.

Fig. 6: Attack strength for different root location.

(a) Topology I. (b) Topology II.

Fig. 7: Clustered and uniform attacker distribution.

(a) Topology I. (b) Topology II

Fig. 8: CADAL vs. random P -neighbor attack.
degree of each node increases, and the number of the disjoint
paths to the root increases. As a result, the larger neighborhood
radius produces stronger attacks. P is 2 for these experiments.
The neighborhood radius ranges from 50 to 150. The topology
becomes disconnected (or over crowded) when the neighbor-
hood radius is less than 50 or greater than 150. The attack
strength increases almost linearly as the neighborhood radius
gets larger in both topologies.

In summary, a dense LLN with higher node degree is more
exposed to CADAL attacks. With a small number of attackers
having P ranging from 1 to 3, a powerful attack can be
launched in LLNs if the root is located at the center.

VI. CONCLUSION

The DDoS attack is one of the most powerful and least
costly attacks. The DDoS attacks in low power lossy networks
(LLNs) are relatively new. Because of the limited battery,
storage, and computation of devices, the routing protocol has
to be simple. The simplicity of the routing protocol opens

(a) Topology I. (b) Topology II.

Fig. 9: Attack strength for different neighborhood knowledge.

(a) Topology I. (b) Topology II

Fig. 10: Attack strength for different neighborhood radius.
up opportunities for powerful DDoS attacks in LLNs. In this
work, we present a powerful and capacity-aware DDoS attack
framework called CADAL by targeting the root of an LLN.
We show that by attacking a few neighbors of the attackers the
strongest attack can be launched. CADAL outperforms random
P -neighbors attack when attackers have limited attacking
power. In the future, we will explore defense mechanisms and
DDoS attack strategies for different protocol settings of LLNs.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants CNS
1824440, CNS 1828363, CNS 1757533, CNS 1618398, CNS
1651947, and CNS 1564128.

REFERENCES

[1] US Code: Title 18,1030, “Fraud and related activity in connection with
computers, government printing office,” www.gpo.gov, 2014.

[2] R. Biswas and J. Wu, “Filter Assignment Policy Against Distributed
Denial-of-Service Attack,” in IEEE 24th International Conference on
Parallel and Distributed Systems, Dec 2018.

[3] R. Biswas, J. Wu, W. Chang, and P. Ostovari, “Optimal Filter Assign-
ment Policy Against Transit-link Distributed Denial-of-Service Attack,”
in IEEE Global Communications Conference, Dec 2019.

[4] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J.-P. Vasseur, and R. Alexander, “RPL: IPv6 routing protocol
for low-power and lossy networks,” Tech. Rep., Mar 2012.

[5] C. Karlof and D. Wagner, “Secure routing in wireless sensor networks:
Attacks and countermeasures,” in Proceedings of the First IEEE Inter-
national Workshop on Sensor Network Protocols and Applications, May
2003.

[6] L. Wallgren, S. Raza, and T. Voigt, “Routing Attacks and Countermea-
sures in the RPL-Based Internet of Things,” International Journal of
Distributed Sensor Networks, vol. 9, no. 8, Aug 2013.

[7] C. Pu, “Energy Depletion Attack Against Routing Protocol in the Inter-
net of Things,” in 2019 16th IEEE Annual Consumer Communications
& Networking Conference, Jan 2019.

[8] P. Kasinathan, C. Pastrone, M. A. Spirito, and M. Vinkovits, “Denial-of-
Service detection in 6LoWPAN based Internet of Things,” in IEEE 9th
international conference on wireless and mobile computing, networking
and communications, Oct 2013.

[9] A. Rghiout, A. Khannous, and M. Bouhorma, “Denial-of-service attacks
on 6lowpan-RPL networks: Issues and practical solutions,” Journal of
Advanced Computer Science & Technology, vol. 3, no. 2, 2014.

[10] C. Pu and T. Song, “Hatchetman attack: A denial of service attack
against routing in low power and lossy networks,” in 5th IEEE Interna-
tional Conference on Cyber Security and Cloud Computing, Jun 2018.

