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Abstract—We study the problem of flow scheduling in data
center networks. Using speed scaling, our aim is to find an
online scheduling algorithm that minimizes the total energy con-
sumption of the network by determining both the transmission
order and rates of the arriving flows while providing a strict
flow deadline guarantee. Observing the superlinear property
of link power consumption, the key challenge is in constantly
determining the minimum transmission rate for “delay-tolerable”
flows without any priori knowledge. To leverage the flow arrival
pattern, we propose a probability-based flow prediction model
to capture the uncertainty of the network flows. Based on the
prediction model, we propose a tunable online flow scheduling
algorithm to solve the online flow scheduling problem effectively.
By introducing a scaling factor on bandwidth allocation, this
algorithm allows us to conduct arbitrary trade-offs between the
conservative and aggressive behaviors in terms of energy conser-
vation. The effectiveness of the proposed algorithm is validated
through rigorous theoretical analysis and further confirmed by
extensive numerical simulations.

Index Terms—Data center network, energy efficiency, flow
scheduling, online algorithm, traffic prediction.

I. INTRODUCTION

With the widespread adoption of cloud computing, more and
more mega data centers have been deployed in order to match
the constantly increasing computing demands. According to
[1], the total number of data centers, including various types,
will reportedly reach 8.6 million in 2017. As each of the data
centers can contain up to hundreds of thousands of servers,
the energy consumption of the data centers worldwide has
become enormous. Koomey et al. predict that the total energy
consumption of the data centers worldwide will account for
8% of the total energy consumption for the year in 2020 [2].
Huge energy consumption brings not only a heavy financial
burden to data center providers but also serious environmental
concerns to the society. The Global e-Sustainability Initiative
(GeSI) estimated that by 2020, the greenhouse gas emission
from all the data centers will make up 18% of that of the
information technology sector [3]. While the servers account
for the majority of energy consumption in a typical data center,
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the network, being one of the major components, also makes
a non-negligible impact on the energy footprint, which has
been overlooked for a long time [4]. The situation becomes
more prominent as sophisticated energy saving techniques are
applied to the servers.

In the last decade, there has been a lot of work on reducing
the energy consumption in wired networks. Depending on the
adopted energy conservation mechanism, these works can be
roughly classified into two categories: power down [5] and
speed scaling [6]. The common insight of both mechanisms is
to save energy by adjusting the network resource to match the
actual workload. Based on the two mechanisms, a number
of proposals have been put forward to reduce the energy
consumption in data center networks; they focus on network
routing [7–10], packet scheduling [11–13], topology design
[14, 15], etc. On the other hand, the network’s quality of
service needs to be ensured when saving energy by shaping
the flows. In data center networks, this is usually achieved by
guaranteeing flow deadlines [16].

In this paper, a flow is defined as a set of data demands
that have to be transmitted from a source to a destination
within a given period of time. We consider the problem of
optimal flow scheduling for energy efficiency in data center
networks using the speed scaling mechanism, while ensuring
that flow deadline will not be violated. A similar problem
has been studied in [11], but in an offline setting. In contrast,
our goal is to solve the online version of the problem which
is undoubtedly more challenging. By surveying state-of-the-
art solutions, we find that prior solutions fall into at least
one of the following flaws: i) assuming perfect knowledge
about the sequence of flow arrivals, making them impractical
[11], ii) adopting simple prediction models for future input,
resulting in a poor performance in general [17, 18], and iii)
being devoted to dealing with worst-case inputs, leading to
unpredictable average-case performances in practice [19].

We claim that a good solution for flow scheduling in data
center networks must possess all the following properties:

1) Online scheduling. The input of the flow arrival sequence
is revealed over time. The scheduler has to make deci-
sions continuously for the arriving new flows.



2) Incorporating future information. The future information
of flows can be predicted to some extent based on the
application characteristics in data centers. The predicted
future information should be incorporated in order to
improve the quality of the scheduling.

3) Efficient in practice. To achieve practical effectiveness,
the design of the flow scheduling algorithm should target
the average cases rather than devoting themselves to the
worst-case inputs, which occur very rarely.

To satisfy all of the above properties, we design a novel
online algorithm for flow scheduling in data center networks.
The rationale behind our design is to scale up the current
resource allocation by a positive factor, thus making room to
cope with unpredictable flows in the future. The performance
of the algorithm is dominated by this scaling factor, and thus
the value for the factor needs to be determined carefully. We
will discuss how to tune this value in detail such that the
settings will represent the cases with high probabilities (that
are likely to occur in practice) and analyze the performance
of the online algorithm accordingly. To summarize, we make
the following contributions:

1) We tackle the issue of the deadline-constrained online
flow scheduling problem in data centers. We formally
define a general probability-based model that captures the
uncertainty of the sequentially-revealed flow demands in
data center networks.

2) To better exploit the available future knowledge obtained
by predictions, we develop a tunable online flow schedul-
ing algorithm for reducing the energy consumption while
guaranteeing the flow deadline in data center networks
based on the probability-based model.

3) We evaluate our algorithm with comprehensive simula-
tions and experimental results verify that, by leveraging
the future information of flow arrivals, the proposed
heuristic algorithm can achieve a considerable energy
consumption reduction.

The remainder of this paper is organized as follows. Section
II provides the motivation for this paper. Section III presents
the model for the deadline-constraint, energy-efficient, online
flow scheduling (DEFS) problem. The probability-based flow
prediction model is also presented in Section III. Section IV
explores the general online DEFS problem in a multi-hop
setting. Section V presents the numeral evaluation results.
Section VII summarizes the related works and Section VII
concludes the paper.

II. MOTIVATION

A. Flow Scheduling

Online vs. Offline. Most previous proposals target an offline
setting where entire input sequences are known a priori and
remain unchanged. The authors in [11] consider an offline set-
ting where the scheduler knows the future, leveraging the char-
acteristic of the application and the history information in data
centers. With this advantage, they design an offline scheduling
algorithm that achieves the optimal solution. However, actual

(a) Flow arrival pattern with two
flows: Flow #1 and Flow #2.

(b) The prediction of the probability dis-
tribution of the demand (w2) of Flow #2.

(c) A scheduling targets on meeting
the worst-case input.

(d) A scheduling targets on meeting
the worst-case input with an occur-
rence probability larger than β.

Fig. 1. A motivational example.

traffic demands fluctuate dynamically in data centers over time
and exhibit both temporal and spatial variations [20]. Thus,
accurate values of the entire input sequence are hard to obtain.
Even with this prediction, these offline algorithms will perform
poorly when the timeline is mismatched.

B. Prediction and Estimation

Prediction vs. Non-prediction. Most previous online
scheduling algorithms are either based on very simple models
of future flow arrivals or do not assume any future information
at all. Without the future flow information, the authors in [19]
demonstrate that a myopic online scheduling, which always
uses the corresponding optimal decisions at the current time,
can have an extremely poor performance under the dynamic
traffic scenario. The root cause of this is that myopic online
scheduling always serves the fewest demands at a time and
leaves the remaining demands for the future because it assumes
that no flows will arrive in the future. As time moves towards
infinity, the service rate and the energy consumption are
unbounded. A scheduling algorithm with a prediction can
scale-up the current service rate according to the predictions
and will avoid this issue.

Conservative vs. Aggressive. Typically, the effectiveness
of an online algorithm is evaluated by the competitive ratio,
which is the ratio between its worst-case performance and
the optimal offline algorithm’s performance. While successful
in capturing the performance of online algorithms without
knowing the exact input, the competitive ratio also suffers
from the issue that it measures only “hard” inputs even though
“hard” inputs only occur rarely in the real world. This behavior
seems conservative. An online algorithm that is designed to
obtain a good worst-case competitive ratio also faces the same
issue. Considering a scenario where flows arrive over time and
the scheduler only knows the exact flow information that is
revealed in the current time, due to the superlinear feature of
the power function, an optimal schedule will try to balance the
transmission rate in each time slot. However, a conservative



scheduler always attempts to serve more flows up-front by
setting the current transmission rate to the highest possible
value, thus avoiding a potentially large peak in the future.
Since these worst-cases are rare in reality, a conservative
scheduler performs poorly in real systems.

A motivational example is illustrated in Figure 1. Let w
denote the flow demand, which is the amount of data that
needs to be routed. Let r and d denote the release time and
deadline, respectively. Figure 1(a) depicts a flow arrival pattern
with two flows: Flow #1 (r1 = 0, d1 = D, w1 = D) and
Flow #2 (r2 = D/2, d2 = D, w2). Figure 1(b) describes a
prediction for the probability distribution of the demand w2

of Flow #2. It can be seen that, in the worst case, the flow
demand of the flow arriving in the future is predicted to be 2D
with occurrence probability tending to 0; while this value is
estimated to be D/2 in the worst case input with an occurrence
probability larger than β. Figure 1(c) illustrates a scheduling
targeting for achieving a good performance on the hardest
input (almost impossible to happen in real world). Figure 1(d)
shows a scheduling that aims to obtain a good performance on
the hardest input with an occurrence probability larger than β
(on behalf of the general situation). It can be seen that, taking
into account the fact that the value of the flow demand in a vast
majority of cases is less than D/2, the transmission rate of the
scheduling in Figure 1(d) is much more balanced than that of
the scheduling in Figure 1(c). Since the energy consumption
function is superlinear in terms of the transmission rate, the
scheduling in Figure 1(d) is better than that of Figure 1(c).

A more aggressive scheduling algorithm that targets regular
cases rather than the worst-cases can perform better. The key
challenge is capturing the “regular cases.” A positive and
tunable parameter (e.g., the parameter β in the above example)
is introduced in this paper to characterize the likelihood of an
input. An online scheduling algorithm that can incorporate the
prediction information with a tunable occurrence probability is
proposed to achieve a good performance under “regular case”
inputs.

III. PROBLEM STATEMENT

In this section, we provide the general model for the
online Deadline-constrained Energy-efficient Flow Scheduling
(DEFS) problem in the data center networks. We first describe
the model of the data center flow scheduling and link energy
consumption. Then, we provide the model for flow prediction.
Finally, we formulate the DEFS problem.

A. Data Center Flow Scheduling

In this paper, the data center network is abstracted as an
undirected graph G = (V, E), where V is the set of nodes
(i.e., switches and hosts) and E is the set of network links.
Typically, nodes are connected by links according to regular
architectures like Fat-Tree (Figure 2(a)) or DCell (Figure 2(b)).
We assume that all nodes and links in the network are identical.
This is reasonable since the networks are built with identical
commodity switches in modern data centers. Each link in the
network is associated with an egress buffer. When a packet

(a) FatTree (b) DCell

Fig. 2. Two commonly used date center network toplogies.

has been processed by the switch, it will be pushed into the
egress buffer and wait to be transmitted to the next hop. Both
the transmission order and the transmission rate are determined
by the link according to some preset flow scheduling policy.

Assume that time is slotted in this system. Let T denote
the time-horizon considered. Then, an arbitrary time slot is
indexed by an integer in time slot set T = {0, 1, · · · , T}. For
each time slot, t ∈ T , there is a set of deadline-constrained
flows, Je(t) = {j1, j2, · · · , jn}, that have to be transmitted
over link, e ∈ E , from a source node to a destination node.
We assume that the path of each flow can be computed as
soon as the flow has been inserted into the network according
to some regular routing algorithms in data center networks
(such as ECMP). We also make the assumption that once the
transmission begins, the route of each flow will never change.
Let J (t) = {Je(t)|e ∈ E} represent all the flows that remain
in the network at time slot t (including both the flows released
at time slot t and the flows released before time slot t that have
not been transmitted yet). Let J =

∪
t∈T J (t) represent the

set of all the flows in the network. Each flow, ji ∈ J , is
associated with four parameters, listed as follows.

a) the flow demand, which is the amount of data that needs
to be routed (i.e., wi),

b) the release time (i.e., ri) and deadline (i.e., di),
c) the source (i.e., pi) and destination (i.e., qi), and
d) the path from the source to the destination (i.e., Pi).
Assuming that preemption is allowed, a schedule is defined

as a set

S = {(si(t),Pi)|∀ji ∈ J , ∀t ∈ T }. (1)

where si(t) ∈ R is the transmission rate chosen for flow ji at
time t and Pi is the set of links that are on the chosen path
for carrying the traffic from this flow. The transmission rate
of each flow is a real number. Therefore, there is always a
schedule that satisfies the feasibility, defined as follows.

Definition 1. A schedule, S, is called ”feasible” if every
flow can be accomplished within its deadline following this
schedule.

B. Energy Consumption

We consider using speed scaling as an architectural support
for network conservation. The key principle is that network
devices can be designed so that slower operation speeds use
a lower power supply [21]. We adopt the energy consumption
function from [7] that has been widely used in existing
literature. This model assumes that the energy consumption



behaviors of all the controllable network components can be
abstracted as functions of the transmission rate of its associated
link. For each link, e ∈ E , a power consumption function,
ge(xe), is given to characterize the manner in which energy
is being consumed with respect to the transmission rate, xe,
of link e. Since we assume that all the links in the network
are identical, we adopt a uniform energy function for all the
links in the network. Formally, for every link we are given a
function g(·) which is expressed by

g(xe) = σ + µxα
e , 0 ≤ xe ≤ C, (2)

where σ, µ and α are constants. The exact values of these
parameters depend on the details of the technology. C is
the maximum transmission rate of a link. Normally, we have
α > 1, thus the power function g(·) is superlinear. To minimize
the energy consumption, a feasible schedule will choose a
transmission rate that is as small as possible but can still
process each flow before its deadline. Thus, the constraint
0 ≤ xe ≤ C can be relaxed and omitted in this paper.

C. Model for Prediction and Uncertainty

Now, we present the probability-based model adopted in
this paper. Assume that time is slotted, and index a time-
slot by an integer in T = {0, · · · , T}, where T is the time-
horizon considered. Let wt0,t1 denote the total flow demands
associated with arrival time t0 and deadline t1. In practice,
there are considerable uncertainties for the flow demands in
data center networks. We define the (T − t + 1) × 1 vector
w(t) = [wt,t, · · · , wt,T ] to denote the total flow demands at
arrival time t. Note that the scheduler knows the precise value
of w(t) only at and after time-slot t because the value of w(t)
is only revealed at time t. At time s < t, the value of w(t)
is uncertain to the scheduler. However, the scheduler can use
various sources of information to predict the future values of
these uncertain quantities and improve its decision.

The probability-based prediction model predicts the proba-
bility distribution of each future flow demand, w(t). Assume
that a prediction should be made L > 0 time slots ahead.
That is, at time tp = max{0, (t − L)}, t ∈ T , a prediction is
available for every t ∈ T . Specifically, for each t ≤ t1 ≤ T in
time slot tp, the probability-based prediction model predicts
the probability distribution of wt,t1 . Let f̂tp,t,t1(w) denote the
predicted probability distribution of wt,t1 made in time slot
tp; the variable wt,t1 follows:

wt,t1 ∼ f̂tp,t,t1(w). (3)

There are various methods that can be used to predict the
probability distribution of data flows in data center networks
[20]. For each time slot t, the probability that the value of the
total flow demand equals a possible value w0 with an arriving
time t and a deadline t1 is predicted to be f̂tp,t,t1(w0) at time
tp. Thus, a prediction provides (T − t+1)×1 vectors f̂(tp, t),
representing the predicted probability distribution of the flow
demands in T − t+1 time slots. Obviously, the prediction for
all t will not be known until time slot t = max{t1 − L, 0}.

With the above probability-based model, we can formu-
late the information set revealed at time t. Specifically, We
only have interest in possible realizations that have a high
probability according to the prediction. This is reasonable
since, in reality, people more often face common cases
rather than rare cases. Let f̂u

tp,t,t1 denote the upper bound
of f̂tp,t,t1(w), i.e., f̂u

tp,t,t1 ≥ f̂tp,t,t1(w). Let β denote a
tunable parameter. The value of the parameter β satisfies
0 ≤ β ≤ min0≤t≤t1≤T f̂u

tp,t,t1 . Thus, for each β at time slot
t, we will have a prediction vector ŵβ(tp, t) for w(t) that
satisfies the following:

ŵβ(tp, t) = {ŵβ
tp,t,t′

|t′ ∈ [t, T ]}, (4)

ŵβ
tp,t,t′

∈ {w|f̂tp,t,t1(w) ≥ β}. (5)

We can now formulate the information set revealed at time
slot t. Let Zβ

t denote the information set revealed at time slot
t, i.e., Zβ

t = {w(t′)|t′ ∈ [0, t]}
∪
{ŵβ(t

′
p, t

′)|t′ ∈ [0,min{t +
L, T }]}. In other words, the information revealed at time slot
t involves all flow demands that have already arrived (the first
part) and all predictions that have a probability higher than β
(the second part).

D. Problem Formulation

Assume that the routing protocol is given. We define Ea
as the set of links that are used to carry flows according
to the given routing protocol. Consequently, the total energy
consumed by all links during T in a schedule S can be
expressed by

Φf (S) = T · |Ea| · σ +

∫ T

0

∑
e∈Ea

µ(xe(t))
αdt. (6)

where xe(t) is the transmission rate of link e at time t. The
objective of the Deadline-constrained Energy-efficient Flow
Scheduling (DEFS) problem is to find a feasible schedule, S,
such that the total energy consumption, Φf (S), is minimized.
Since the paths are prefixed, the number of active links (i.e.,
|Ea|) is a constant. Thus, the optimization objective can be
simplified to Φf (S) =

∫ T

0

∑
e∈Ea

µ(xe(t))
αdt.

Assume that all the future flow arrival information is known
a priori. The DEFS problem can be solved optimally in
polynomial time by applying the Ellipsoid Algorithm or using
the efficient combinatorial algorithm proposed by Lin et. al.
in [11]. However, the assumption that all future information
is known a priori in the offline setting is impractical in the
real world. The information of flows is revealed over time.
Therefore, we are interested in designing online algorithms
that schedule a network flow demand that minimizes the total
energy consumption in the network.

At each time t ∈ T , an online algorithm, A, must determine
the amount of energy used to transmit the flows by specifying
the transmission rates for each flow based only on the knowl-
edge of Zt. In other words, the decision at time t cannot be
based on the values of any quantity that will be revealed in
the future. Assuming that Z is a possible realization of flow
information, we use Φ∗

o(Z) to represent the optimal offline



Algorithm 1 : DEFSA
Input: Time-slot t, Zt, β.

1: for e ∈ E do
2: for ji ∈ Je(t) do
3: Calculate Pe qi .
4: wi ← |Pe qi | · wi.
5: end for
6: Calculate the value of σe(t).
7: Calculate xe(t) on set Je(t).
8: Transmit flows by the EDF policy using σe(t)xe(t) as

the transmission rate for subflow ji.
9: end for

solution to DEFS under the realization Z. Let ΦA(Z) be the
solution of any online algorithm A. Clearly, we must have
ΦA(Z) ≥ Φ∗

o(Z). We can then evaluate the effectiveness of
an online algorithm, A, by comparing it to the optimal solution
of the offline algorithms mentioned above. Let Z denote the
set of all possible realizations. The competitive ratio is defined
as follows:

Definition 2. Let Φ∗
o be the optimal offline solution to the

problem. Let ΦA be the solution of an online algorithm, A.
Then, the competitive ratio of A is σ (σ = maxZ∈Z{ΦA(Z)

Φ∗
o(Z) }),

if for all sequences of input Z .

IV. AN EFFICIENT ONLINE ALGORITHM FOR THE DEFS
PROBLEM

We present an online algorithm that can incorporate future
flow prediction information for the DEFS problem (referred
to as DEFSA) in this section. DEFSA is an efficient heuristic
algorithm that is designed based on our prediction model. The
overview of the DEFSA algorithm executed at each time slot
is illustrated in Algorithm 1.

When a flow, ji ∈ Je(t), is arriving on an edge, e ∈ E ,
the scheduler calculates the remaining routing path, Pe qi ,
from its current location to destination qi for this flow (in line
3) according to some given rules (such as the shortest path
routing protocol) first. Then, the scheduler updates the effective
demand by multiplying wi by the length of the remaining path,
Pe qi , in line 4. The intuition is that the execution of the
flow ji must be complete by the deadline di along its routing
path. When all the preliminaries are met, the scheduler starts
to compute the transmission rate as well as the transmission
order for each flow.

The key insight of this algorithm is to intuitively compute
the lowest possible rate using the optimal offline schedule al-
gorithm (to simplify the description, we refer to this algorithm
as YDS), which is raised by Yao et. al. [22] to solve the
rate scaling problem in a single processor, given the tasks
that have arrived to-date, and run at several times (a positive
value) that speed. Note that the positive value represents a
scaling factor. Specifically, for each link, e, the scheduler will
behave as follows: At each time slot, t, the scheduler firstly
calculates the value of the scaling factor which is denoted by

σe(t) (in line 6). Then, it uses the YDS algorithm to compute
the optimal peak transmission rate, xe(t) on flow set, Je(t),
(assuming that no flows arrives after time slot t) from a global
perspective (in line 7). After that, each flow, jie ∈ Je(t),
is transmitted according to the Earliest-Deadline-First (EDF)
[23] policy using σe(t)xe(t) as the transmission rate (in line
8). Note that the EDF policy is adopted here in order to meet
the deadline constraint as much as possible.

It is not difficult to see that the value of σe(t) plays a key
role in determining the performance of the algorithm. In the
following, we will show how to calculate the value of σe(t)
so that it can achieve an improved performance of the online
algorithm by integrating the prediction knowledge of the future
information into the computation.

Computation of the factor σe(t) is inspired by the funda-
mental computation framework introduced in [24] which aims
to smooth the peak electricity provision for vehicle recharge
problems. We extend the computation framework so that it
can incorporate the probability-based prediction model and
meet the requirement of the data center network’s energy
consumption reduction scenario in this paper. Before going
into details, we first introduce the following lemma.

Lemma 1. ([24]) An online algorithm, A, is feasible iff for
all Z ∈ Z and all t1 ≤ t2, t1, t2 ∈ T , the following inequality
holds:

t2∑
t=t1

t2∑
s=t

wt,s ≤
∫ t2

t1

xe(t)dt. (7)

Lemma 1 states that, in order for an online algorithm to
be feasible, the total traffic that can be transmitted according
to the transmission rate chosen by the scheduler at any time
interval, [t1, t2], must be no smaller than the total number of
flow demands that must be transmitted in the same interval.
Further, Lemma 1 is also a sufficient condition. Specifically, if
an online algorithm, A, satisfies Lemma 1, and the algorithm
uses the Earliest-Deadline-First (EDF) policy [23] to transmit
the flow, then the algorithm can transmit all the flow demands
before their corresponding deadlines. The detailed proof of
Lemma 1 has been presented in [24], and is omitted here due
to space limitations.

Due to the superlinear property of the power function, a
schedule that minimizes the overall energy consumption will
try to use the smallest possible transmission rates to process
the delayable flows throughout the time interval. For each time
interval, [t1, t2] ∈ T , we can find a positive value, σt1,t2 ,
satisfying xe(t) ≤ σt1,t2x

∗
e(t), where x∗

e(t) is the optimal
transmission rate at time slot t ∈ [t1, t2] and is computed
using the YDS algorithm with the whole input sequence.

Combining xe(t) ≤ σt1,t2x
∗
e(t) with Lemma 1, we have the

following:

t2∑
t=t1

t2∑
s=t

wt,s ≤
∫ t2

t1

xe(t)dt ≤ σt1,t2

∫ t2

t1

x∗
e(t). (8)



Then, we have

σt1,t2 ≥
∑t2

t=t1

∑t2
s=t wt,s∫ t2

t1
x∗
e(t)

. (9)

Unfortunately, one cannot obtain the value of x∗
e(t) since

we cannot know the whole input before the scheduling begins.
However, considering a time slot t ∈ [t1, t2], we know all the
flows that arrive during t′ ∈ [t1, t] and all the flow predictions
for future time intervals, [t,min{t+L, t2}]. Thus, we are able
to estimate an infimum for the value of x∗

e(t) based on the
information that is already known.

Let Zβ denote the subset of all possible realizations
with a probability no smaller than β, i.e., Zβ = {Zβ

t |t ∈
T , Zβ

t satisfies the probability-based prediction model with β}.
Using the flow information mentioned above and assuming
that no flows arrive after time slot t2, we can estimate an
infimum of the transmission rate for each time slot t ∈ [t1, t2]
(denoted by x∗

e(Z
β
t )). The estimation process is as follows.

Given a realization Z ′(Z ′ ∈ Zβ , Z
′
t = Zβ

t ), we can compute
the optimal solution using YDS. Let x′

e(Z
β
t ) denote the

transmission rate chosen by the optimal solution. Then,
define the minimum value of x′

e(Z
β
t ) amongst all possible

realizations in Zβ as x∗
e(Z

β
t )

x∗
e(Z

β
t ) = inf

Z′∈Zβ ,Z′
t=Zβ

t

x′
e(Z

β
t ). (10)

Obviously, the value of x∗
e(Z

β
t ) provides an infimum for the

link transmission rate under the flow information, revealed as
Zβ
t . Thus, the following inequation is established:

x∗
e(Z

β
t ) ≤ x∗

e(t). (11)

Substituting x∗
e(t) with x∗

e(Z
β
t ) ≤ x∗

e(t) for inequation (12),

σt1,t2 ≥
∑t2

t=t1

∑t2
s=t wt,s∫ t2

t1
x∗
e(Z

β
t )

. (12)

By solving the following optimization problem,

σt1,t2 = sup
Z∈Zβ

∑t2
t=t1

∑t2
s=t wt,s∫ t2

t1
x∗
e(Z

β
t )

(13)

and finding the largest σt1,t2 among all t1 < t2, t1, t2 ∈ T ,

σe(t) = max
t1≤t2,t1,t2∈T

{σt1,t2} (14)

the factor σe(t) has been computed. Note that the problem (13)
is a bi-level optimization problem. Since the flow demands can
be scaled up and down freely without violating the constraints
of the system, the problem (13) can be converted to a convex
problem, thus can be solved efficiently. [19]

Note that the value of β represents a trade-off between
conservative and aggressive behaviors. If the value of β is
set to 0, the algorithm exhibits a conservative behavior with a
pessimistic vision of the future. Thus, it always uses a larger
rate to transmit flows than the optimal solution does; If the
value of β is set to a large nonzero value, the algorithm
exhibits an aggressive behavior with an optimistic vision of

the future. Thus, we always use a smaller, but also feasible,
rate to transmit flows rather than the optimal solution. The
optimal value of β depends on the actual flow behavior of
the applications in a specific data center network. In practice,
a desirable value of β can be found by conducting several
experiments via the network manager.

V. NUMERICAL RESULTS

In this section, we briefly describe numerical results that
illustrate the performance of the proposed online algorithm.

A. Settings

Data center. We use a 8-ary Fat-Tree topology (Figure
2(a) to shows a 4-ary Fat-Tree topology) simulate a data
center network in this evaluation. The 8-ary Fat-Tree topology
consists of 8 pods, each involving 16 edge switches. In total,
128 servers are connected by these edge switches.
Benchmarks. To evaluate the energy-saving performance of
our online algorithm, we compare the evaluation results with
the Most-Critical-First (referred to as MCF for brevity) al-
gorithm, which is an offline scheduling algorithm that can
obtain the optimal solution. [11] Even though determining
the optimal solution in a real network is not available, the
optimal solution can serve as the lower bound. In addition to
the benchmarking of the optimal solution, we also compare the
DEFSA algorithm with another famous online flow scheduling
algorithm (referred to as BKP for brevity) [17] that schedules
flows without prediction information.
Parameters. The energy function used in this evaluation is
xα. We choose 2, 3, and 4 as the values of α to see the
effect on the results. We set the time-horizon to [1, 100]. The
arrival-flow sequence is generated in the following way. The
number of flows varies from 100 to 350. The release times and
deadlines of each flow are uniformly distributed from [1, 100].
The demand of each flow is a random value that follows the
normal distribution N (10, 3). Each prediction is made 30 time
slots ahead and follows a normal distribution.

B. Results

Measuring the impact of incorporating prediction. We
evaluate the impact of incorporating the prediction information
in the scheduling. In order to understand the influence of the
value of β on the performance of the DEFSA algorithm, we
set 0.1, 0.3 and 0.7 as the values of β, which are referred
to as DEFSA-I, DEFSA-II, and DEFSA-III, respectively. The
simulation results are shown in Table I. The results illustrate
the amount of energy consumed in the network with three dif-
ferent flow scheduling strategies when the number of flows is
set to 100 and 350, respectively. The value of α is set to 4. As
expected, the offline optimal algorithm outperforms two online
algorithms to a large extent. Besides, the DEFSA algorithm
performs much better than the BKP algorithm. Therefore, by
incorporating future predictions into the scheduling, we can
significantly reduce the energy consumption in data center
networks much further.



In addition, Table I also shows the impact of different
values of β on the performance of the DEFSA algorithm.
It demonstrates that the DEFSA algorithm performs better
in the setting with β = 0.3 (i.e., DEFSA-II) than the other
two settings (i.e., β = 0.1 in DEFSA-I and β = 0.7
in DEFSA-III). It shows that choosing different values for
β results in different energy consumption reductions. This
confirms that there is a trade-off between conservative and
aggressive behaviors in terms of energy conservation. Neither
an oversized (aggressive) nor undersized (conservative) value
for β is good for improving the energy efficiency of the data
center network. Since the quality of the value of β is closely
related to the network scene, a desirable value of β can be
determined by repeated experiments.

TABLE I
THE AMOUNT OF ENERGY CONSUMED IN THE NETWORK PROVIDING

THREE DIFFERENT FLOW SCHEDULING STRATEGIES.(×105)

Case MCF DEFSA-I DEFSA-II DEFSA-III BKP
100# 3 91 63 90 336
350# 10171 405494 205976 325494 1086340

Measuring the impact of the value of α. We then evaluate the
impact of the value of α on the performance of the proposed
algorithm. We set the values of α as 2, 3, and 4. The flow
number is set to 100. The simulation results are shown in
Figure 3. From the results, it can be seen that all three test
algorithms consume more energy with a larger value of α.
Besides, with different settings of the value of α, we find that
the BKP algorithm still uses more energy than the DEFSA
algorithm.

Fig. 3. The amount of energy consumed in the network providing three
different values of α under different flow scheduling strategies. (100 flows)

Measuring the impact of the value of the lookahead time
interval. We then evaluate the impact of the value of the
lookahead time interval L on the performance of the proposed
algorithm. The value of α is set to 4. The value of β is set to
0.3. The flow numbers are set to 100 and 350, respectively. We
set the values of L as 0, 30 and 60, which are referred to as
DEFSA-L0, DEFSA-L30, and DEFSA-L60, respectively. The
simulation results are shown in Figure II. From the results, it
can be seen that, when L is set to 0, which means that no
future information is provided, the energy consumption is the
highest in both flow scenarios. As the value of L increases,

more future information is known, and the performance of the
DEFSA algorithm is improved. These results also demonstrate
that incorporating future predictive information is beneficial to
improving the performance of the scheduling.

TABLE II
THE AMOUNT OF ENERGY CONSUMED IN THE NETWORK PROVIDING

THREE DIFFERENT FLOW SCHEDULING STRATEGIES.(×105)

Case DEFSA-L0 DEFSA-L30 DEFSA-L60
100# 282 63 23
350# 995307 205976 91342

Measuring the impact of the number of flows. We also
evaluate the impact of the number of flows on the performance
of the proposed algorithm. The simulation results are shown
in Figure 4. The results show that the DEFSA algorithm
outperforms the BKP algorithm in variable traffic scenarios.

Fig. 4. The amount of energy consumed in the network varies with the number
of flows under different flow scheduling strategies.

VI. RELATED WORK

This section summarizes the existing studies on energy-
efficient flow scheduling that are most related to this paper.

A. Offline Scheduling

The pioneering work on saving energy in computer systems
via task scheduling based on speed scaling is by Yao et. al.
[22]. They propose an optimal, offline, energy-efficient task
scheduling algorithm for a single processor. Inspired by that
work, Li et. al. [25] propose a preemptive scheduling method
to reduce the energy consumed in data center networks. Their
method can remove bottleneck active links in data centers, thus
improving the overall utilization of network resources. The
authors in [26] propose an energy-efficient flow scheduling in
software defined networks. This method minimizes the total
energy consumption in data center networks while ensuring
that each flow can be transmitted before the deadline. In [27],
the authors propose a network flow scheduling algorithm that
can achieve a trade-off between the delay, queue size, and
energy conservation. There are also a number of studies [7,
11, 28, 29] that focus on the topic of using both routing and
scheduling to reduce energy consumption in wired networks.



B. Online Scheduling

There are few works that target energy-efficient online
scheduling the way that we do. Yao et. al. propose two online
scheduling heuristics for a single processor in [22]. The first
is called Average Rate (AVR), which runs each job with a rate
equal to its density. The second is called Optimal Available
(OA), which runs each job with a rate that would be optimal
according to its current jobs. A more competitive scheduling is
proposed by Bansal et. al. in [17] with a competitive ratio no
larger than 2( α

α−1 )
αeα. The authors in [18] consider online

packet scheduling with hard deadlines and weights through
given routes in a general multihop wired network. They study
packet scheduling as well as admission control to maximize
the cumulative weights of packets that have been successfully
transmitted within the deadline. However, they neither con-
sider energy conservation nor incorporate future information.
The computation process of the tunable parameter in our paper
shares some similarities to the technique introduced by Zhao
et. al. in [24]. However, there are two main differences exist
between these works: 1) while [24] focuses on minimizing the
peak resource requirement from the grid, our work aims to
find a schedule that minimizes the total energy consumption
of a network; 2) while [24] only computes the competitive
ratio that satisfies the worst-case performance, our method
can achieve an arbitrary trade-off between conservative and
aggressive behaviors in terms of energy consumption.

VII. CONCLUSION

This paper has tackled the online flow scheduling prob-
lem under the deadline constraint for energy conservation in
data center networks. We propose a probability-based flow
prediction model that captures the uncertainty of the data
center network system. To better exploit the available future
knowledge obtained by the predictions, we develop a tunable
and efficient online flow scheduling algorithm to reduce the
energy consumption while guaranteeing flow deadlines in data
center networks based on the probability-based model. By
introducing a scaling factor on bandwidth allocation, the online
algorithm allows the network manager to obtain an arbitrary
trade-off between conservative and aggressive behaviors in
terms of power conservation. We demonstrate the effectiveness
of the algorithm through both theoretical analysis as well as
numerical evaluations.
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