
ZigZag: A Content-based Publish/Subscribe
Architecture for Human Networks

Yaxiong Zhao and Jie Wu
Department of Computer and Information Sciences

Temple University
Philadelphia, PA 19122, USA

{yaxiong.zhao, jiewu}@temple.edu

Abstract—The wide use of mobile devices gives rise to many
novel network applications, which require an efficient com-
munication substrate. These networks, which are comprised
solely of human-carried mobile devices, are called human net-
works (HUNETs). In this paper, we present ZigZag, a content-
based publish/subscribe (CBPS) architecture for HUNETs. We
deem that CBPS is a natural fit for HUNETs for its inherent
anonymity, scalability, and flexibility. However, existing CBPS
systems are designed for the Internet, consuming resources
beyond the capacity of mobile devices. Additionally, they do
not consider user mobility. To address these restrictions, ZigZag
employs a transformation-based subscription representation and
processing technique, and a Bloom-filter-based message routing
and forwarding scheme. The advantages of ZigZag are its
low subscription storage consumption and matching complexity.
Analytic and simulation results prove that our proposed methods
are flexible and more efficient than existing techniques.

Index Terms—Bloom filter, human networks, content-based
publish/subscribe, Z-order curve

I. INTRODUCTION

The wide use of portable mobile devices and the fast
development of wireless communication technologies have
enabled individuals the ubiquitous accessibility to network
resources. Previously, such devices were connected through
wireless infrastructures, which only provide limited services.
Recent research on delay tolerant networks (DTNs) [12] pro-
vides a new paradigm for the communication of intermittently-
connected wireless devices without the aid of an infrastructure.
In this paper, we take a step further and incorporate application
requirements into the network design. We propose human
networks (HUNETs), a new application platform working on
top of the networks, formed solely by human-carried wireless
devices. An real-world example is Bluejacking [3], where
people use bluetooth devices to exchange messages when they
are in vicinity. Fig. 1 illustrates an example HUNET of 5 users.

Users in a HUNET can communicate with each other
only when in vicinity. As a result, physical layer end-to-
end connectivity is not available, and traditional connection-
oriented networking technologies cannot work, or at least
cannot work as efficiently. Additionally, it is noted in [14],
[18] that users are becoming more and more interested in
contents instead of connections. In other words, users care
most about the content of the messages they received, not

Alice: title = avatar

Bob: name = lady gaga
Carla: title = avatar

Daniel: brand = Nikon AND
focal > 50mm AND focal <105mm

Andrew: age > 10 
AND age < 20

Fig. 1. An example of HUNETs where each user is equipped with a
mobile device. Their contact patterns among users are based on their social
relationships. Each user has his/her own interests, which is represented as a
name:interest pair.

where they received them from. Therefore, the real problem
in HUNETs becomes “what should to be sent to who?”
i.e. how to efficiently transmit messages to users that are
interested in their contents? A concrete example is Twitter [1],
a popular social networking service. Twitter lets users “follow”
users whom they are interested in. The “follow” mechanism
grants users the ability to express their interests in the sense
that they are generally interested in the contents generated
by the people they are following. The fact that Twitter is
extremely popular on wireless devices demonstrates that it is
important for applications to have the capability of expressing
users’ interests. Additionally, providing such a function grants
the users the ability to communicate without exposing their
identities, which protects users’ privacies.

Based on the above analysis, we propose to use content-
based publish/subscribe [10] (CBPS or content-based pub/sub)
in HUNETs. Fig. 1 illustrates the use of CBPS in a HUNET,
where each user is interested in certain content specified by
a subscription (represented as conjunctions of Boolean ex-
pressions). Users communicate with each other when they are
within each other’s communication range. Each user generates
messages with labeled contents. Messages are forwarded to
users who are interested in the content. This design eliminates
the requirement of the end-to-end connection. It takes the
advantage of the pervasive nature of HUNETs and provide
a plausible application scenario.

In this paper, we present ZigZag, a comprehensive CBPS



architecture featuring high efficiency and low complexity. Our
motivation of designing a new architecture is that although
existing pub/sub systems work well in the Internet, they do not
consider the unique properties of HUNETs and will perform
poorly. In designing ZigZag, we focus on two components:
content representation and pub/sub routing. The paramount
goal is to minimize its complexity, so to make it work
on resource-constrained mobile devices. ZigZag uses Z-order
curve to transform multi-dimensional ranges into scalars, and
uses Bloom filter to compress transformed numbers. In this
way, the complex multi-dimensional matching problem is
reduced to a constant time query to the Bloom filter. Our
contributions in this paper are as follows:

• We frame the concept of HUNET, a novel mobile appli-
cation platform centered on content-based networking;

• We design ZigZag for HUNETs, a CBPS architecture
based on transformational filling curve and Bloom filter;

• We perform extensive real-world-trace-based simulations
to verify our design and analysis;

The rest of this paper is organized as follows: Section II
presents related work. Sections III and IV give the detailed
description of each component of ZigZag. Section V discusses
the simulation results. Section VI concludes the paper.

II. RELATED WORK

1) Human-centric networking: DTNs [12] are similar to
HUNETs, which share the same physical structure. The dif-
ference is that DTN research focuses on connection-oriented
networking, whereas HUNET is more concerned with the
efficient support of novel applications. Pocket network [8]
shares the same model as ours, and also provides pub/sub-style
services, but it does not explore the design of low-complexity
protocols. DTN multicast algorithms [22] have been proposed.
Although they can be used to support routing of pub/sub
routing in the Internet, they do not work in HUNETs due
to mobility. Our previous work [19], [23], [24] presented
preliminary results on providing pub/sub communication in
HUNETs.

2) Content-based pub/sub systems: Pub/sub is a powerful
communication paradigm [10]. The use of pub/sub systems
in mobile ad hoc networks has recently attracted interest [9],
[20]. These methods do not work in HUNETs since they
rely on end-to-end connectivity. Content-based networking
has recently been used in opportunistic data diffusion [6].
In [7], the authors studied the content-based addressing and
routing for large-scale pub/sub networks, which is too complex
to be used in HUNETs. A recent work [21] uses content-
based pub/sub systems for content dissemination in DTNs.
Subscription representation and processing is a well-studied
problem [11]. The transformational method has been used in
MICS [15].

3) Network applications of the Bloom filter: Bloom fil-
ter [4] enables a trade-off between space complexity and
query accuracy, which is proven to be useful in many network
applications [5]. The use of Bloom filter in the pub/sub sys-
tems and the Internet can be found in various literatures [16],

[17]. In [16], Bloom filter is used to encode efficient interest
predicates. In [17], Bloom filter is used to encode the addresses
of multicast destinations.

III. TRANSFORMATION-BASED SUBSCRIPTION
REPRESENTATION AND PROCESSING

A. Z-order-based subscription representation and processing

The standard way to represent a subscription is to use the
conjunction form of multiple attribute constraints. An attribute
constraint is an interval of an attribute. For example, Daniel’s
interest is represented by two attribute constraints {brand =
Nikon AND focal ≥ 50mm AND focal ≤ 105mm}. Here,
brand and focal are two attributes. The attribute constraint
brand = Nikon indicates that the user is interested in the
messages of Nikon-branded lens. A subscription is a hyper-
rectangle on the multi-dimensional content space. On the other
hand, a message’s content is represented by multiple numbers
on each dimension, which is a hyper-point. A message matches
a subscription if it falls inside the subscription’s scope. For
example, a message labeled with {brand = Nikon AND
focal = 85mm} will be forwarded to Daniel.

There are various types of data structures for the storage
and processing of large numbers of subscriptions [11]. These
techniques are not applicable in HUNETs, for they require
complex operations. Our approach, however, uses approximate
matching, which is based on transformation filling curve.

The idea is to discretized the entire content space into cells,
and use cells to approximate an arbitrary range in the multi-
dimensional space. For example, in the left side of Fig. 2
shows that a 2D plane is divided into 16 grids. As shown
in the right side of Fig. 2, the heavy-shaded rectangle is a
subscription. It is represented by 4 cells intersected with it,
which are light-shaded. In this way, a multi-dimensional range
is transformed into multiple discretized cells.

Then, each cell is labeled with a number, so that a multi-
dimensional range is approximated by a set of cell IDs. Cell
IDs are assigned using filling curve. The filling curve we use
is Z-order curve. A previous work, MICS [15], uses Hilbert
filling curve. The benefits of Z-order is its lower computation
complexity [2]. The right of Fig. 2 also presents the traversal
sequence of cells using Z-order curve. Each cell’s label is
simply the sequence number of Z-curve traversing each cell.
In the right side of Fig. 2, the ID of each cell is shown near
its centroid.

To obtain the cell label, we do not need to really count the
sequence number. For Z-order curve, a cell’s ID is obtained
by interleaving the bits of its coordinates’ binary forms. For
example, the coordinates of cell A in Fig. 2 is [2, 2], or [10, 10]
in binary form. The corresponding ID after Z-order curve
transformation is 12 or 1100 in binary form. It is clear that Z-
order curve transformation can be computed efficiently using
special vector instructions that are available in modern CPUs.

The set of cell IDs representing the original mD range
is then compressed as intervals. A contiguous sequence of
integers is represented by an interval whose two end-points
are the first and last integers.



Zigzag

ZigZagH

00 01 10 11

00

01

10

11

x00 01 10 11

00

01

10

11

0000 0001 0100 0101

0010 0011 0110 0111

1000 1001 1100 1101

1010 1011 1110 1111

A

y y

x

Subscription

Fig. 2. An example of using Z-order curve in 2D plane. The plane is split
into cells. Each cell is labeled with an integer number. The label of each cell
is the sequence number of the Z-curve traversing all cells. It can be obtained
by interleaving the coordinates of the cell in the original scale.

ZigZag transforms a subscription into multiple intervals.
This transformation will introduce false matches in matching
since the transformed range may not be identical to the original
one. We have two strategies to determine how to perform the
transformation with different false ratios:

• Inclusive transformation. Each subscription is represented
by the IDs of the cells intersected with the subscription.
This only results in false positives. It is expressed in the
expression below:

FPR =

∑
ci∩s ̸=∅ ci

s
− 1 (1)

In Eq. 1, s is the hyper-rectangle of the subscription, ci
is a cell of the content space.

• Optimal transformation. We use the byper-rectangle of
cells that has the minimal difference from the subscription
to approximate it. This results in false positives and false
negatives. But, the false ratio would be no more than the
above approach:

FPR = min{
∑

ci∩s ̸=∅ ci

s
− 1, 1−

∑
ci∩s=ci

ci

s
} (2)

The first term here is the same as in Eq. 1. The second one
is all cells inside the hyper-rectangle of the subscription.

A false positive does not harm the users’ satisfaction in
the sense that matched messages will be delivered, but false
negatives will. We argue that since our application is used for
recreation, as long as the false negative is within a certain
range, it does not harm the system’s usability. In order to
evaluate the benefits of introducing false negatives in ZigZag,
we propose a metric called relative beneficial factor (RBF).
It is calculated as follows: Suppose the false positive of the
first approach is represented by FP , and the false negative, if
exists, of the second approach is represented by FN . RBF
is defined as the following equation:

RBF =
FP

FN
(3)

Given a threshold α for the FN, and a threshold β for the
RCF, we will employ the second approach only if:

• FN < α

• RBF > β

These two conditions make sure that the false negative does
not cause too much waste (the first constraint), and the benefits
of tolerating false negatives pays off (the second constraint).

The transformed intervals of a subscription are inserted into
an interval tree for fast querying of subscription matching. To
check if an event matches a subscription, we first transform
the event to a point using ZigZag, and then query the interval
tree representing the subscription. If the point is in the tree,
then the event matches the subscription; if not, the event does
not match.

We can derive the FPR of transformation as follows: Sup-
pose that the subscription space is a k-dimensional space,
and the false positive rate at each dimension is pi (i ∈
{0, ..., k − 1}). The overall FPR is:

FPR = 1−
k−1∏
i=0

(1− pi) (4)

Since the FPR on each dimension is quite small, Eq. 4 can
be approximated as FPR =

∑k
i=1 pi.

B. Hierarchical ZigZag

Even we can minimize the false rate in matching using the
conditions proposed in the previous section, but it still causes
considerable false positives in extreme cases. For example, in
the right side of Fig. 2, the size of the transformed subscription
is much larger than the actual size.

We propose hierarchical ZigZag (ZigZagH) to further re-
duce the false positive rate. The ZigZagH refines the trans-
formation by applying a finer grained transformation on the
obtained results of the initial transformation. As shown in
Fig. 2, a finer-grained ZigZag transformation is applied on the
obtained subscription space. The false positive is significantly
reduced. Here, the indexing method will be the same for the
second level ZigZag, but its granularity is determined by the
precision requirement of the application. ZigZagH needs two
interval trees to store the coarse- and fine-grained intervals.

ZigZagH’s matching is similar to ZigZag. The difference
is that we need to do it twice to match a single subscription.
We need two sets to represent the two-level representations of
the subscription. An event matches a subscription only if it
matches the both sets.

C. Subscription compression using the Bloom filter

Using Z-curve, ZigZag transforms subscriptions into inter-
vals and stores them into an interval tree. The query speed is
O(logN), where N is the stored intervals. Since the scale
of HUNETs is small, the occupied space of subscriptions
is quite small compared to the entire content space. These
tiny subscriptions scatter sparsely across the huge content
space, and form a large number of intervals that comprise
small number interval points. In Table I we give the average
number of points contained in each interval for different
dimensionality. Each dimension is separated into 210 = 1, 024
cells. Interestingly enough, the value does not change too
much.



Dimensionality 2D 3D 4D
Interval size 6.18 6.25 6.52

TABLE I
THE AVERAGE NUMBER OF POINTS CONTAINED IN EACH INTERVAL AFTER

Z-ORDER TRANSFORMATION.

According to this observation, we use Bloom filter [4] to
accelerate matching speed using the same amount of memory
of interval tree. For the completeness of the discussion, we
give a brief introduction to Bloom filter. Please refer to [4] for
a detailed discussion about the data structure. Bloom filter is a
data structure that represents set, which supports probabilistic
membership querying. An empty Bloom filter is a bit-vector
of m 0 bit. Bloom filter uses k different hash functions. To
insert an element, it is fed each of the k hash functions to get
k array positions. Set the bits at all these positions to 1. To
test the membership of an element, all its hashed positions in
the bit array must be “1”. The FPR of a Bloom filter of m
bits, using k hash functions, and storing n elements, is given
in Eq. 5.

f = (1− (1− 1

m
)nk)k ≈ (1− e

−nk
m )k m≫ n, k (5)

The benefits of using the Bloom filter is its succinct storage
and efficient processing. However, it results into additional
FPR, besides that of Z-order transformation. Suppose that the
FPR of transformation is PT , and the FPR of using the BF
is PB . The FPR of combining these two techniques will be
1−(1−PT )×(1−PB), which is equal to PT +PB−PT×PB .
Usually, the FPRs are quite small, so the combined FPR can
be written as PT + PB . That is, using Bloom filter increases
the FPR of subscription matching by its own FPR. But it
only introduces a small amount of FPR with our settings.
For example, suppose that 32bit integers are used in the
transformation, each interval uses (at least) 64bit memory to
store two end-points. As indicated in Table I, each interval
contains about 6 integers. If we put 6 integers into a 64bit
Bloom filter and use 3 hash functions, according to the FPR
of Bloom filter [4], its FPR is only 1.35%, as calculated using
Eq. 5. This is acceptable given that the FPR of Z-order curve
transformation is in the same order.

IV. PUB/SUB ROUTING FOR HUNETS

Although multicast is used in many existing pub/sub routing
protocols as the underlying forwarding technique, it may not
be a good choice in HUNETs for the following reasons:

• It breaks user privacy. Using multicast, we have to know
the identity of the destinations. This compromises users’
privacy, and contradicts with the original intention of
using pub/sub in HUNETs.

• It has high complexity. In [13], the authors analyzed
how to use the community structure to enable multicast.
However, there is no efficient method to collect such in-
formation beforehand. Even such information is available,
the high complexity makes it inapplicable.

Algorithm 1 Message forwarding from broker Bi to Bj

1: Bi collects subscriptions from Bj ;
2: for all subj from Bj and subi from Bi do
3: if subj .TTL > subi.TTL then
4: subij ← subi∧ subj ; /*bitwise and*/
5: Bi queries each message msg against subij ;
6: if msg ∈ subij then
7: msg.t← subj .TTL− subi.TTL;
8: end if
9: end if

10: Sort all the messages according to the descending order
of msg.t;

11: Bi forwards the top-ranked messages to Bj ;
12: end for

ZigZag’s pub/sub routing does not enforce rigid association
between clients and brokers. Forwarding decisions are made
on-the-fly when users meet. We also propose a method for
users to compress multiple subscriptions received from others.
We propose to make routing/forwarding decisions on-the-fly
when two users meet. Users exchange routing information
within the short contact duration. Logically, there are two
operations: message collection from publisher to broker and
message forwarding between brokers. For their small memory
consumption and high efficiency, the subscription represen-
tation and processing methods we presented before are well
suited for this purpose. Another enabling condition is the small
scale of HUNETs, therefore the data needed to perform routing
is fairly small.

The forwarding algorithm is illustrated in Algorithm 1.
Our design incorporates routing information in subscriptions.
Our approach is simple: attach a time-to-live (TTL) value to
each subscription sent out by users. A subscription will be
removed from memory if its TTL expires. By limiting the
cope of propagation, each user specifies the messages he/she
is interested in in a limited time window. Each time a new
subscription is collected by a user, its TTL is set to the value
of the newly added value. So, a longer TTL value indicates
a “fresher” subscription. As shown in Algo. 1, TTLs guide
the forwarding of messages to users that have fresher TTLs
and finally reach the destinations, which are interested in the
content represented by the subscription.

V. PERFORMANCE EVALUATION

A. Processing speed

We implement all the methods using C++. We do not apply
any optimization in the compilation. The program is executed
on a Windows desktop computer. The machine has an Intel
quad-core CPU (each core runs at 3GHz) and 6GB DDR3
memory. We do not use any parallelism in programming or
compilation.

We first compare the processing speed of ZigZag with the
Hilbert filling curve method of MICS [15]. Fig. 3(a) depicts
the insertion time of a subscription, including the time used
to transform a subscription into intervals and that of inserting



1.0 1.5 2.0 2.5 3.0 3.5 4.0

0

5000

10000

15000

20000

25000

30000

 

 
Ti

m
e 

(m
s)

Dimensionality

 ZigZag
 ZigZagH
 MICS

(a) Insertion time of interval tree

1 2 3 4

0

20

40

60

80

100

120
 

 

In
se

rti
on

 ti
m

e 
(m

s)

Number of dimensions

 1 hash function
 2 hash functions
 3 hash functions
 4 hash functions

(b) Insertion time of Bloom filter

10000 20000 30000 40000 50000
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

 

 

Q
ue

ry
 ti

m
e 

(m
s)

Number of subscriptions stored

 3 Hash functions 4D
 5 Hash functions 4D
 Interval Tree 4D

(c) Query time

Fig. 3. The transformation time, insertion time, and query time of ZigZag.

intervals into an interval tree. We prepare 100 subscriptions
and then get the average value. In this set of experiments, each
dimension is split into 1,024 intervals. And each subscription
occupies [0, 1

100 ] of the entire range on each dimension, which
is drawn uniformly.

ZigZag’s insertion speed is slightly faster than MICS since
the transformation using Z-order curve is simpler than Hilbert
curve. ZigZagH’s insertion time is longer than ZigZag. This
is because ZigZagH performs two transformations. Where the
overall time does not double compared to ZigZag, since the
number of generated intervals in the second level transforma-
tion is less than the first level. We can see from the figure
that the transformation time increases exponentially with the
number of dimensions used in subscriptions. So, we should
avoid using more than, say, 4 attributes. Although the perfor-
mance listed here is quite pessimistic, it should be noted that
there is not any optimization applied in either programming or
compilation. And the optimization methods proposed in [15],
including subsumption, covering, and merging, are not applied
in this simulation. Thus, these results show only relative
performance of different methods and should not be used as
design guidelines.

Fig. 3(b) presents the average time used in inserting a trans-
formed subscription into a Bloom filter. The insertion time of
Bloom filter is much smaller than the interval tree. Since the
transformed points of a subscription grows exponentially with
the dimensionality, as long as the dimensionality is low, the
insertion time is much better than the interval tree. Fig. 3(c)
presents the average time used to query a single event against
100 subscriptions. The content space has 4 attributes. The
above line represents the interval tree, which is also used in
MICS [15]. The bottom two lines represent the results of using
Bloom filter (3 and 5 hash functions). It is clear that Bloom
filter runs much faster since it takes constant time to check
the membership of the event in the subscription.

B. Storage and false positives

The memory consumption of the interval tree grows in
O(n), where n is the number of stored intervals. We present
the average number of intervals after transformation for dif-
ferent dimensionality in Fig. 4. Note that the figure is in
log− log scale. The number of intervals grows cubically with

32 64 128 256 512 1024 2048 4096
0.5
1
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

 

 

N
um

be
r o

f i
nt

er
va

ls
Number of cells on each dimension

 ZigZag 2D
 ZigZag 3D
 ZigZag 4D
 MICS 2D
 MICS 3D
 MICS 4D

Fig. 4. The average number of intervals of a subscription after transformation
versus the number of cells on each dimension.

the number of cells on each dimension, which is obtained
from numeric fitting. Assuming that there will be less than
100 users in any HUNETs, which is reasonable considering
real application scenarios, the total memory of storing 100
subscriptions for all users will be acceptable. MICS’s hilbert
filling curve actually has a slightly less amount of intervals
due to its better locality. Locality brings more benefits when
subscriptions span larger ranges. But in HUNETs subscriptions
are sparse and small.

The FPR of a query to a ZigZag subscription is shwon
in Fig. 5. The FPR under coarse granularity of division of
cells is extremely poor, and is unusable. The FPR drops to
acceptable range beyond 28 = 256 cells on each dimension.
It is interesting to find that before that point, the FPR for
higher dimensionality is much higher than that of lower ones.
The reason is that high dimensionality causes more troubles
when the false rate is high. The FPR drops below 3% beyond
210 = 1, 024 cells. Because of the Bloom filter’s hash-based
property, the storage requirement of the elements does not
affect the storage of the Bloom filters. That is, storing 10 8bit
numbers uses the same amount of memory as storing 10 32bit
numbers, and they have the same false positive rate. So, if we
expand the range of the dimension on the subscription space,
the storage used for Bloom filters does not need to change.
The additional FPR of using Bloom filter is given in Fig. 6.
The additional FPR is at most 1.6%.



32 64 128 256 512 1024 2048 4096
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 

 

Fa
ls

e 
po

si
tiv

e 
ra

te

Number of cells of each dimension

 2D
 3D
 4D

Fig. 5. Query FPR vs. the number of cells separated on each dimension.

1000 2000 3000 4000 5000
0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016

 

 

A
dd

iti
on

al
 fa

ls
e 

po
si

tiv
e

Number of subscriptions

 2D
 3D
 4D

Fig. 6. Additional FPR of using Bloom filter. 4 hash functions are used. The
bit-vector uses the same amount of memory as the interval tree.

VI. CONCLUSION

In this paper, we present a novel CBPS architecture called
ZigZag for HUNETs. ZigZag employs a Z-order curve based
subscription representation and processing technique, and a
Bloom filter based message routing and forwarding protocol
that are designed specifically for HUNETs. The combination
of these techniques achieves high efficiency and low overhead.
ZigZag demonstrates the benefits of novel architecture designs
in a challenged network with scarce resources. We evaluate
ZigZag using real-world-trace-based simulations. Our results
verify that the performance of ZigZag is better than existing
techniques. Our future work will be a prototype system
working on smart phones.

ACKNOWLEDGEMENT

This work is supported in part by NSF grants CCF 1028167,
CNS 0948184, and CCF 0830289.

REFERENCES

[1] “Twitter.” [Online]. Available: http://www.twitter.com
[2] “Z-order Curve.” [Online]. Available: http://en.wikipedia.org/wiki/

Z-order (curve)
[3] BBC., “New mobile message craze spreads,” http://news.bbc.co.uk/2/hi/

technology/3237755.stm.
[4] B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Commun. of ACM, vol. 13, no. 7, pp. 422–426, 1970.
[5] A. Broder and M. Mitzenmacher, “Network applications of bloom filters:

A survey,” in Internet Mathematics, 2002, pp. 636–646.

[6] I. Carreras, D. P. Francesco, D. Miorandi, D. Tacconi, and I. Chlamtac,
“Why neighborhood matters: interests-driven opportunistic data diffu-
sion schemes,” in Proc. of CHANTS ’08. New York, NY, USA: ACM,
2008, pp. 81–88.

[7] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Content-based
addressing and routing: A general model and its application,” 2000.

[8] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
“Pocket switched networks: Real-world mobility and its consequences
for opportunistic forwarding,” Selected Areas in Communications, IEEE
Journal on, vol. 26, no. 5, pp. 748–760, Feburary 2005.

[9] G. Cugola, A. L. Murphy, and G. P. Picco, “Content-based Publish-
subscribe in a Mobile Environment,” in Mobile Middleware, P. Bellavista
and A. Corradi, Eds. Auerbach Publications, 2006, pp. 257–285, invited
contribution.

[10] P. T. Eugster, P. A. Felber, R. Guerraoui, and A. M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114–131, 2003.

[11] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and
D. Shasha, “Filtering algorithms and implementation for very fast
publish/subscribe systems,” in Proc. SIGMOD ’01. New York, NY,
USA: ACM, 2001, pp. 115–126.

[12] K. Fall, “A delay-tolerant network architecture for challenged internets,”
in Proc. SIGCOMM ’03. New York, NY, USA: ACM, 2003, pp. 27–34.

[13] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in delay tolerant
networks: a social network perspective,” in Proc. of MobiHoc ’09. New
York, NY, USA: ACM, May 2009, pp. 299–308.

[14] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. of CoNEXT
’09. New York, NY, USA: ACM, 2009, pp. 1–12.

[15] H. Jafarpour, S. Mehrotra, N. Venkatasubramanian, and M. Monta-
nari, “Mics: an efficient content space representation model for pub-
lish/subscribe systems,” in Proc. of DEBS ’09. New York, NY, USA:
ACM, 2009, pp. 1–12.

[16] Z. Jerzak and C. Fetzer, “Bloom filter based routing for content-based
publish/subscribe,” in Proc. of DEBS ’08. New York, NY, USA: ACM,
2008, pp. 71–81.

[17] P. Jokela, A. Zahemszky, C. E. Rothenberg, S. Arianfar, and P. Nikander,
“Lipsin: line speed publish/subscribe inter-networking,” in Proc. of
SIGCOMM ’09.

[18] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jaha-
nian, “Internet inter-domain traffic,” in Proc. of the ACM SIGCOMM’10.
New York, NY, USA: ACM, 2010, pp. 75–86.

[19] F. Li and J. Wu, “MOPS: Providing content-based service in disruption-
tolerant networks,” in Proc. of ICDCS ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 526–533.

[20] T. Pongthawornkamol, K. Nahrstedt, and G. Wang, “The analysis of
publish/subscribe systems over mobile wireless ad hoc networks,” in
Proc. of ACM MobiQuitous ’07, Aug. 2007, pp. 1–8.

[21] G. Sollazzo, M. Musolesi, and C. Mascolo, “TACO-DTN: a time-aware
content-based dissemination system for delay tolerant networks,” in
Proc. of ACM MobiOpp ’07. New York, NY, USA: ACM, 2007, pp.
83–90.

[22] W. Zhao, M. Ammar, and E. Zegura, “Multicasting in delay tolerant
networks: semantic models and routing algorithms,” in WDTN ’05:
Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant
networking. New York, NY, USA: ACM, 2005, pp. 268–275.

[23] Y. Zhao and J. Wu, “B-sub: A practical bloom-filter-based publish-
subscribe system for human networks,” Distributed Computing Systems,
International Conference on, vol. 0, pp. 634–643, 2010.

[24] ——, “Socially-aware publish/subscribe system for human networks,”
in 2010 IEEE Wireless Communication and Networking Conference.
IEEE, April 2010, pp. 1–6.


