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Abstract—In a denial-of-service (DoS) attack, the attacker
sends out a huge number of requests to exhaust the capacity
of a server. The victim cannot serve incoming requests and then
DoS occurs. When the attacker stops sending requests, the victim
gets back to working state. The most devastating distributed DoS
attack is performed by bots, malicious programs that reside on
the affected user computers. By using a special type of router
called filter router (FR), the victim can protect itself. A server
needs to send filters to FR for blocking attack traffic. A filter
blocks both attack and user traffic which are destined for the
victim at the FR. The victim needs to select a subset of FRs
wisely to minimize the blockage of users. The victim’s operation
is not hampered if the total incoming traffic does not exceed its
capacity. In this paper, we formulate a problem for selecting FRs
given a budget on the number of filters. The problem considers
that the victim has limited incoming bandwidth and we provide
an optimal dynamic programming solution. We conduct extensive
simulation in different settings. Our simulation results strengthen
support for our solutions.

Index Terms—distributed denial-of-service, destination-based fil-
ter, filter assignment policy, network security

I. INTRODUCTION

A denial-of-service attack (DoS attack) is a cyber-attack
in which the attacker makes a server or resource temporarily
unavailable to its users. According to the Computer Fraud and
Abuse Act, DoS attacks are considered as a federal crime.
This kind of crime penalties include years of imprisonment
[1]. The Computer Crime and Intellectual Property Section of
the US Department of Justice handles cases of DoS attacks.
Therefore, detecting DoS attacks and identifying attackers
have been an important issue in Network Forensics. Moreover,
DoS attacks are increasing day by day in both number and
size; CloudFlare [2] recently reported a 400 Gbps DoS attack
that took place at their servers. Most powerful distributed DoS
(DDoS) attacks are conducted by bots. Bots are malicious
programs residing in users’ computers. The bots are controlled
by a coordinator called master. The master commands the bots
to send a huge number of requests to the victim. As a result,
the incoming bandwidth of the victim becomes exhausted. An
attack scenario is depicted in Fig. 1.

An effective method of preventing DDoS attacks is deploy-
ing filter routers (FRs) in the network. FRs are a special types
of routers that can do two tasks: packet marking and traffic
filtering. Packet marking means probabilistically attaching the
FR’s IP address to the header of the packets it forwards. The
task of traffic filtering happens in two steps: receiving filters
from a web server and applying filters to drop some packets.
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Fig. 1: DDoS attack by bots.
A server can deploy a filter to a FR. A filter is simply a
blocking rule. A filter sent by any server is applied to packets
which are destined for it. There are several types of filters
including source-based and destination-based filters [3]. The
source-based filters block packets based on the source address
of the packet. The destination-based filters block packets based
on the destination address of the packet. The source-based
filters cannot protect when the bots spoof legitimate users’
(LU) addresses. Therefore, in this work we are considering the
destination based filters. The downside of destination-based
filter is that it also blocks LU traffic. Therefore, the victim
should deploy the destination-based filters wisely so that a
minimum number of LUs are blocked.

The complete system consists of four phases. In the first
phase, the FRs mark forwarded packets by appending their
own IP addresses. In the second phase, from the marking of
the packets, the victim constructs the traffic topology and filter.
In the third phase, the victim finds and selects some FRs to
assign the filters. This phase is important because a good filter
assignment can reduce the cost of filter deployment and the
number of blocked LUs. In the last phase, the FRs evict filters
that are not used for a long time from their storage.

In this paper, we focus on finding an optimal destination-
based filter assignment considering a limited budget on the
number of filters and limited incoming bandwidth of the
victim. We assume that the victim has already constructed
the traffic topology. We formulate a problem and propose an
optimal dynamic programming solution. We provide extensive
simulation to support our model.

The remainder of this paper is arranged as follows: Section
II presents some related works. Section III presents the system
model and attack model. Section IV presents the formal defi-
nition of the problem and our proposed dynamic programming
solution. In Section V, we present the simulation results that
strengthen support for our proposed solutions.



II. RELATED WORK

There exist many statistical methods including correlation,
entropy, covariance, divergence, cross-correlation, and infor-
mation gain to detect anomalous DDoS requests [4]. A rank
correlation-based method Rank Correlation-based Detection
(RCD) is proposed in [5]. An information theoretical approach
using Kolmogorov complexity is used for detection of DDoS
attacks in [6]. A novel DDoS detection mechanism is proposed
based on artificial neural networks in [7]. There are other
methods of detecting DDoS attack such as [8, 9].

In [10], the authors propose a DDoS defense method, called
RADAR. The RADAR uses adaptive correlation analysis on
SDN switches. The system is capable of defending against
flooding-based DDoS attacks including SYN flooding, link
flooding, and amplification attacks. In [11], the authors pro-
pose a cooperative DDoS mitigation system. A domain directs
traffic to other trusted external domains for filtering. The
filtering system distinguishes the DDoS packets and removes
them. The filtered clean traffic is then forwarded back to the
destination domain.

A four-phase DDoS mitigation system is proposed in [12].
The system is composed of FRs. Packet marking is used to
identify FRs. The victim generates and sends filters to the
upstream FRs. The FRs then send the filters to their upstream
FRs. After that the attack traffic is blocked by the upstream
FR and the FRs do not get any attack traffic. The filter remains
unused at that FR and gets evicted. Thus the filters propagate
to the effective FRs. An adaptive PFS is proposed in [13]. In
the adaptive PFS system, first the victim sends filters to the
highly capable FRs, then the filters propagate to the effective
FRs. The capability of a FR is determined by its remaining
storage, the number of connected links etc. Highly capable
FRs use a high rate of marking. The victim identifies FR’s
capability by its marking rate. However, these two systems
do not select the FRs optimally when there is a limitation on
selecting FRs.

In our previous work [3], we propose a dynamic program-
ming algorithm that can select a subset of the FRs aiming to
keep the number of blocked LUs and attack traffic minimum.
The system can select the optimal filter assignment in some
special settings. In work [14], optimal filter assignment policy
is proposed for transit-link DDoS attack. The system considers
that no attack traffic reaches the victim. The limitation of this
system is that the assigned filters may block a large amount of
LU traffic in order to block a small amount of attack traffic.
Besides, the system does not consider the limited incoming
bandwidth of the victim.

III. SYSTEM MODEL

A. Network Model

Our system is composed of legacy routers (LRs), filter
routers (FRs), network address translators (NATs), attackers,
legitimate users (LUs), and a victim (v). In reality, there
are multiple victims in a network. We consider each victim
defends separately and does not coordinate/share information.
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Fig. 2: System model.
There are two reasons why a victim does not coordinate with
another. Firstly, victims can be owned by different entities and
they might not be willing to share their users’ information
including IP address, location, and traffic rate with other enti-
ties’ victims. Secondly, the attacker can share fake information
with the victim to make wrong decisions. We consider that all
the users and attackers are connected to the FR or LR through
NATs. Therefore, the victim cannot get the IP address of users
but instead the IP address of the NAT.

Fig. 2 shows the complete system model. In the figure, we
can see that two attackers are connected to FR1 through a
NAT. The traffic travels FR1 → LR1 → FR4 → v. We ignore
the LR and the path becomes FR1 → FR4 → v. Similarly,
the traffic that comes to FR2 and FR3 travels LR2 and
FR4. After ignoring all the NATs and LRs, we get the traffic
topology (right figure). FRs are a special type of routers that
is capable of doing two additional jobs: packet marking and
traffic filtering. Packet marking means appending the router IP
address to the header of a forwarded packet. Traffic filtering
means blocking some traffic according to filters.

The complete system is composed of four phases. In phase
1, the FRs do packet marking. FRs append the IP addresses
probabilistically. The probability of marking is adjusted to
maintain a good balance of efficiency and router overhead.
If the marking probability is very high, then the victim can
construct the topology very quickly (efficient). At the same
time, the router computation overhead becomes high. If the
marking probability is very low, then the victim needs longer
time to construct the topology but the router overhead is low.

In phase 2, the victim collects the marking from the
packets and constructs the traffic topology. For example, if
the victim gets a packet that is marked by FR1 and FR4,
respectively, then it assumes that FR1 remains before FR4

on the path from the source of the packet. This way the
victim can find out all the relative positions of FRs on the
path from each source to it. As the LRs do not mark packets,
they are not observed by the victim. By combining all the
paths, it generates the traffic topology. The traffic topology
can be a Directed Acyclic Graph (DAG). For simplicity, we
are considering tree topology instead of a DAG. Using the
methods described in [8, 9, 15–17] the victim distinguishes
the attacker. We color the attackers as black and LUs as
white. A black (or white) FR only forwards messages from
attackers (or LUs). A gray FR forwards packets from both
LUs and attackers. After identifying the attackers, the victim
construct a filter. A filter is basically simple traffic blocking
rule. For example, the victim constructs a filter that says “If
the destination is v, then discard the packet”.



In phase 3, the victim selects some of the FRs to send the
filter. As the filter blocks the attack traffic based on destination,
some of the LUs get blocked. Therefore, the victim needs
to select FRs wisely so that the number of blocked LUs is
minimum. The incoming bandwidth of a victim is limited.
Therefore, the filter assignment should not yield a higher
amount of traffic than the incoming bandwidth. There is also
a cost for deploying a filter on a FR. If the owner of the
FR is different than the victim, then it charges some money
for deploying a filter. We consider the victim has a limited
budget on the number of filters. In this paper, we focus on
finding a filter assignment considering a limited budget (K)
on the number of filters and limited incoming bandwidth of
victim (B) that blocks the minimum amount of LU traffic.

In phase 4, the FRs remove unused filters from their storage.
A FR can receive multiple filters from different victims. The
storage and computation capacity is limited. Therefore, a FR
removes the filter which is unused for a long period.

We assume that the data rates of LUs are identical. For
simplicity, we consider the number of LUs is equal to the
legitimate traffic.

B. Attack Model

The attackers are usually user devices with malicious pro-
grams that generate traffic destined for a target. The programs
are controlled by a remote coordinator called master. These
programs are called bots. The bots ask for commands from
the master and according to the command it continues to send
requests to the victim. The network of bots, called Botnet,
is an overlay network. We assume the data rates of bots are
identical. Therefore, the amount of traffic is proportional to
the number of bots. For simplicity, we consider the number of
bots is equal to the attack traffic.

IV. FILTER ASSIGNMENT POLICY

In this section, we formulate a problem of assigning filters
to the FRs so that the blocked user traffic is minimum.

A. Find a filter assignment so that the blocked user traffic
is minimal by ensuring that the total incoming traffic at the
victim is less than its capacity.

The problem can be expressed as the following:
minimize Ub(g)

subject to |g| ≤ K, ∀g ⊂ G, I(v) ≤ B
(1)

Here, I(v) denotes the incoming traffic at victim v. The
problem can be solved using dynamic programming. Next,
we discuss the proposed solution of this problem.

B. A Dynamic Programming Solution

Let us assume that n is the FR ID, k is the number of
filters, and b is the amount of yielded traffic. T (n) is the
subtree rooted by node n. We define the problem P (n, k, b)
as following:
• P (n, k, b) : Find and return the minimum number of

possible blocked LUs using k filters in T (n) by yielding
b amount of traffic to the downstream node.
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Fig. 3: Solution example.
P (n, k, b) is recursive. P (n, k, b) depends on

P (ci(n), ki, bi) where ci(n) is the i th child of n, ki is
the filter assigned to T (ci(n)), and bi is the traffic yielded by
T (ci(n)). There are two options to assign values of ki. Firstly,
k filters are divided among its children without assigning a
filter to n itself. Secondly, k − 1 filters are divided among its
children and a filter is assigned to n itself.

According to option I,
∑∆

i=1 ki = k and TL[n]+
∑∆

i=1 bi =
b. TL[n] is the traffic load of the users and attackers attached
to node n. The minimum blocked LU P (n, k, b) can be
represented as following:

P (n, k, b) = min
∀ki,bi

{
∆∑
i=1

P (ci, ki, bi)

}
(2)

According to the option II,
∑∆

i=1 ki = k − 1. The filter
assigned to n blocks all traffic. Therefore, the yielded traffic
amount is 0 for any value of bi. This option is applicable only
when b = 0. For b > 0, we choose ki and bi according to
the first option. The minimum blocked LU P (n, k, b) can be
represented as following:

P (n, k, b) =
∑

n′∈T (n)

L[n′] (3)

We take the minimum quantity from the two options.

Let us consider a N node tree having maximum node degree
∆. The nodes are labeled in a bottom-up and then left-right
order. We define A as a N × K × B array which contains
the minimum number of blocked LUs in the subtree rooted by
every node, budget, and yielded traffic. For example, A[n, k, b]
contains the minimum number of blocked LUs in T (n) of
budget k by yielding b traffic.

We define TL as a 1×N array. TL contains the total traffic
loads of LUs and attackers attached to every node.

We define R1 as an N×K×B×(∆+1) array that contains
the number of filters assigned to every node and its subtrees,
budget, and yielded traffic. For example, R1[n, k, b,∆ + 1],
R1[n, k, b, 0], and R1[n, k, b, 1] are the number of filters to
the first subtree, the second subtree, and node n of subtree
T (n) for budget k by yielding b traffic.

We also define R2 as an N×K×B×∆ array which contains
the yielded traffic at the minimum number of blocked LUs of
its subtrees for every node, budget, and yielded traffic. The
complete algorithm is shown in Alg. 1.
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Fig. 4: A, R1, and R2 for leaf nodes.
C. Example

Let us consider the tree in Fig. 3(a). We first simplify the
tree. There is a node (node 5) without a fork. A node without
a fork refers to the node having only one child. We need to
remove node 5 first. Then we make node 3 the child of node
6. Finding out all non-forked nodes and deleting them takes
O(N) time. Therefore, the simplification takes O(N) time.

Next, we calculate the A, R1, and R2 for the leaf nodes. We
use K = 3 and B = 26 for the calculation. There are three
leaf nodes 1, 2, and 3. We need to calculate the values of
A[n, k, b], R1[n, k, b], and R2[n, k, b] for all possible values.
For node 1, there are two possible values of b (0 and 13). If
we want to yield 0 traffic from T (1), we need at least a filter
at node 1. The filter will block all traffic from T (1). The filter
blocks 2 LUs. Therefore, for k > 0 and b = 0 the number of
blocked LUs A[1, k, 0] = 2. As we are assigning all the filters
to node 1 and blocking all traffic, R1[1, k, 0] = [0, 0, k] , and
R2[1, k, 0] = [0, 0]. Without any filter (k = 0) we cannot block
any traffic in T (1). Therefore, A[1, 0, 0] = ∞, R1[1, 0, 0] =
[−] , and R2[1, 0, 0] = [−] ([−] means no valid assignment).

To yield 13 traffic from T (1), no filters is needed at node
1. Therefore, for k = 0 and b = 13 the number of blocked
LUs A[1, 0, 13] = 0 because no LU traffic is blocked. No
filter is assigned to node 1, left, and right subtrees. Therefore,
R1[1, 0, 13] = [0, 0, 0] , and R2[1, 0, 13] = [0, 0]. For k > 0,
we are assigning all the k filters to node 1 and cannot yield
13 traffic. Therefore, A[1, k, 13] = ∞, R1[1, k, 13] = [−] ,
and R2[1, k, 13] = [−]. Similarly, we calculate the rest of the
values for leaf nodes (see Fig. 4).

Next, we calculate the A, R1, and R2 for node 4. First,
we find out the possible values of b. Values of b in left and
right subtrees are {0, 13} and {0, 8}. Combining them, we
get {0, 8, 13, 21}. There are some attackers with 5 traffic load
attached to node 4. This traffic will be added to the traffic
yielded from subtree if no filter is assigned to node 4. In
this way, possible values of b are {5, 13, 18, 26}. If a filter
is assigned to node 4 then b is 0. Then, all possible values of
b for node 4 are {0, 5, 13, 18, 26}.

For k = 0 and b < 26, without any filter, any portion of
the traffic is not possible to block. Therefore, A[4, 0, b] =∞,
R1[4, 0, b] = [−] , and R2[4, 0, b] = [−]. If b = 26, then we
are not blocking any traffic. Without any filter that is possible
and there is no blocked LU. Therefore, A[4, 0, 26] = 0,
R1[4, 0, 26] = [0, 0, 0], and R2[4, 0, 26] = [0, 0].

For k = 1 and b = 0, we have only option II. Therefore, a
filter is assigned to node 4 and we block all traffic including 10
LUs. After assigning a filter to 4, there are no remaining filter.
So, T (1) and T (2) are assigned 0 filters (k1 = 0, k2 = 0).
Next, we need to find values of b1 and b2. Any value of b1

and b2 will work because all traffic will be blocked at node
4. We choose b1 = 13 and b2 = 8. Therefore, A[4, 1, 0] = 10,
R1[4, 1, 0] = [0, 0, 1], and R2[4, 1, 0] = [13, 8].

For k = 1 and b = 5, we have only option I. Therefore, no
filter is assigned to node 4. We have two choices for k1 and
k2. Choice (1): k1 = 0 and k2 = 1. Node 4 is attached to
attackers with 5 traffic loads. So, the subtrees need to yield
5 − 5 = 0 traffic. We have only one choice for b1 and b2

(b1 = 0 and b2 = 0). The minimum blocked LU in T (1)
using k1 = 0 and yielding b1 = 0 traffic is A[1, 0, 0] = ∞.
The minimum blocked LU in T (2) using k2 = 1 and yielding
b2 = 0 traffic is A[2, 1, 0] = 0. According to this choice, the
number of total blocked LU is ∞.

Choice (2): k1 = 1 and k2 = 0. The subtrees need to yield
5 − 5 = 0 traffic and we have only one choice for b1 and
b2 (b1 = 0 and b2 = 0). The minimum blocked LU in T (1)
using k1 = 1 and yielding b1 = 0 traffic is A[1, 1, 0] = 2.
The minimum blocked LU in T (2) using k2 = 0 and yielding
b2 = 0 traffic is A[2, 0, 0] =∞. According to this choice, the
number of total blocked LU is ∞.

We take the minimum of the two choices which is ∞.
Therefore, the number of total blocked LU is A[4, 1, 5] =∞.
So, R1[4, 1, 5] and R2[4, 1, 5] are invalid.

For k = 1 and b = 13, we also have only option I. Similarly,
we have two choices for k1 and k2.

Choice (1): k1 = 0 and k2 = 1. Node 4 is attached to
attackers with 5 traffic loads. So, the subtrees need to yield
13 − 5 = 8 traffic. We have only one choice for b1 and b2

(b1 = 0 and b2 = 8). The minimum blocked LU in T (1)
using k1 = 0 and yielding b1 = 0 traffic is A[1, 0, 0] = ∞.
The minimum blocked LU in T (2) using k2 = 1 and yielding
b2 = 8 traffic is A[2, 1, 8] =∞. According to this choice, the
number of total blocked LU is ∞.

Choice (2): k1 = 1 and k2 = 0. The subtrees need to yield
13 − 5 = 8 traffic and we have only one choice for b1 and
b2 (b1 = 0 and b2 = 8). The minimum blocked LU in T (1)
using k1 = 1 and yielding b1 = 0 traffic is A[1, 1, 0] = 2.
The minimum blocked LU in T (2) using k2 = 0 and yielding
b2 = 8 traffic is A[2, 0, 0] = 0. According to this choice, the
number of total blocked LU is 2.

We take the minimum of the two choices which is 2.
Therefore, the number of total blocked LU is A[4, 1, 13] = 2.
So, R1[4, 1, 5] is [1, 0, 0] and R2[4, 1, 5] is [0, 8].

Similarly, we calculate the remaining entries of A, R1,
and R2. Fig. 5 shows the complete values of A, R1, and
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Fig. 5: A, R1, and R2 for nodes 4 and 6.

Algorithm 1 DP Blocking Strategy
Input: The number of filters K, bandwidth limit B, and topology tree T .
Output: A set of nodes in T .

1: Procedure: BLOCK-DP(K,B, T )
2: N ← number of nodes in T
3: for every leaf node n do
4: Initialize TL[n].
5: for k = 0 to K do
6: for b = 0 to B do
7: Initialize A[n, k, b], R1[n, k, b], and R2[n, k, b]

8: CALC(N,K,B)
9: return ASSIGNMENT(R1, R2, N,K,B)

Algorithm 2 Calculate A, R1, and R2

1: Procedure: CALC(N,K,B)
2: for n = 1 to N do
3: for k = 0 to K do
4: for b = 0 to B do
5: min←=∞, map← ∅
6: for ∀ki, bi :

∑∆
i=1 ki = k

∑∆
i=1 bi = b− TL[n] do

7: p←
∑∆

i=1 A[ci(n), ki, bi]
8: key ← [k1, k2, ..., k∆, 0, b1, b2, ..., b∆]
9: PUT(map, key, p)

10: for ∀ki, bi :
∑∆

i=1 ki = k − 1 do
11: p←

∑
n′∈T (n) L[n′]

12: key ← [k1, k2, ..., k∆, 1, b1, b2, ..., b∆]
13: PUT(map, key, p)
14: A1[i, j, b]← MIN(map)
15: R1[i, j, b], R2[i, j, b]← ARGMIN(map)

R2 for node 4 and 6. As B is 26, we do not need to
consider b > 26. All possible values of b for node 6 are
{0, 10, 14, 15, 19, 23, 27, 28, 32, 36, 40}. The highest possible
value of b <= 26 is 23. That is why we calculate up to 23
yielded traffic for node 6.

D. Assignment Set Formulation

We find the filter assignment set for K = 3 and B = 26. We
cannot get any assignment that yields 26 traffic. The highest
amount of traffic that does not exhaust the capacity of the
victim is 23. R1[6, 3, 23] = [2, 1, 0], which means T (4) and
T (3) is assigned 2 and 1 filters, respectively. R2[6, 3, 23] =
[13, 0] means T (4) and T (3) are yielding 13 and 0 traffics,
respectively. Now, we look up R1[4, 2, 13] = [2, 0, 0], which
means T (1) is assigned to 2 filters. R2[2, 2, 13] = [0, 8] means
T (1) and T (2) are yielding 0 and 13 traffic, respectively.
Then, we look up R1[1, 2, 0] = [0, 0, 2], which means node

Algorithm 3 Find Filter Assignment
1: Procedure: ASSIGNMENT(R1, R2, N,K,B)
2: e.n← N, e.k ← K, e.b← B, g ← ∅, and Q← ∅.
3: ENQUEUE(Q, e).
4: while Q 6= ∅ do
5: e← DEQUEUE(Q)
6: if R1[e.n, e.k, e.b,∆ + 1] 6= 0 then
7: g ← g ∪ {e.n}
8: else
9: for i = 1 to ∆ do

10: e′.n← ci(e.n)
11: e′.k ← R1[e.n, e.k, e.b, i]
12: e′.b← R2[e.i, e.j, e.b, i]
13: ENQUEUE(Q, e′)
14: return g

1 is assigned to 2 filters. We got one of our desired nodes
and the assignment set is {1}. Now, we look up the other
branch of node 6. R1[3, 1, 0] = [0, 0, 1], which means node 3
is assigned to 1 filter. Therefore, our assignment set is {1, 3}.
The algorithm is shown in Alg. 3.

Theorem 1. Alg. 1 provides an optimal filter assignment.

Proof. Alg. 1 first calculates the assignment and the number of
blocked LUs for base cases. Then it uses a dynamic program-
ming bottom-up strategy to search the optimal assignment. We
need to show that for base cases the assignment is optimal.
For a one-node tree, K = 0, and B = 0, there is no way to
block all traffic and this option is invalid. For K = 0 and B
is the maximum, there is no way to block any traffic and this
option is valid as the yielded traffic will be maximum. No LU
traffic is blocked and the optimal number of blocked LUs is 0.
For K ≥ 1 and B = 0, there is only one choice for selecting
FRs, which is that node. If that node is selected, the optimal
number of blocked LUs is the number of LUs attached to it.
For K ≥ 1 and B > 0, the filter blocks all traffic and yielded
traffic is 0. These options are also invalid. Therefore, we can
conclude that all base cases are optimal so that Alg. 1 provides
an optimal filter assignment.

Theorem 2. Complexity and space needed for Alg. 1 are
O(N(KB)(∆−1)) and O(NKB∆).

Proof. Let us assume a topology that is a N node tree with
maximum node degree ∆. The victim has budget of K and



Fig. 6: Topology I (randomly generated).

TABLE I: Topology Parameters

Topology I Topology II
Number of nodes 100 400
Internal user probability 0.1 0.1
Attacker ratio 0.25-0.75 0.25-0.75
Max Node Degree 3 20

the maximum bandwidth capacity of the victim is B. To find
the partitions k1, k2, ..., k∆, we need O(K(∆−1)) time if we
use the naive nested iteration approach. Similarly, to find the
optimal yielded traffic b1, b2, ..., b∆, we also need O(B(∆−1))
time. Therefore, the complexity of Alg. 1 is O(N(KB)(∆−1)).

For A, R1, and R2 we need NKB, NKB(∆ + 1), and
NKB∆ space. For TL we need N space. Therefore, total
space needed is O(NKB∆).

V. SIMULATION

A. Experimental Settings
We use our custom built Java simulator for all the ex-

periments. The reason for using a custom built simulator is
its scalability. Besides, we do not need to consider packet
loss or real transmission issues. We only need to count the
number of LUs, attackers, and filters. The network topologies
we considered contain 10− 500 routers. NS3 or other similar
simulators would take a very long time.

We use the randomly generated the topologies. We control
the number of nodes, depth, and maximum node degree of
randomly generated trees. At first we generate the desired
number of nodes and keep them in a node pool. We pick a node
from the pool and add to a randomly selected eligible node in
the tree. The first node becomes the root. Initially, all nodes
are eligible for adding a child node. The nodes which have
a node degree equal to the desired node degree are marked
as ineligible. The nodes which are at the desired depth are
also marked ineligible. We keep node degree within [0 − 3],
internal node user probability 0.1 and maximum depth of 8.
Topology I is a randomly generated tree having 100 nodes
and maximum node degree of 3. Topology II is taken from
Stanford University AS-733 dataset [18]. We run a breadth-
first search to generate the topology. The dataset contains
6, 474 nodes and we consider 400 nodes for topology II. The
details are shown in Table I. Topology I is shown in Fig 6.
Due to the higher number of nodes, Topology II is not shown.

We control the number of LUs and attackers. We add the
leaf nodes and 10% of internal nodes (randomly chosen) to the

(a) Effect of B (Topology I). (b) Effect of K (Topology I).

(c) Effect of topology size. (d) Effect of B (Topology II).

(e) Effect of K (Topology II). (f) Comparison with an existing work.

Fig. 7: Simulation results.
pool. We pick randomly a node from the pool and deploy an
LU and/or an attacker. The process continues until the desired
number of LUs and attackers is reached.

We measure the performance of our proposed solution in
terms of blocked LU traffic. We vary the number of filters and
bandwidth limit of the victim for the two topologies and ob-
serve performance changes. We also observe the performance
by changing the size of the topology. All the measurements
are average of 100 rounds of simulation.

B. Simulation Results

In our proposed model, we have two parameters for the filter
assignment: the number of filters (K) and victim’s bandwidth
(B). First, we change these parameters and observe the effect
on the number of blocked LUs. We use both topologies for
these experiments. We considered that each leaf node has one
or more LUs. Every LU and attacker has an identical data rate.

Fig. 7(a) shows the number of blocked LUs by the victim’s
bandwidth. We keep the number of filters at 10. We vary
the victim’s bandwidth from 0 to 40. The total number of
attackers and LUs remains the same. Therefore, if the number
of attackers is large, then the number of LUs is small. The
highest number of blocked LUs is with 25% attackers, the
lowest is 75%, and 50% is in between for all bandwidth.
The higher the victim’s bandwidth, the more the users can get
to it. As a result, a higher number of bandwidth produces a
lower number of blocked LUs. For 25% attackers, the average
total number of LUs is 40 with a variance of 3.4. If the



victim’s bandwidth is 40, the number of blocked LUs is 3.4.
Therefore, the blocked LUs are 8%. For 50% attackers, the
total number of LUs is 27.36 with a variance of 3.86. If the
victim’s bandwidth is greater than 15, the number of blocked
LUs is 3.8. Therefore, the blocked LUs are 13%. For 75%
attackers, the total number of LUs is 14.89 with a variance of
2.33. If the victim’s bandwidth is greater than 15 the number
of blocked LUs is 4.3. Therefore, the blocked LUs are 34%.
We observe similar behavior for Topology II (see Fig. 7(d)).
We limit the number of users in this experiment. We limit the
number of attackers and LUs to 100. The amount of blocked
LUs is lower in topology II.

Fig. 7(b) shows the number of blocked LUs by the number
of filters. We keep the victim’s bandwidth at 40. We vary
the number of filters from 1 to 50. Similarly, the highest
number of blocked LUs is with 25% attackers, the lowest
is 75%, and 50% is in between for all numbers of filters.
The higher the number of filters, the more options of placing
filters. As a result, a higher number of filters produces a lower
number of blocked LUs. After a certain number of filters, the
number of blocked LUs does not reduce. For 25% attackers,
the total number of blocked LUs reduces from 40.5 to 16.42
during K = [1, 10]. After that the number of blocked LUs
remains almost constant. For 50% attackers, the total number
of blocked LUs reduces from 26.4 to 3.36 during K = [1, 20].
After that the number of blocked LUs remains almost constant.
For 25% attackers, the total number of blocked LUs reduces
from 13.94 to 0.0 during K = [1, 25]. After that the number of
blocked LUs remains almost constant. We also observe similar
behavior for Topology II (see Fig. 7(e)). We also limit the
number of attackers and LUs to 100. The amount of blocked
LUs is also lower in topology II. The number of filters after
which the number of blocked LUs becomes constant is little
different than topology I.

Fig. 7(c) shows the number of blocked LUs by the number
of nodes. We keep the victim’s bandwidth at 40 and the
number of filters at 20. We vary the number of nodes from 50
to 200. Similarly, the highest number of blocked LUs is with
25% attackers, the lowest is 75%, and 50% is in between for
all numbers of nodes. The higher the number of nodes, the
higher the number of LU and attackers. As a result, a larger
topology produces a higher number of blocked LUs.

Fig. 7(f) shows the number of blocked LUs by the number
of filters of our proposed model and an existing model. The
existing model is one of our previous work [3]. In the existing
model, we consider that no attack traffic can reach the victim.
In this paper, we relax that constraint and observe a good
improvement. In this experiment, we keep the bandwidth of
the victim equal to the total LU traffic. We can observe that
the blocked LUs in the existing model is higher than the
proposed mode. Therefore, we can conclude that by allowing
some attack traffic the victim can serve more LUs.

VI. CONCLUSION

The DDoS attack is a powerful and inexpensive attack that
makes a service unavailable to users. The victim alone cannot

defend against DDoS attacks. With the help of a special type
of routers, the victim can defend against DDoS attacks. We
propose an optimal filter assignment policy that focuses on
minimizing blockage of legitimate users with a limited cost of
filter deployment and incoming bandwidth of the victim. The
filter routers can work in a network with legacy routers and
legacy router can be upgraded to FRs. One of the important
issues is that the blocking of traffic happens according to the
victim’s command. An internet service provider (ISP) provides
some control of the packets to the server. By deploying FRs,
an ISP can earn money by accepting filters. Therefore, both
parties gets benefit from the model.
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