
Optimal Filter Assignment Policy Against
Transit-link Distributed Denial-of-Service Attack

Rajorshi Biswas1, Jie Wu1, Wei Chang2, and Pouya Ostovari 3

1Department of Computer and Information Sciences, Temple University
2Department of Computer Science, Saint Joseph’s University

3 Charles W. Davidson College of Engineering, San Jose State University

Abstract—A transit-link distributed denial-of-service (DDoS)
attack is a special attack in which the attacker sends out a huge
number of requests to exhaust the capacity of a link on the
path the traffic comes to a server. As a result, denial-of-service
and degradation of Quality-of-Service (QoS) occurs. Because the
attack traffic does not go to the victim, protecting the legitimate
traffic alone is hard for the victim. With the help of a special
type of router called filter router (FR), the victim can protect
the legitimate traffic. A FR can receive filter from servers and
apply the filter to block a link incident to it. By analyzing traffic
rates and paths, the victim can identify some links that may
be congested. The victim needs to select some of these possible
congested links and send a filter to the corresponding FR so that
the legitimate traffic follows non-congested paths. In this paper,
we formulate an optimization problem for selecting the minimum
number of possible congested links so that the legitimate traffic
goes through a non-congested path. We consider the scenario
where every user has at least one non-congested shortest path.
We transform the problem to the vertex separation problem to
find the links to block. We build our own Java multi-threaded
simulator and conduct extensive simulations.

Index Terms—Botnet, DDoS defence, Quality-of-Service, filter
router, link flooding attack, network security, transit-link DDoS.

I. INTRODUCTION

The growing amount of distributed denial-of-service
(DDoS) attacks is a threat to critical services on the Internet.
The primary objective of a DDoS attack is to generate a lot of
packets from different workers to exhaust incoming/outgoing
bandwidth or resources used by the victim. A coordinator
would send commands to workers who continue to send
requests to the target. The workers are known as bots and the
network of workers is known as the botnet. Bots are usually
computers that are infected with malicious programs. Because
of the huge amount of traffic or service requests, a machine
or network resource becomes temporarily unavailable to its
users.

DDoS attacks have evolved due to a decrease in the cost
of conducting an attack. The transit-link DDoS attack using
botnet is one of the most challenging DDoS attacks. The
strategy and goal are slightly different from the traditional
DDoS attack. In the traditional DDoS attack, the bots generate
packets destined to the victim. In a transit-link DDoS attack,
the bots generate traffic that is not destined to the victim
but the packets congest at least one of the links on the
paths from the legitimate users to the victim. Because of the
congested links, the legitimate traffic suffers from packet drop
and delay. The transit-link DDoS can be so devastating that it
can disconnect a server from the Internet.

v

NAT3

NAT2

NAT1 r5

R6
r4

v'2v 1

r3

r1 r2

r6

Attack traffic

No traffic

Users traffic

User

Filter router

False victim

Victim

Bot
Congested

Fig. 1: Transit-link DDoS attack by bots.

Fig. 1 shows the scenario of a transit-link DDoS attack.
The bots attached to NAT1 and NAT3 generate huge traffic
towards the false victim server v′2 and v′1, respectively. False
victim servers are used to receive the attack packets from
bots. The attack packets congest link r3↔r4. The legitimate
packets from the user attached to NAT2 travel the shortest
path r3↔r4↔r5 and face delay, packet drop, and DoS. The
legitimate traffic from users attached to NAT1 and NAT3 do
not encounter any congested links and the victim observes
good traffic rate from them. Because of low data rates from
users attached to NAT3, the victim assumes that either any or
both of the r3 ↔ r4 and r4 ↔ r5 links are congested.

The victim can disable a link for the packets destined to him
by sending a filter to the corresponding filter router (FR). The
FR and filter-based system are not new and well studied in [1,
2]. Assigning a filter to a FR has a cost. For the victim, it costs
a lot to disable all the possible congested links. For example, if
the victim and FR belong to different ISP, then ISP of FR can
charge money for accepting filters from the victim. Besides,
there is no need to disable all the possible congested links to
redirect the legitimate traffic through non congested paths. In
this paper, we focus on directing all legitimate traffic through
non-congested paths with a minimum number of filters.

In this paper, we formulate a problem for directing legiti-
mate traffic through the shortest non-congested paths with a
minimum number of filters/blockage. We transform the prob-
lem into a vertex separator problem and propose an optimal
solution. We provide extensive simulation with synthetic and
real topology and compare it with the existing approaches to
validate our model.

The remainder of this paper is as follows: Section II presents
some related works. In Section III, we present the system
model for preventing transit-link DDoS attacks. In Section IV
and V, we formulate a problem in a special scenario where
there is a non-congested shortest path from every user, and we
provide a solution. In Section VI, we present the simulation
results to support our model.

II. RELATED WORK

There are many multi-path routing mechanisms that helps
mitigating congestion, including [3, 4]. These schemes do not
give priority to legitimate traffic and the destination machine
does not have any control over it. There are several methods
that employ routers to identify attack traffic and block them.
The SPIFFY [5] logically increases link capacity when it
detects congestion. After the capacity increases, the attacker
may increase the data rate of each bot to keep the cost constant
and be identified. The ColDef [6] enables routers to distinguish
low-rate attack flows from legitimate flows. In this mechanism,
the domains which are uncontaminated by botnet help route
the legitimate traffic. In [7], the authors propose PUSHBACK,
a router functionality based mechanism which enables each
router to detect and preferentially drop packets that likely
belong to an attacker. The upstream routers are also notified of
the drop event so that they can use the resources for legitimate
traffic. In [8], the authors propose a router subsystem called
FLoc (Flow Localization) that provides differential bandwidth
guarantee to legitimate traffic at congested links. The FLoc
can distinguish between the traffic from a bot-contaminated
domain and that from an uncontaminated one.

In [9], the authors propose a scheme which mitigates transit-
link DDoS by using some BGP rules in BGP routers. When
a link congestion is detected, the BGP router advertises its
neighbors in such a way that the congested link is avoided.
When a BGP router detects congestion, it creates a false path
by appending its own address and advertises the false path.
Other BGP routers from different autonomous systems find
that the path has a loop and avoid it.

We discussed two types of existing defense systems: (1)
attack packet/flow detection at a router followed by packet
drop, rate control, and redirection, and (2) identification of
congested links at a router or controller and avoiding the link.
The first type increases router computation overhead and the
false positive creates great loss to the victims. Besides, bots
are smart enough to create traffic similar to users and are
unidentifiable using statistical techniques. For the second type,
the identification of the congested link for a victim far from the
congested link is tough without additional access. The victim
can distinguish between the attacker and legitimate traffic.
Therefore, a defense system in which routing is controlled
by the victim is necessary.

The most related work preventing DDoS attacks is the
probabilistic filter scheduling (PFS) system [10]. The victim
generates filters and sends them to the upstream FRs. The
FRs send the filters to its upstream FRs and thus the filters
propagate to the effective FRs. An adaptive version of PFS is
proposed in [11]. The system directly sends filters to the high
capable FRs first, then the filters propagate to the effective
FRs. However, these two systems cannot optimally select the
FRs when there is a limitation on selecting FRs. In [12],
multiple filter assignment policies are presented considering
a limited budget on filters. These works are not applicable for
transit-link DDoS protection.

a

ic

b

d

g

e

h

f

jv

u3

u2

u1

Possible congested link
(flow)

Non congested link (flow)

Regular link (no flow)

End user/victim

a1

v 1

a2

v 2

Attack traffic Flow

Fig. 2: System model.

III. SYSTEM MODEL

A. Network Model

Our network is composed of network address translators
(NATs), filter routers (FRs), bots, users, and a victim. We
assume that all the users are connected to FRs through NAT.
We also assume that there is at least one non-congested path
from every user to the victim.

The FRs are a special kind of router capable of two
functions. Firstly, they can mark packets that are used to
construct traffic topology for the victim. Secondly, they can
receive filters from the victim and apply the filters to block
a link. A filter is a special instruction to a FR to block an
incident link. When the victim v sends a filter to a FR, any
packet destined to the v will be affected by the filter. For
example, in Fig. 2, assume a filter “block link h↔ d” is sent
to a FR h by v. The FR h may forward an incoming packet
through link h↔ d if the destination is not v. Therefore, the
attack traffic from a1 heading to the false victim v′1 is not
blocked. If the packet is destined to v, then the FR will never
forward the packet through the link h ↔ d. FR h will not
forward user traffic from u2 through h↔ d.

Sometimes an attacker can impersonate v and send filter to
FRs but it is identifiable using a simple handshaking protocol.
For example, an attacker may send a wrong filter by sending
a filter request message as the victim. When a filter request
comes to a victim, it will ask the sender whether it has sent the
filter or not. The attacker will not get the verification message
and will not succeed in the filter spoofing attack.

We assume that the victim knows the network topology. The
topology and traffic topology (the way the traffic comes to the
victim) can be obtained from packet marking. From the packet
arrival rate, the victim can identify the users that are suffering
from congestion. It is hard for the victim to know which links
are congested using the data rate of users. For example, in Fig.
2, the attackers congest the link d↔ h. As a result, traffic from
u2 and u3 suffer from congestion. The victim v observes that
data rates from u2 and u3 are below the regular data rate.
Therefore, one or multiple links on the path a↔d↔h↔j and
a↔d↔h↔f may be congested. The victim also observes that
the data rate from u1 is good. Therefore, none of the links on
a↔d↔e↔i are congested. With this observation, the victim
concludes that d↔ h, h↔ j, or h↔ f links have possibility
to be congested.

After finding the possible congested links, the victim wants
his incoming traffic to avoid the possible congested links. A
trivial solution is to block all the possible congested links. For

example, if v wants to disable link d ↔ h, it would send a
filter “block d ↔ h” to FR h. Sending a filter to FR has a
cost. If the victim and FR belong to different ISP, then ISP
of FR charges money for accepting filters from the victim.
There are too many FR routers in the network, and the victim
wants to reduce the filtering cost. Moreover, there is no need
to block all of the possible congested links. For example, if
v blocks h ↔ j and f ↔ h, then all legitimate traffic will
follow non-congested paths. Therefore, blocking d ↔ h is
unnecessary. The victim wants the legitimate traffic to follow
the non-congested path by blocking a minimum number of
links by spending the minimum amount of resources. The
victim can run a centralized algorithm to find the minimum
amount of required blocking.

The attack traffic continues to follow the same path because
the filters do not affect any packet that is not destined to
the victim. Therefore, the system does not reduce network
congestion by blocking attack traffic. It only forces the le-
gitimate traffic to follow a non-congested path. Whenever we
mention blocking a link, we refer to blocking only the victim’s
legitimate traffic through that link.

B. Attack Model

The attacker knows the topology of the network but does
not know the traffic topology. The attacker knows the location
of the victim and users. By analyzing the location of the victim
and users, the attacker selects one or multiple links as a target.
Target links are selected based on two principles. Firstly, the
target links should be used by a reasonable number of users.
Secondly, the target links should be reachable by the flow
from bots to the false victims. Then, based on the location of
the target link, the attacker selects false victims and bots to
generate traffic. The selection of a pair < bot, false victim >
is done in such a way that the traffic from the bot to the false
victim passes through one or multiple targeted links.

In Fig. 2, after analyzing the topology, location of the
victim, and the users, the attacker finds that link a↔ d carries
the most legitimate traffic but cannot be reached by the false
victim and bots. The second most important link is d ↔ h
which carries two legitimate flows and is reachable by bots
and the false victims. Therefore, the attacker starts < a1, v

′
1 >

and < a2, v
′
2 > flows by sending commands to a1 and a2.

< a1, v
′
1 > and < a2, v

′
2 > pass through paths g↔h↔d↔c

and e↔d↔h↔f . The traffic created by a bot cannot congest
a link so that c ↔ d, e ↔ d, g ↔ h, and f ↔ h are not
congested. Link d↔ h becomes congested because both flows
pass through it. As a result, legitimate traffic from u2 and u3

suffer from low data rates.

IV. PROBLEM DEFINITION

In this section, we formulate the problem for finding a
minimum number of links to block.

Problem: Find the minimum number of filter assignments so
that all legitimate traffics follow non-congested shortest paths.

In this problem, we assume that, from every user, there is
at least one non-congested shortest path. Let, P s

u be the set

g h

fd e

V ca b
2

7

u1

U2

(a) Original topology G.

3

1 2

4 5

6 7

8 9 10

11

V

u1

U2

(b) Line graph G′.

3

1 2

4 5

6 7

8 9 10

11

V

u2

u1

(c) G′ with flow.

3

8

V

6 7

11

(d) G′(black nodes).

3

8

V

u

6 7

11

(e) Final graph G′′

Fig. 3: An example.
of the shortest paths from a user u to victim v. Lc is the set
of possible congested links. Some of the paths in P s

u contain
possible congested links and are defined as possible congested
paths. After deploying B number of filters to FRs in G, the
set of the shortest paths from u is P s

u(B).
In this case, the problem can be expressed as the following

optimization problem:

minimize B

subject to ∀1≤u≤U, p∈Ps
u(B) p ∩ Lc = ∅,

P s
u(B) ⊆ P s

u

(1)

V. OPTIMAL SOLUTION FOR THE PROBLEM

Let us consider the topology in Fig. 3(a). The victim is
connected to the FR a. A couple of users are connected to the
FR h and FR f . The victim v observes that when traffic from
u1 follows the paths h↔g↔d↔a or h↔e↔d↔a, the data
rate falls below a threshold. Similarly, if the traffic from u2

follows f↔e↔d↔a the data rate falls below the threshold.
On the other hand, the rate is good if the traffic from u1 and u2

follow h↔e↔b↔a and f↔c↔b↔a, respectively. From this
observation, v finds out that links 3, 6, 7, 8, and 11 are possible
congested links. Because of limited knowledge or access, the
v cannot detect the actual congested links. A victim in an
autonomous system might not know the status of a link in other
autonomous systems. For example, this situation could happen
if only links 3, 6, and 8, or 7 and 11 are congested. The v does
not want to compromise data rates from its users and wants
all the legitimate traffic coming to it to follow non-congested
paths. We color the congested links red and non-congested
links green. The black links do not carry any legitimate traffic
and are assumed to be non-congested.

We divide the process of determining the minimum number
of filter assignments into four steps.

In Step 1, we transform the original graph G = (V,E) to
line graph G′ = (V ′, E′). V is the set of FRs and E is the
set of links in the topology. The edges in G become the nodes
in G′. Two nodes are neighbors in G′ if the corresponding
links in G are adjacent. We color the corresponding node of a
possible congested link as black and other nodes as white. In

Algorithm 1 Find a minimum number of blockage
Input: Topology G, possible congested links Lc.
Output: A set of links to block from Lc.
1: Procedure: FIND-ASSIGNMENT(G)
2: G′ ← the line graph of G.
3: CREATE-FLOW(G′)
4: G′′ ← ELIMINATE(G′)
5: g ← minimum vertex separation set in G′′

6: return g

Algorithm 2 Create flow in the line graph
Input: Topology G′.
1: Procedure: CREATE-FLOW(G′)
2: u← all users in G′

3: while u 6= ∅ do
4: for all n ∈ u do
5: nh← {n′ : n′ offers shortest paths to n}
6: if Cn(n) = black or Cf (n) = red then
7: ∀n′∈nhCe(enn′)← red
8: ∀n′∈nhCf (n

′)← red
9: else if Ce(enn′) 6= red then

10: ∀n′∈nhCe(enn′)← green
11: ∀n′∈nhCf (n

′)← green

12: u′ ← u′ ∪ nh
13: u← u′

Fig. 3(a), link 6 is connected to d and e so that all the links
which are connected to d (3, 8) and e (4, 7, 9) will be neighbor
of 6 in G′. Therefore, node 6 is connected to 3, 8, 4, 7, and 9
in G′. Fig. 3(b) shows the line graph G′.

In Step 2, we create traffic flows from every user in G′. The
flows travel through all the next hops remaining on the shortest
paths to the victim. The flow continues and the traveled links
are colored green. When a flow encounters a black node, the
flow becomes red and continues coloring the traveled links
red. If a link is already colored red, the color never changes,
but if it is marked as green, then a red flow changes the link’s
color to red. The flow terminates at the victim. The process is
shown in Alg. 2. In Fig. 3(c) the green flows travels nodes 11
and 9 which remain on the shortest paths from u1 to v. The
edges u1 ↔ 11 and u1 ↔ 9 become green. As 11 is a black
node, the flow becomes red and the edge 11 ↔ 8 becomes
red. The process continues until every flow reaches v.

In Step 3, we create another graph G′′ = (V ′′, E′′) with the
victim node, red links, and nodes which are endpoints of the
red links. Then, we eliminate the white nodes from G′′. When
we eliminate a white node, we connect its incoming neighbors
(who are sending flows to the white node) with the outgoing
neighbors (who are receiving flows from the white node). Alg.
3 shows this step in details. For example, when we eliminate
node 1, we connect v and 4 by 4↔v. Similarly, we connect v
and 7 by 7↔v when we remove node 4. We create a virtual
user u and edges from u to any black node that is connected
to at least one green edge. Any black node that appears first
on the shortest path from any user to the victim has a green
incident edge. According to Fig. 3(c), nodes 11, 6, and 7 will
be connected to the virtual source. Now G′′ contains only the
source, the victim, and black nodes. Graph G′′ represents all
the congested shortest path flow from every user to the victim.
Fig. 3(e) shows G′′.

In Step 4, a minimum number of nodes are selected to sepa-

Algorithm 3 Elimination of white nodes from the flow graph
Input: Topology G′.
Output: The final graph G′′.
1: Procedure: ELIMINATE(G′)
2: G′′ ← G′

3: for all n ∈ V ′ do
4: if no incident edge to n is red then
5: Remove n from V ′′

6: ∀j∈Neighbor(n) remove enj from E′′

7: else if Cn(n) = white then
8: Remove n from V ′′.
9: Add edges from incoming to outgoing neighbors of n.

10: Create a virtual node u
11: for all nodes n in V ′′ do
12: if # of green incident edge to n ≥ 1 then
13: Add edge eun to E′′

rate the victim and virtual user in G′′ using Acid and Campos’s
minimum d-separating set [13]. When we are separating the
victim and the virtual source, we are actually cutting all the
shortest possible congested paths with a minimum number of
link blockage. Applying Acid and Campos’s method, we find
the minimum separation set {3, 7}. Therefore, if we block
the links 3 and 7 in G by sending filters to FR d and f , no
legitimate traffic will follow any congested path. The complete
procedure is shown in Alg. 1.

Theorem 1. Alg. 1 finds an optimal number of links to block.

Proof. Alg. 1 transforms the original topology to a flow
graph where all the shortest congested flows are considered.
According to the assumption, there is at least a non-congested
shortest path. The flows travel one of the non-congested
shortest paths after disabling all the possible congested paths.
To prove the optimality of Alg. 1, we need to prove that G′′

contains all the possible congested flows. Assume there is
another red path from a black node n to v which does not
use any link in the E′′. Then, there might be another node
n′ which was not selected for forwarding flow during flow
creation process in Step 5 of Alg. 2. Which means n′ offers a
path longer than the shortest path. FR n will never select the
next hop offering a longer path when it already has a neighbor
offering shortest path. Therefore, there is no other congested
flows from a user which is not in G′′. Cutting all the flows by
removing some nodes means blocking the congested shortest
paths in G. As the Acid and Campos’s method provides the
minimum size vertex cut set, the algorithm will return the
optimal solution.

Theorem 2. The complexity of Alg. 1 is O(m3d).

Proof. Let us assume that G has n nodes, m edges, and d
maximum node degree. Step 1 takes O(md) time. If d is the
maximum node degree in G, then G′ has 2d − 1 max node
degree which is O(d). Step 2 takes O(md) to create flow for a
user. In the worst case, the number of users can be m and Step
2 takes O(m2d) time. To create G′′ from G′, O(md) time is
needed in the worst case. Therefore, the conversion from G to
G′′ takes O(m2d). Step 4 takes O(m3d) to find a minimum
vertex separator. Therefore, the algorithm takes O(m3d).

TABLE I: Topology Parameters

Topology I Topology II Topology III
Number of nodes 65 131 5200
Number of edges 123 310 10800
Internal user probability 0.2 0.5 0.5
Max node degree 10 13 1459

VI. EXPERIMENTAL RESULTS

A. Experimental Settings

We conducted the experiments with a custom built Java
simulator. We do not need to analyze transmission time or
natural packet drop issues. We only need to count the number
of legitimate packets, possible congested links, links to block,
and hops to the victim. Using NS3 or other similar simulators
for this kind of simulation would take several days to simulate
65−5200 nodded topology. That is why we built our own Java
multi-threaded simulator to get the results quickly.

We conducted simulations for randomly generated graph
topologies and a subset of real network topology.The number
of users, and the number of bots were selected randomly from
a uniform distribution. The target links are selected based
on the number of users using a link. If a topology has an
internal user probability of 0.5, it means that 50% of the
nodes are attached to attackers or to users. The Topology
III was taken from the Autonomous systems AS-733 dataset
[14]. The details are shown in Table I. Topologies I and II are
depicted in Figs. 4(a) and 4(d). The green, red, blue, and white
nodes represent the users, bots, victim, and FRs, respectively.
The red links represent the possible congested links. The line
graph G′ with flows for Topologies I and II are shown in Figs.
4(b) and 4(e). The black nodes represent the congested links.
The final flow graphs G′′ are shown in Figs. 4(c) and 4(f).
The black rectangles around a black node represent that the
corresponding links of that node are selected for blocking.

B. Simulation Results

As the bots are distributed uniformly over the network, the
attacker can congest any of the links in the network. We
assume that the attacker is capable of congesting only one
link. It selects the link which carries traffic from the highest
number of users. Simulations shown in Figs. 5(a)-5(c) are
conducted with this setting. Fig. 5(a) shows the regular number
of received packets by the victim from the users in Topology
II. There are 25 users and the number of received packets
from all of them is above the threshold (150,000,000) for a
particular period. When the attack is started, the numbers of
received packets from some of the users are reduced. From Fig.
5(b), we can see that the number of received packets of 16
users fall bellow the threshold. When the filters are deployed,
we can see that the number of received packets by all of the
users is above the threshold (see Fig. 5(c)).

Figs. 5(d)-5(f) show the number of possible congested links
(PCL), blocked links (BL), average hop counts before (HCB),
and average hop counts after (HCA) by the number of attacked
links. Here the attacker chooses the links that carry the top
number of users’ traffic. We observe that all the measurements

(a) Topology I (b) G′ for Topology I (c) G′′ for Topology I

(d) Topology II (e) G′ for Topology II (f) G′′ for Topology II

Fig. 4: Topologies I and II. (Green node=user, red node=bot,
blue node=victim, red link=possible congested link)
increase with a higher number of attacked links. The HCA
does not increase in Topology III, but it increases by 1 or 2 in
Topology I. This is because Topology III has more redundant
connections than Topology I.

Fig. 5(g) shows the number of affected users (AF) and total
users (U). In Topology I, we see that after congestion, 10 of the
11 users become affected. For Topology I, 16 out of 25 users
are affected. The ratio of the affected users in Topology III is
less than in the other topologies. This is because Topology III
has a higher node degree and many shortest paths. Therefore,
the traffic from different users goes through many distinct
paths. Fig. 5(h) shows the number of PCLs, BL, HCB, and
HCA. We can observe that the BL is much smaller than the
PCL. Especially, in Topology II, the number of PCLs is 40,
but they can all be avoided by blocking only 2 links.

Fig. 5(i) shows the comparison between our proposed
FR-based model and the BGP advertisement-based model.
It is hard to compare these two models because the BGP
advertisement-based model assumes that the deployer au-
tonomous system knows exactly which links are congested. We
assume that the victim (deployer) does not know exactly which
links are congested, which is more practical. We assume that
the victim in the FR-based model knows the congested links to
give both models equal information. The BGP advertisement-
based model will block all of the congested links (it avoids the
congested links by false path advertisement) but our FR-based
model blocks much fewer links than the BGP advertisement-
based model. Fig. 5(i) shows the number of blocked links by
the number of attacked links for both approaches. The attacked
links are chosen randomly and an average of several rounds
of simulation are shown in the figures.

We compare the FR-based model with some other ap-
proaches including FLoc [8], SPIFFY [5], ColDef [6], which
use attack traffic detection at the router. We show the detri-
mental effects when the routers cannot detect the attack traffic.
Fig. 5(j) shows the average number of received packets by the
ratio of packet drop at congested links. The average number

of received packets is reduced by the drop rate at congested
links. The number of received packets for 10 congested links
is slightly less than that of one congested link. The numbers
of received packets are similar regardless of the number of
congested links or drop rate for the FR-based model. This is
because when filters are deployed, none of the user traffic goes
through any congested links.

From the above experimental results, we can conclude that
the FR-based model can efficiently protect the users’ traffic.
The model works with limited knowledge about the network
status and can protect its users with the minimum cost.

VII. CONCLUSION

The transit-link DDoS attack is the most powerful attack
that makes a service unavailable to legitimate users. It is not
possible to protect any server from DDoS attacks without the
help of the network equipments. Current DDoS defense system
cannot counter the transit-link DDoS attack because the attack
packets do not go to the victim. Therefore, the victim remains
unaware of the location of the attackers. Routers, the most
important component in the network, can be upgraded to FRs
easily. Besides, the FR can work in a network with legacy
routers. An ISP can gain benefit economically by deploying
FRs. Therefore, both the deployer and the victim benefit
from this model. Simulation results show that our proposed
approaches work much better than the existing approaches.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants CNS
1824440, CNS 1828363, CNS 1757533, CNS 1618398, CNS
1651947, and CNS 1564128.

REFERENCES

[1] D. Seo, H. Lee, and A. Perrig, “PFS: Probabilistic filter scheduling
against distributed denial-of-service attacks,” in 2011 IEEE 36th Con-
ference on Local Computer Networks, Oct 2011.

[2] D. Seo, H. Lee, and A. Perrig, “APFS: Adaptive Probabilistic Filter
Scheduling Against Distributed Denial-of-service Attacks,” Comput.
Secur., vol. 39, Nov 2013.

[3] K. Argyraki and D. R. Cheriton, “Loose Source Routing As a Mech-
anism for Traffic Policies,” in Proceedings of the ACM SIGCOMM
Workshop on Future Directions in Network Architecture, Aug 2004.

[4] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, “Path Splicing,”
in SIGCOMM Comput. Commun. Rev., vol. 38, no. 4. ACM, Aug 2008.

[5] M. Suk Kang, V. D. Gligor, and V. Sekar, “SPIFFY: Inducing Cost-
Detectability Tradeoffs for Persistent Link-Flooding Attacks,” in Net-
work and Distributed System Security Symposium, Jan 2016.

[6] S. B. Lee, M. S. Kang, and V. D. Gligor, “CoDef: Collaborative
Defense Against Large-scale Link-flooding Attacks,” in Proceedings of
the Ninth ACM Conference on Emerging Networking Experiments and
Technologies, Dec 2013.

[7] J. Ioannidis and S. M. Bellovin, “Implementing Pushback: Router-Based
Defense Against DDoS Attacks,” in Network and Distributed System
Security Symposium, Mar 2002.

[8] S. B. Lee and V. D. Gligor, “FLoc : Dependable Link Access for
Legitimate Traffic in Flooding Attacks,” in 2010 IEEE 30th International
Conference on Distributed Computing Systems, Jun 2010.

[9] J. M. Smith and M. Schuchard, “Routing Around Congestion: Defeating
DDoS Attacks and Adverse Network Conditions via Reactive BGP
Routing,” in IEEE Symposium on Security and Privacy, May 2018.

[10] D. Seo, H. Lee, and A. Perrig, “PFS: Probabilistic filter scheduling
against distributed denial-of-service attacks,” in 2011 IEEE 36th Con-
ference on Local Computer Networks, Oct 2011.

(a) Before attack. (b) During attack.

(c) During defense. (d) Measurements for Topology I.

(e) Measurements for Topology II. (f) Measurements for Topology III.

(g) Affected users. (h) Measurements for all topologies.

(i) Comparison with BGP
advertisement-based method.

(j) Comparison with router level
detection-based methods.

Fig. 5: Simulation results.
[11] ——, “APFS: Adaptive Probabilistic Filter Scheduling against dis-

tributed denial-of-service attacks,” Computers Security, vol. 39, Nov
2013.

[12] R. Biswas and J. Wu, “Filter assignment policy against distributed
denial-of-service attack,” in 2018 IEEE 24th International Conference
on Parallel and Distributed Systems (ICPADS). IEEE, Dec 2018.

[13] S. Acid and L. M. De Campos, “An Algorithm for Finding Minimum D-
separating Sets in Belief Networks,” in Proceedings of the Twelfth Inter-
national Conference on Uncertainty in Artificial Intelligence. Morgan
Kaufmann Publishers Inc., Aug 1996.

[14] “Autonomous systems as-733,” https://snap.stanford.edu/data/as-733.
html.

