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Abstract—In the Online to Offline (O2O) taxi business (e.g.,
Uber), the interests of passengers, taxi drivers, and the company
may not align with one another, since taxis do not belong to
the company. To balance these interests, this paper studies the
taxi dispatch problem for the O2O taxi business. The interests
of passengers and taxi drivers are modeled. For non-sharing taxi
dispatches (multiple passenger requests cannot share a taxi), a
stable marriage approach is proposed. It can deal with unequal
numbers of passenger requests and taxis through matching them
to dummy partners. Given dummy partners, stable matchings are
proved to exist. Three rules are presented to find out all possible
stable matchings. For sharing taxi dispatches (multiple passenger
requests can share a taxi), passenger requests are packed through
solving a maximum set packing problem. Packed passenger
requests are regarded as a single request for matching taxis.
Extensive real data-driven experiments demonstrate how well
our approach performs. The proposed algorithms have a limited
performance gap to the literature in terms of the dispatch delay
and the passenger satisfaction, but they significantly improve
upon existing algorithms in terms of the taxi satisfaction.

Keywords-Taxi dispatch schedule, passenger requests, taxi
drivers, matching stability, sharing and non-sharing.

I. INTRODUCTION

Taxis are playing an increasingly important role in modern

cities to support people’s daily commutes. Based on a survey

conducted in New York city [1], more than 100 taxi companies

are operating more than 13,000 taxis in New York, delivering

660,000 passengers every day. They convey more than 25%

of all the passengers, accounting for 45% of total transit fares.

In traditional taxi companies, taxis and their drivers belong to

a company. As a result, taxis are owned by the company, and

are dispatched based on the interest of the company (rather

than the interest of each taxi driver). Although taxi drivers are

coordinated to maximize the total profit of the company, their

own profits are not considered in taxi dispatch schedules.

Recently, the taxi business has been revolutionized by the

Online to Offline (O2O) business, which combines offline

business services with online platforms. Customers are attract-

ed online, but are served offline. One example of an O2O

taxi company is Uber Technologies, which creates a mobile

application to connect drivers and passengers. The O2O taxi

business is different from traditional services, since taxis do

not belong to the company. Note that Uber taxis are completely

private. Therefore, the interests of Uber drivers may not align

with the interest of Uber. Consequently, it becomes extremely

challenging to balance the interests of passengers, drivers, and

the company in the O2O taxi business.
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Fig. 1. An illustration of the O2O taxi dispatch.

To better illustrate the taxi dispatch challenge, an example

is shown in Fig. 1, which involves two passenger requests

(r1 and r2) and two taxis (t1 and t2). The distances between

passengers and taxis have been shown. In the schedule S1, t1
is assigned to r2, and t2 is assigned to r1. t1 and r2 get their

best partners, while t2 and r1 get their worst partners. To pick

up passengers, the total taxi travel distance in S1 is 12. In the

schedule S2, t1 is assigned to r1, and t2 is assigned to r2. r1
and t2 get their best partners, while r2 and t1 get their worst

partners. To pick up passengers, the total taxi travel distance in

S2 is 8. In terms of the total taxi travel distance, S2 is better

than S1. However, in terms of passenger-driver fairness, S1

and S2 are the same (one passenger and one taxi get their

best partners, while the others get their worst partners). Since

taxis are private and passengers are independent, determining

which taxis and passengers should be prioritized is difficult. To

determine a taxi dispatch schedule for the O2O taxi business,

the balanced interests of passengers, taxi drivers, and the

company must be considered.

This paper studies the O2O taxi dispatch problem through a

stable marriage approach [2]. Given a set of passenger requests

and a set of taxis, the objective is to maximally and stably

match passenger requests and taxis. Each passenger always

prefers a shorter wait time, and thus, prefers taxis that are

closer. On the other hand, the taxi’s interest depends on the dis-

tance to pick up the passenger, as well as the distance to carry

the passenger. The passenger-driver fairness is represented by

the matching stability, i.e., a matched passenger and a matched

driver will not prefer each other over their existing partners.

Our approach can deal with unequal numbers of passenger

requests and taxis, while a passenger request or a taxi can be

matched to a dummy partner. Our approach is further extended

to taxi sharing scenarios, in which multiple passenger requests

can share one taxi by solving a maximum set packing problem.
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Our main contributions are summarized as follows:

• We discuss novel taxi dispatch issues for the O2O taxi

business, in which taxis do not belong to the company.

The interests of passengers, drivers, and the company are

modeled and balanced.

• We propose a stable marriage approach to dispatch taxis

in the O2O taxi business. It can deal with scenarios that

have unequal numbers of passenger requests and taxis.

• We investigate taxi sharing problems, in which multiple

passenger requests can share one taxi. Passenger requests

are packed by solving a maximum set packing problem.

• Extensive real data-driven experiments are conducted to

evaluate the proposed solutions. The results are shown

from different perspectives to provide conclusions.

The remainder of this paper is organized as follows. Section

II surveys related works. Section III describes the model, and

then, formulates the problem. Sections IV and V will explore

non-sharing and sharing taxi dispatches, respectively. Section

VI includes experiments. Section VII concludes the paper.

II. RELATED WORK

In traditional taxi companies, taxis are owned by the com-

pany. Consequently, taxis are dispatched based on the interest

of the company rather than the interest of each taxi driver. For

example, Hanna et al. [3] considered the taxi dispatching issue

as an assignment problem, and solved it via several matching

methods. Their approaches include (i) a greedy method that

assigns the passenger request to its geometrically nearest taxi,

(ii) a refined Hungarian method that finds a minimum cost

bipartite matching between passenger request and taxis, and

(iii) a bipartite matching method that minimizes the maximal

cost of a matched request-taxi pair. Meanwhile, Tong et al. [4]

also focused on a online minimum bipartite matching approach

for taxi dispatches. They found that the greedy method in [3],

which has an exponential competitive ratio, has a much better

average performance than other bounded algorithms. Tian et

al. [5] designed a real-time taxi dispatch system called Noah,

depending on a shortest path algorithm, a dynamic matching

algorithms, and a spatial taxis retrieving method. Zhang et

al. [6] formulated a taxi dispatch optimization problem using

integer linear programming, and derived the optimal solution

under a small system scale. When the number of passenger

requests and taxis becomes large, a heuristic algorithm was

proposed to achieve a faster execution time. Ma et al. [7]

studied taxi dispatch schedules, aim to minimize total travel

distance via a spatio-temporal index. Traditional approaches

may not be applied to the O2O model, since the interest of

the driver may not align with the interest of the company.

In order to improve the taxi efficiency, carpool approaches

become popular. Li et al. [8] considered a two-stage schedule

in which passengers and parcels are cooperatively handled by

the same taxi network. Its first stage routes passengers based

on the Travelling Salesman Problem (TSP). Its second stage

inserts parcels into the passenger route with minimum extra

travel distances. Trasarti et al. [9] extracted mobility profiles

of individuals from raw digital traces, and explored criteria

to match individuals based on profiles. A matching criterion

was developed to satisfy various basic constraints obtained

from the background knowledge of the application domain.

Santi et al. [10] proposed a method for shareability networks,

which translate spatio-temporal sharing problems into a graph-

theoretic framework with efficient solutions. Their experiments

revealed the vast potential of routinely shareable taxis while

keeping passenger discomfort low in terms of prolonged travel

time. Zhang et al. [11] systematically designed a carpool ser-

vice called coRide, which incorporates highly spatiotemporally

correlated demand/supply models and real-time GPS location

and occupancy information. It matches demand and supply for

service quality with minimum taxi idle driving distance.

This paper is related to the Stable Marriage Problem (SMP).

SMP aims to find a stable matching between two equally sized

sets of elements (i.e., men and women), given complete pref-

erence orders of each man and woman [12]. Stability requires

that a matched man and a matched woman will not prefer

each other over their existing partners. This paper extends

the SMP to the scenario with unequal numbers of passenger

requests and taxis. The SMP has several important variations.

Sethuraman et al. [13] incorporated geometric properties into

the SMP, lead to the existence of median stable solutions, in

which an element is assigned to their median stable partners.

Iwama et al. [14] relaxed the SMP with incomplete preference

orders and preference ties. If incomplete preference orders and

preference ties are both allowed, the SMP becomes NP-hard,

and no algorithm can guarantee a polynomial approximation

ratio. Király [15] proposed a linear time local approximation

algorithm for maximum stable marriage, which aims to find

maximum number of stable matched pairs.

III. MODEL AND FORMULATION

This section describes the taxi dispatch scenario, analyzes

the O2O business model, and formulates the problem.

A. Scenario and Notations

Our scenario is a three-dimensional Euclidean surface that

represents the city. Taxi dispatches are batched according to a

discrete approach: time is discretized into frames (e.g., one

minute per frame). Idle taxis are dispatched to passenger

requests within the current frame. Let ti denote the i-th idle

taxi and its location in the current frame. T = {ti} is the set of

taxis and their current locations. Let rj = (rsj , r
d
j ) denote the

j-th passenger request, with its pick-up and drop-off locations

to be rsj and rdj , respectively. R = {rj} is the set of passenger

requests. A distance function, D(· , ·), is introduced to measure

the shortest path distance between different locations. For

example, D(ti , r
s
j ) represents the shortest path distance for

the i-th taxi to pick up the j-th passenger request. D(rsj , r
d
j )

is the taxi traveling distance from picking up to dropping off

the j-th passenger. The objective of this paper is to find a taxi

dispatch schedule S, which maximally and stably matches T
to R with balanced interests of passengers, drivers, and the

company. Finally, let S(rj) be rj’s partner in S (i.e., the taxi

that is dispatched to rj in S).
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B. Problem Formulation

In the O2O taxi business, passengers, drivers, and the com-

pany are three parties with different interests. The company

(e.g., Uber Technologies) is assumed to have neutral interests

with respect to passengers and taxi drivers. This is because the

company is essentially a broker, who acts on behalf of both

the passenger and the taxi driver in a ride. Consequently, the

company makes money through taking a fixed percentage of

the fare of each taxi ride [16]. The company aims to make the

most money from fares of taxi rides.

This paper will discuss both non-sharing and sharing taxi

dispatches. Depending on taxi sharing or not, the interests of

passengers and taxi drivers are described later, respectively.

As a result, passengers and taxi drivers will have preference

orders for each other. A stable marriage approach is proposed

to balance the interests of passengers and taxi drivers. The

objective is to find a stable matching (taxi dispatch schedule)

between passenger requests and taxis. Being different from the

stable marriage problem, the numbers of passenger requests

and taxis may not be the same (i.e., |R| = |T | is not required).

A dummy entry in the preference order represents no taxi

dispatch. The number of stably matched passenger requests

and taxis is maximized to fit the interest of the company.

IV. NON-SHARING TAXI DISPATCHING

This section focuses on non-sharing taxi dispatches. Each

taxi can hold at most one passenger request, while a passenger

request can ask for only one taxi.

A. Interests of Passengers and Taxi Drivers

Let us start with passengers. Usually, passengers will not

care about the taxi brand or the gender of the driver. Instead,

a passenger mainly cares about on the taxi wait time [17, 18].

As a result, the passenger’s preference order depends on the

distance between the taxi and the passenger (i.e., the nearest

taxi is the best for the passenger). In other words, the passenger

request rj prefers the taxi ti′ over ti if D(ti′ , r
s
j ) < D(ti , r

s
j ).

If ti does not have enough seats for rj , then rj will put ti to

the end of its preference order. In this case, rj can be divided

into multiple requests (at the same location), each of which

asks for a taxi with fewer seats.

In contrast to passengers, drivers have a more complicated

interest model. Two parts should be considered: (i) the idle

taxi driving distance from the current location of the taxi to

the pick-up location of the passenger, and (ii) the taxi traveling

distance from the passenger pick-up location to the passenger

drop-off location. The first and second parts represent the ex-

pense and the pay-off of the taxi, respectively. We use a coef-

ficient, α, to combine the above two parts. As a result, the taxi

driver’s preference order depends on D(ti, r
s
j ) − αD(rsj , r

d
j ).

The taxi driver ti prefers the passenger request rj′ over rj , if

D(ti, r
s
j′)− αD(rsj′ , r

d
j′) < D(ti, r

s
j )− αD(rsj , r

d
j ). Note that

the interests of passengers and taxi drivers may conflict with

each other (ti prefers rj does not mean that rj prefers ti, and

vice versa). An example is that the nearest taxi of a passenger

may not prefer to pick up this passenger due to a low pay-off.

B. Matching Passenger Requests and Taxis

To match passenger requests and taxis, we need to extend

the definition of matching stability:

Definition 1: A matching (i.e., taxi dispatch schedule) is

stable, if an arbitrary matched passenger and another arbitrary

matched driver will not prefer each other over their existing

partners (including dummies partners, and dummies always

prefer non-dummies over dummies).

Suppose that ti is dispatched to rj and ti′ is dispatched to

rj′ . A matching is not stable, if ti prefers rj′ over rj and rj′
prefers ti over ti′ . Our stability definition is different from

the traditional one, since it includes dummy partners (i.e., no

dispatch scenario). This is because a passenger may not want

a taxi if the taxi wait time is too long or the taxi does not

have enough seats. Similarly, a taxi does not want to accept a

passenger request that is too far away to make money. Note

that dummies always prefer non-dummies over dummies. To

obtain a stable matching, a taxi should always be matched

to a passenger request that is more preferred over a dummy

partner. Otherwise, the stability definition is not satisfied. In

addition, this is similar for passenger requests.

A passenger request’s preference order includes all taxis and

an extra dummy entry (i.e., no dispatch). A taxi’s preference

order includes all passenger requests and also an extra dummy

entry (i.e., no service). The numbers of passenger requests and

taxis may not be equal, and the position of the dummy entry

can be arbitrary in the preference order. We have:

Theorem 1: A stable matching exists, if exact one dummy

entry (i.e., no dispatch) exists in the preference order of each

passenger request and that of each taxi. This theorem validates

even if |R| 6= |T |.
Proof: We prove by using dummy passenger requests and

taxis. Let |R| and |T | denote the number of passenger requests

and the number of taxis, respectively. |T | dummy passenger

requests and |R| dummy taxis are added. |T | dummy passenger

requests will replace the dummy entry in the preference order

of each taxi (each dummy entry becomes |T | consecutive

dummy passenger requests). Similarly, |R| dummy taxis will

replace the dummy entry in the preference order of each

passenger request. The preference orders of dummy passenger

requests and dummy taxis always prefer non-dummies over

dummies. After adding dummy entries, our problem becomes

a classic stable marriage problem with |R|+ |T | elements on

each side. Consequently, a stable matching exists [12]. If we

map dummy passenger requests and taxis back to the dummy

entry, the matching stability maintains based on Definition 1.

Therefore, the proof completes. �

Algorithm 1 is proposed to find out the stable matching in

Theorem 1. The key idea is to handle dummy entries as the end

of the matching. If we go back to the proof of Theorem 1, once

a passenger request or a taxi is matched with a dummy partner,

it will not be matched to a non-dummy partner (otherwise it

is not stable). Algorithm 1 consists of three parts. Lines 1

to 7 include the first part, which is a sub-algorithm called

Proposal. Given a passenger request rj , if the next entry in its

preference order is non-dummy, rj will propose a match to it
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Algorithm 1 Non-Sharing Taxi Dispatch

Input: a set of taxis, T , and a set of passenger requests, R.

Output: a passenger-optimal taxi dispatch schedule, S∗.

1: Sub-algorithm Proposal

2: Input: passenger request rj .

3: if the next entry in rj’s preference order is non-dummy

(let ti denote this entry) then

4: Update rj’s current entry to be ti.
5: Call sub-algorithm Refusal for S∗, ti, and rj .

6: else

7: rj is unserved (no taxi dispatch), and update S∗.

8: Sub-algorithm Refusal

9: Input: schedule S∗, taxi ti, and passenger request rj .

10: if ti is undispatched and prefers rj over no dispatch then

11: Dispatch ti to rj , and update S∗.
12: else if ti is dispatched to rj′ , but prefers rj over rj′ then

13: Dispatch ti to rj , and update S∗.
14: Call sub-algorithm Proposal for rj′ .
15: else

16: Call sub-algorithm Proposal for rj .

17: Non-Sharing Taxi Dispatch

18: Compute preference orders for ∀ri ∈ R and ∀tj ∈ T based

on D(ti, r
s
j ) and D(ti, r

s
j )− αD(rsj , r

d
j ), respectively.

19: Initialize each taxi in T as undispatched.

20: for each passenger request, rj ∈ R do

21: Call sub-algorithm Proposal for rj .

22: return S∗ as a passenger-optimal taxi dispatch schedule.

(lines 3 to 5). Otherwise, the algorithm terminates and no taxi

is dispatched to rj (lines 6 and 7). Lines 8 to 16 include the

second part, which is a sub-algorithm called Refusal. When rj
proposes a match to ti, ti accepts the proposal if it is currently

undispatched (lines 10 and 11). Otherwise, ti will compare rj
with its current partner, keep the preferred one, and refuse the

unpreferred one. The refused passenger request will go back

to proposal (lines 12 to 16). Finally, lines 17 to 22 include the

third part, which is the main program. Initializations are in

lines 18 and 19. Dummy preference order entries are used if

D(ti, r
s
j ) and αD(ti, r

s
j )−D(rsj , r

d
j ) are larger than thresholds.

If a taxi cannot provide enough seats for a passenger request,

they are put to the end of the preference order of each other.

In lines 20 and 21, each passenger request simply proposes

to taxis one by one. The time complexity of Algorithm 1 is

O(|R|·|T |). This is because each of |R| passenger requests

takes at most |T | to exhaust its preference order.

To illustrate Algorithm 1, an example is shown in Fig. 2,

in which grey grids are preference order entries that have

been visited. Dummy entries are represented by ∅. Fig. 2(a)

shows the preference orders of all passenger requests and taxis

(left-side entries are prioritized over right-side entries). Taxis

are initialized as undispatched. After the initialization, each

passenger request proposes to taxis in turn. Fig. 2(b) shows

r1’s proposal. The first entry of r1 is t1, and t1 accepts r1’s
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(b) r1’s proposal.
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(c) r2’s proposal.
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(d) r3’s proposal.

Fig. 2. An example to illustrate Algorithm 1.

proposal, since t1 prefers r1 over ∅. Fig. 2(c) shows r2’s

proposal. The first entry of r2 is t2, however, t2 prefers ∅ over

r2. As a result, r2 is refused by t2, and r2 is undispatched since

the next entry in r2’s preference order is ∅. Fig. 2(d) shows r3’s

proposal. The first entry of r3 is t1, which has been matched to

r1. However, t1 prefers r3 over r1. Therefore, t1 accepts r3’s

proposal, and refuses r1. Consequently, r1 re-proposes to the

next entry in its preference order, t2. Since t2 prefers r1 over

∅, it accepts r1’s proposal. Since r1, r2, and r3 have completed

their proposals, Algorithm 1 terminates (t1 is dispatched to r3,

t2 is dispatched to r1, and r2 is unserved).

C. Algorithmic Property

Algorithm 1 has several interesting properties:

Property 1: In the stable matching obtained by Algorith-

m 1, if a taxi prefers no dispatch over all passenger requests,

then it will not be dispatched. Similarly, if a passenger request

prefers no service over all taxis, then it will not be served.

When a taxi prefers no dispatch over all passenger requests,

it will refuse all proposals from passenger requests. Similarly,

when a passenger request prefers no service over all taxis, then

it will not propose to any taxis. This property gives flexibilities

to passengers and taxi drivers in the O2O business.

Property 2: Among all stable matchings, the stable match-

ing obtained by Algorithm 1 satisfies that passenger requests

have their best partners, but taxis have their worst partners.

This property is the same as the traditional Gale-Shapley

algorithm [12] (i.e., passenger-optimal taxi dispatch schedule).

As an extension, we have:

Theorem 2: In the passenger-optimal stable matching ob-

tained by Algorithm 1, if a passenger request is unserved, then

it is unserved in all possible stable matchings.

Proof: Let S∗ denote the passenger-optimal stable matching

obtained by Algorithm 1. rj denotes a passenger request that

is unserved in S∗. We prove by contradiction. Let S denote an-

other stable matching, i.e., S 6= S∗. Let S(rj) denote the taxi

that is matched to rj in S. By the definition of stability, rj must

prefer S(rj) over a dummy in its preference order. However,

S(rj) must have been proposed by rj in Algorithm 1. This

is because each passenger request proposes to more preferred

taxis before less preferred taxis in Algorithm 1. Therefore,

S(rj) must refuses rj due to other proposals in S∗, leading

to a contradiction. Therefore, Theorem 2 validates. �
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Algorithm 2 Non-Sharing Taxi Dispatch (All Schedules)

Input: a set of taxis, T , and a set of passenger requests, R.

Output: a set of all taxi dispatch schedules, Sa.

1: Sub-algorithm BreakDispatch

2: Input: a schedule, S, and a passenger request, rj .

3: Let S(rj) denote rj’s partner in S. Break the matching be-

tween S(rj) and rj . Under given rules, call sub-algorithm

Proposal for rj to try to obtain a new schedule S′.
4: if S′ is successfully obtained. then

5: Add S′ to the set of all taxi dispatch schedules, Sa.

6: for each passenger request, rj′ ∈ |R| and j′ ≥ j do

7: Recursively call BreakDispatch for S′ and rj′ .

8: Non-Sharing Taxi Dispatch (All Schedules)

9: Call Algorithm 1 to compute the passenger-optimal stable

matching S∗. Initialize the set Sa = {S∗}.
10: for each passenger request, rj ∈ |R| do

11: Call the sub-algorithm BreakDispatch for S∗ and rj .

12: return Sa as the set of all taxi dispatch schedules.

The intuition of Theorem 2 is that, in Algorithm 1, passen-

ger requests can obtain their best partners among all possible

stable matchings. Therefore, the passenger request, which is

unserved in Algorithm 1, is not able to get a more preferred

partner among other possible stable matchings.

D. All Stable Matchings

Property 2 shows that, among all possible stable matchings,

Algorithm 1 is a passenger-optimal one: passenger requests

have their best partners, but taxis have their worst partners.

However, Algorithm 1 ignores the interest of the company. We

propose that the company can pick a stable matching from all

possible ones [19], such that the most money is made.

As a result, Algorithm 2 is proposed to find out all possible

stable matchings. The key idea is to start with the passenger-

optimal stable matching, and try to break this stable matching

to obtain other stable matches. Algorithm 2 includes two parts.

Lines 1 to 7 include the first part, which is a sub-algorithm

called BreakDispatch. Given a taxi dispatch schedule S and a

passenger request rj , the sub-algorithm BreakDispatch tries to

break the current matching of rj in S. BreakDispatch involves

existing sub-algorithms Proposal and Refusal in Algorithm 1.

Some rules are used in breaking the existing stable matching,

and are explained later (line 3). BreakDispatch may not be

successful, depending on the rules. If BreakDispatch is suc-

cessful, another stable matching can be obtained (line 5), and

is recursively used to obtain subsequent new stable matchings

(lines 6 and 7). Lines 8 to 12 include the second part, which is

the main program. As an initialization, Algorithm 1 is called to

obtain the passenger-optimal stable matching S∗ (line 9). For

S∗ and each rj , the sub-algorithm BreakDispatch is iteratively

called to obtain other stable matchings (lines 10 and 11).

Since the key idea is to break an existing stable matching

to obtain new ones, several rules are needed to guarantee the

correctness and avoid the redundancy. Let S be a taxi dispatch

schedule that is a stable matching. Let S(rj) be rj’s partner

in S (i.e., the taxi that is dispatched to rj in S). We have:

Rule 1: Given S and rj , a successful BreakDispatch termi-

nates, when S(rj) is dispatched to another passenger request

rj′ that is non-dummy, and S(rj) prefers rj′ over rj . Other-

wise, BreakDispatch is unsuccessful.

This rule is used to guarantee the correctness:

Theorem 3: Given S and rj , a successful BreakDispatch

with Rule 1 results in another stable matching S′ (S′ 6= S).

Proof: All pairs of matched passenger request and taxi are

stable if they are both unaffected by BreakDispatch. Before

forcing rj to take a less preferred taxi, rj has already been

refused by more preferred taxis, since these taxis have better

partners than rj . In BreakDispatch, taxis will continue to

get more preferred passenger requests, otherwise the proposal

is rejected. BreakDispatch terminates when either (i) some

passenger requests are re-matched to dummy partners, or (ii)

S(rj) is dispatched to rj′ and S(rj) prefers rj′ over rj . The

former case does not yield a stable matching at the end, since

S(rj) is undispatched. In contrast, the latter case can yield a

stable matching, and the proof completes. �

Rule 2: Given S and rj , a successful BreakDispatch (and

its Proposal and Refusal) only involves the passenger request

rj′ with j′ ≥ j. BreakDispatch becomes unsuccessful, if it

involves a passenger request rj′ with j′ < j.

This rule is used to void the redundancy:

Theorem 4: Any stable matching, other than the passenger-

optimal one, could be obtained exactly once by recursively

applying BreakDispatch with Rules 1 and 2 to the passenger-

optimal stable matching.

Proof: The proof is divided into two parts. In the first part,

we prove that any other stable matching can be obtained by

recursively using BreakDispatch. In the second part, we prove

that any other stable matching is obtained exactly once.

We start with the first part. Let S(rj) denote rj’s partner

in S. Let S∗ denote the passenger-optimal stable matching.

S is another stable matching that is not passenger-optimal.

Without loss of generality, S∗(rj) 6= S(rj). By contradiction,

we show that no passenger request rj′ proposes to a less

preferred partner than S(rj′) during BreakDispatch on S∗.
If this could happen, let rj′ be the first one that is refused by

S(rj′) during BreakDispatch on S∗. Therefore, S(rj′) must

receive a proposal from a more preferred passenger request,

say rj′′ . Since rj′ is the first passenger request that is refused

by S(rj′) during BreakDispatch on S∗, rj′′ prefers S(rj′)
over S(rj′′). Consequently, rj′′ and S(rj′) prefer each other

over their partners in S, leading to a contradiction that S is

stable. Therefore, no passenger request rj′ proposes to a less

preferred partner than S(rj′) during BreakDispatch on S∗.
BreakDispatch on S∗ leads to a stable matching S′, in which

no passenger request has a less preferred partner than in S.

If S′ 6= S, then we can recursively use BreakDispatch on

an arbitrary passenger request, whose partner in S′ is better

than in S. The proof idea is the monotonicity: BreakDispatch

on the passenger-optimal solution monotonically makes each

passenger request to get a less preferred partner.
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For the second part, we prove that any other stable matching

is obtained exactly once. Given a stable matching S, we focus

on two different sequences of BreakDispatch on S. Let us

consider the first occasion, in which these two sequences of

BreakDispatch are different. The first and second sequences

operate on rj and rj′ , respectively (j′ > j). For the second

sequence, Rule 2 prevents rj from proposing again. Therefore,

rj has different partners in the first and second sequences.

As a result, different stable matchings are obtained by these

two sequences. Hence, any other stable matching is obtained

exactly once, and the proof completes. �

Rules 1 and 2 are applied to guarantee the correctness and

avoid the redundancy, respectively. On the other hand, The-

orem 2 shows that, in the passenger-optimal stable matching

obtained by Algorithm 1, if a passenger request is unserved,

then it is unserved in all stable matchings. To improve the

algorithm efficiency, one more rule is added:

Rule 3: Given S and rj , BreakDispatch is unsuccessful if

S(rj) is a dummy (i.e., rj is unserved in S).

Rule 3 can be simply derived from Theorem 2. Note that

Rule 3 is not necessary for Algorithm 2, but could improve the

algorithm performance by cutting off useless branches. Rule 3

is actually a completion of Rule 1: if Rule 3 is not satisfied,

no more stable matchings can be obtained.

To illustrate these rules, an example is shown in Fig. 3.

As shown in Fig. 3(a), the passenger-optimal stable matching

S∗ is computed by Algorithm 1: t1 is dispatched to r1, t2 is

dispatched to r2, and r3 is unserved. As shown in Fig. 3(b),

Algorithm 2 first tries to call BreakDispatch on the passenger-

optimal stable matching S∗ and r1. r1 is forced to take the

next less preferred partner, which is t2. Since t2 prefers r1 over

its existing partner r2, r2 is refused by t2 and proposes to t1
instead. Note that r2’s proposal is allowed by Rule 2. Since

t1 prefers r2 over r1, t1 accepts r2’s proposal. According to

Rule 1, a stable matching is successfully obtained. BreakDis-

patch is called recursively, however, other stable matchings are

not successfully obtained based on Rule 3. This is because next

preference order entries of r1 and r2 are dummy. In the next

step, Algorithm 2 tries to call BreakDispatch on S∗ and r2, as

shown in Fig. 3(c). r2 is forced to take the next less preferred

partner, which is t1. Since t1 prefers r2 over its existing partner

r1, r1 is refused by t1 and proposes to t2 instead. However,

only rj with j ≥ 2 can propose according to Rule 2. Therefore,

BreakDispatch on S∗ and r2 is unsuccessful. Meanwhile, t1
does not receive a proposal from a better partner based on

Rule 1. Finally, Fig. 3(d) shows BreakDispatch on S∗ and r3.

Since r3 is not served, this BreakDispatch is also unsuccessful

according to Rule 3. As a result, only one stable matching (t1
is dispatched to r2, t2 is dispatched to r1, and r3 is unserved)

is obtained other than S∗.

V. SHARING TAXI DISPATCHING

This section focuses on sharing taxi dispatches. Taxis can

hold multiple passenger requests, but a passenger request can

ask for only one one taxi. The interests of passengers and taxi

drivers are consistently refined in this scenario.
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t2 t1  

t2  t1
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(a) Passenger-optimal S∗.
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(b) BreakDispatch on S∗ and r1.
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(c) BreakDispatch on S∗ and r2.

r1

r2

r3

t1

t2

t1 t2  

t2 t1  

t2  t1

r2 r3 r1  

r1 r2 r3  

(d) BreakDispatch on S∗ and r3.

Fig. 3. An example to illustrate Algorithm 2.

A. Interests of Passengers and Taxi Drivers

Taxi sharing is a promising approach for saving commute

cost while satisfying passengers’ demands. It has been studied

for several years to deal with people’s routine commutes, and

has been implemented as a part of the O2O taxi business such

as UberPool. Recently it became more and more difficult for

people to hail a taxi during rush hours in increasingly crowded

urban areas. Naturally, taxi sharing is considered as a potential

approach to tackle this emerging transportation issue. The key

challenge is that the interests of passengers and drivers in

the sharing taxi dispatch is different from those in the non-

sharing taxi dispatch. Let ck = {rj , rj′′ , ...} denote a subset

of passenger requests that share a taxi. We have:

Theorem 5: Given ck, it is NP-hard to compute a directed

shortest path that goes through the pick-up location before the

drop-off location for each passenger request in ck.

Proof: We prove by reduction from the Shortest Hamiltonian

Path Problem (SHPP) [20] in a weighted directed graph G.

Given G, SHPP aims to find the shortest Hamiltonian path

that visits each node exactly once. Note that SHPP keeps to be

NP-complete when G is complete. This is because incomplete

graphs are special cases of complete graphs with infinite edge

weights for SHPP. By contradiction, we first claim that SHPP

remains NP-complete in a complete graph G that has an even

number of nodes. If SHPP is polynomially solvable in G with

an even number of nodes, it is also solvable in G with an odd

number of nodes through the following algorithm: (i) for each

node in G, we can polynomially compute SHPP without this

node, since the number of remaining nodes is even; (ii) for

each node in G, we can exhaustively insert it to the SHPP of

the remaining nodes, and thus obtain SHPP for G. Since G has

an either odd or even number of nodes, SHPP in G becomes

polynomially solvable, and thus, contradicts the truth. Hence,

SHPP remains NP-complete in a complete graph G that has

an even number of nodes. Given a complete graph G that has

an even number of nodes, we can set the first half nodes in

G’s shortest Hamiltonian path to be pick-up locations of ck,

and set the remaining half nodes to be drop-off locations of

ck. At this time, the shortest Hamiltonian path reduces to a

directed shortest path that goes through the pick-up location

before the drop-off location for each passenger request in ck.

By reduction from the SHPP, the proof completes. �
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Theorem 5 shows the NP-hardness of designing a route for

the taxi sharing among a subset of passenger requests. On the

other hand, we observe that the number of passenger requests

for a taxi sharing is usually no greater than three in our real

life. Therefore, the practical route for the taxi sharing can be

exhaustively searched. For example, given ck = {rj , rj′ , rj′′},
there exists in total 6!

2!2!2!
= 90 different feasible sequences

of rsj , rdj , rsj′ , rdj′ , rsj′′ , and rdj′′ . An exhaustive search is

acceptable to compute the directed shortest path that goes

through the pick-up location before the drop-off location for

ck. Taxis are assumed to go through the above path for sharing

among multiple passenger requests.

We revisit the interest of passengers, who mainly care

about the taxi wait time. Let Dck(ti, r
s
j ) denote the distance

between ti and rsj , when rj shares ti with passenger re-

quests in ck. Note that Dck(ti, r
s
j ) is not the shortest path

distance between ti and rsj . Instead, it is the distance along

ck’s shortest path (ti could pick up other passenger requests

before rj). In addition, passengers may also care about the

additional traveling distance due to taxi sharing. Similarly,

let Dck(r
s
j , r

d
j ) denote the distance between rsj and rdj , when

rj shares ti with other passenger requests in ck. Therefore,

Dck(r
s
j , r

d
j )−D(rsj , r

d
j ) is the additional traveling distance due

to taxi sharing. As a result, the passenger request’s preference

order can depend on Dck(ti, r
s
j )+β[Dck(r

s
j , r

d
j )−D(rsj , r

d
j )], in

which β is a coefficient to combine the taxi wait time and the

additional traveling distance. A smaller value means that the

taxi is more preferable. Note that when ck includes only one

passenger request rj , Dck(ti, r
s
j )+β[Dck(r

s
j , r

d
j )−D(rsj , r

d
j )]

reduces to D(ti, r
s
j ), as used in no-sharing taxi dispatches.

In addition, if several passenger requests share a taxi, their

average preference value is used to rank taxis.

Taxi drivers also have a complicated interest model. T-

wo parts are considered: (i) the total taxi driving distance

including idle and non-idle driving distances, and (ii) the

distance from each passenger’s pick-up location to its drop-

off location. The first and second parts represent the expense

and the pay-off of the taxi, respectively. Let Dck(ti) denote

the total taxi driving distance for ti to serve all passenger

requests in ck. As a result, the taxi driver’s preference order

depends on Dck(ti)−(α+1)
∑

rj∈ck
D(rsj , r

d
j ), in which α is a

coefficient to combine the expense and the pay-off of the taxi.

A notable point is that, when ck includes only one passenger

request rj , Dck(ti)−(α+1)
∑

rj∈ck
D(rsj , r

d
j ) can also reduce

to D(ti, r
s
j )−αD(rsj , r

d
j ), as used in no-sharing taxi dispatches.

B. Matching Passenger Requests and Taxis

When taxis are shared, our taxi dispatch schedule includes

two stages: (i) passenger requests are maximally packed to

subsets according to their preferences, and (ii) each subset of

passenger requests is regarded as a new passenger request to

be independently scheduled by Algorithm 1. Since the second

stage is trivial, we focus on the first stage. Let C = {ck}
be the set of all feasible subsets of passenger requests that

share a taxi. The feasibility means that, given a threshold θ,

we have Dck(r
s
j , r

d
j )−D(rsj , r

d
j ) ≤ θ for ∀rj ∈ ck, ck ∈ C.

Algorithm 3 Sharing Taxi Dispatch

Input: a set of taxis, T , and a set of passenger requests, R.

Output: a taxi dispatch schedule, S.

1: Through exhaustive search on R, compute the set, C, of

all feasible subsets of passenger requests that can share a

taxi: Dck(r
s
j , r

d
j )−D(rsj , r

d
j ) ≤ θ for ∀rj ∈ ck, ck ∈ C.

2: Given C, solve the MSPP in Eqs. 1 to 3 by the existing

approximation algorithm in [21]. Let C ′ = {ck |xk = 1}
and R′ = {rj |

∑
k:rj∈ck

xk = 0}.
3: Each subset of passenger requests in C ′ is regarded as an

independent request. Call Algorithm 1 on T and R′ ∪C ′.
4: return the result for T and R′ ∪ C ′ (passenger requests

in the same subset of C ′ will share a taxi).

This is due to the interest of passengers, who share a taxi

only if the additional traveling distance is limited. We assume

that 2 ≤ |ck| ≤ 3 for practical usage, and thus, all feasible ck
can be computed through the exhaustive search. The first stage

objective is to maximally pack passenger requests to feasible

subsets. Let xk be a boolean variable that indicates whether

ck is successfully packed. We have:

maximize
∑

k

xk (1)

subject to
∑

k:rj∈ck

xk ≤ 1 for ∀j (2)

xk ∈ {0, 1} for ∀k (3)

Eq. 1 is the objective of maximally packing passenger request

to subsets. Eq. 2 is the constraint that each passenger request

can be only packed to at most one subsets, since it will take

at most one taxi. Eq. 3 is the boolean constraint for xk. Eqs. 1

to 3 is essentially a Maximum Set Packing Problem (MSPP).

There exists an approximation algorithm [21] that guarantees

a ratio of (maxk |ck|+2)/3 for MSPP. Since we assume 2 ≤
|ck| ≤ 3 for practical usage, this ratio is acceptable.

Hence, Algorithm 3 is proposed to compute the sharing taxi

dispatch schedule. Line 1 conducts an exhaustive search on R
to compute the set of all feasible subsets of passenger requests

that can share a taxi. To meet the interests of passengers in

taxi sharing, the constraint of Dck(r
s
j , r

d
j )−D(rsj , r

d
j ) ≤ θ for

∀rj ∈ ck, ck ∈ C is given. Due to the exhaustive search, line

1 takes a time complexity of O(|R|3). Given the set C, line 2

solves the MSPP through an existing approximation algorithm

[21], taking O(|C|2) ⊆ O(|R|2). Here, C ′ = {ck |xk = 1}
is a set of packed subsets, each of which can be regarded as

an independent request to be scheduled by Algorithm 1. The

passenger requests in the same subset of C ′ will share a taxi.

Meanwhile, R′ = {rj |
∑

k:rj∈ck
xk = 0} represents the set of

passenger requests that are not included in any subsets of C ′.
Hence, each passenger request in R′ will not share the taxi

with others. Finally, line 3 calls Algorithm 1 on T and R′∪C ′

to dispatch taxis. A notable point is that the computations of

preference orders become different, as previously described.

The time complexity of Algorithm 3 is O(|R|3 + |R|·|T |).
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Fig. 4. Algorithm performance for non-sharing taxi dispatches in the New York trace.

0 10 20 30 40 50
70%

80%

90%

100%

dispatch delay in minute

p
e
rc

e
n
ta

g
e

Nearest

Hungarian

SCRAM

NSTD−P

NSTD−T

(a) Dispatch delay distribution.

0 1 2 3
0%

20%

40%

60%

80%

100%

passenger dissatisfaction

p
e
rc

e
n
ta

g
e

Nearest

Hungarian

SCRAM

NSTD−P

NSTD−T

(b) Passenger dissatisfaction distribution.

−15 −10 −5 0 5 10
0%

20%

40%

60%

80%

100%

taxi dissatisfaction

p
e
rc

e
n
ta

g
e

Nearest

Hungarian

SCRAM

NSTD−P

NSTD−T

(c) Taxi dissatisfaction distribution.

Fig. 5. Algorithm performance for non-sharing taxi dispatches in the Boston trace.

VI. EXPERIMENTS

Real data-driven experiments are conducted to evaluate the

performances of the proposed algorithms. Results are shown

from different perspectives to provide insights.

A. Real Traces and Settings

Experiments are conducted based on two real traces, the

New York trace [22] and the Boston trace [23]. The New

York trace was collected in January 2016, including 1,445,285

passenger requests. The Boston trace was collected in Septem-

ber 2012, including 406,247 passenger requests. Both traces

include the request time, the pick-up and drop-off locations of

each passenger request. According to the number of passenger

requests, 700 and 200 taxis are simulated in the New York

and Boston traces, respectively. Note that the New York trace

includes the passenger requests in the New York state, and

thus, this trace includes a significantly larger area than the

Boston trace. The locations of taxis follow a two-dimensional

normal distribution from the center of the city. Based on [24],

the taxi speed is set to be 20 km/h within the trace. In addition,

taxis are scheduled based on a one minute time frame.

B. Comparison Algorithms and Metrics

For non-sharing taxi dispatches, Algorithm 1 is denoted as

NSTD-P, since it is passenger-optimal. Based on Algorithms 1

and 2, we compute the taxi-optimal stable matching, which is

NSTD-T. Three comparison algorithms are used. (i) Nearest.

It greedily dispatches the nearest idle taxi to a given passenger

request. (ii) Hungarian. This is a modified Hungarian algorith-

m, in which the distances between passenger requests and taxis

are matching costs. It returns a minimum cost matching. (iii)

SCRAM [3]. It is also a matching algorithm, which minimizes

the maximum cost for a matched pair.

For sharing taxi dispatches, Algorithm 3 is used with θ = 5.

We use STD-P and STD-T to denote the packed passenger-

optimal and taxi-optimal stable matchings, respectively. Three

comparison algorithms are used. (i) RAII [7]. It minimizes the

total travel distance of taxis by using spatio-temporal indices to

encode the location and time of passenger requests and taxis.

(ii) SARP [8]. It is based on the TSP. It inserts new passenger

requests to existing taxi routes to minimize the additional

travel distance of taxis. (iii) Zhang [6]. It uses integer linear

programming to solve the taxi sharing problem. A heuristic

algorithm was proposed to achieve a faster execution time.

Three comparison metrics are employed. (i) Dispatch delay.

It is the delay from the time that a passenger request is sent

to the time that a taxi is dispatched to this passenger request.

The taxi still needs some travel time before picking up the pas-

senger. (ii) Passenger dissatisfaction: D(ti, r
s
j ) for non-sharing

taxi dispatches and Dck(ti, r
s
j )+β[Dck(r

s
j , r

d
j )−D(rsj , r

d
j )] for

sharing taxi dispatches. β is set to be one. (iii) Taxi dissatisfac-

tion:D(ti, r
s
j )−αD(rsj , r

d
j ) for non-sharing taxi dispatches and

Dck(ti)−(α+1)
∑

rj∈ck
D(rsj , r

d
j ) for sharing taxi dispatches.

α is set to be one. For these metrics, smaller values represent

better performances. The dissatisfaction unit is kilometers.

C. Results for Non-Sharing Taxi Dispatches

Results in the New York and Boston traces are shown in

Figs. 4 and 5, respectively. Algorithm metrics are the dispatch

delay, the passenger dissatisfaction, and the taxi dissatisfaction

(smaller values represent better performances). We start with

the New York trace in Fig. 4. Fig. 4(a) shows the Cumulative

Distribution Function (CDF) of the dispatch delay. For all

algorithms, more than 75% passenger requests receive taxi

dispatch within one minute. Hungarian and SCRAM have the

smallest dispatch delay, since they prioritize passengers. The

proposed NSTD-P and NSTD-T have slightly larger dispatch
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Fig. 6. Algorithm performance for non-sharing taxi dispatches in the Boston trace under different number of taxis.

12am 3am 6am 9am 12pm 3pm 6pm 9pm 12am
1

2

3

4

5

clock time

d
is

p
a
tc

h
 d

e
la

y
 i
n
 m

in
u
te

SCRAM

NSTD−P

NSTD−T

Nearest

Hungarian

(a) Average dispatch delay.

12am 3am 6am 9am 12pm 3pm 6pm 9pm 12am
0.16

0.2

0.24

0.28

0.32

clock time

p
a
s
s
e
n
g
e
r 

d
is

s
a
ti
s
fa

c
ti
o
n

SCRAM

NSTD−P

NSTD−T

Nearest

Hungarian

(b) Average passenger dissatisfaction.

12am 3am 6am 9am 12pm 3pm 6pm 9pm 12am
−4.2

−3.9

−3.6

−3.3

−3

−2.7

−2.4

clock time

ta
x
i 
d
is

s
a
ti
s
fa

c
ti
o
n

SCRAM

NSTD−P

NSTD−T

Nearest

Hungarian

(c) Average taxi dissatisfaction.

Fig. 7. Algorithm performance for non-sharing taxi dispatches in the Boston trace under different clock time.

delays. Nearest has the lowest percentage of dispatch delays

within one minute, although almost all passenger requests have

dispatch delays within 50 minutes. Fig. 4(b) shows the CDF

of the passenger dissatisfaction. Hungarian and NSTD-P have

the lowest passenger dissatisfaction. SCRAM and Nearest only

have a small percentage of passengers with low dissatisfaction.

However, the dissatisfaction of almost all passenger requests

in SCRAM is lower than 80, since SCRAM minimizes the

maximum cost among matched pairs. Fig. 4(c) shows the CDF

of the taxi dissatisfaction. NSTD-P and NSTD-T significantly

outperform the other algorithms, since they take the interests

of taxi drivers into account. In contrast, the other algorithms

only consider the interests of passengers.

Fig. 5 shows similar results for the Boston trace: NSTD-P

and NSTD-T have limited performance gaps to the literature

in terms of the passenger dissatisfaction, but can significantly

improve the taxi dissatisfaction. One difference in the Boston

trace is that NSTD-P and NSTD-T are not outperformed in

terms of the dispatch delay, as shown in Fig. 5(a). This is

because they do not dispatch idle taxis to passengers that are

too far away. In this case, passengers will wait for nearby

busy taxis. Another difference is that the passenger and taxi

dissatisfaction in the Boston trace is lower than that in the

New York trace. This is because the New York trace involves

a larger area than the Boston trace, leading to larger distances

between passengers and taxis. Hence, the shapes of the CDFs

in the Boston and New York traces are also different.

To study the impact of the number of taxis, Fig. 6 shows

the relationship between the number of taxis and these three

metrics (average values rather than CDFs) in the Boston trace.

Fig. 6(a) shows that all the algorithms have larger dispatch

delays when there are fewer taxis. This is because passengers

have to wait idle taxis. The average dispatch delays of these

algorithms are close to each other, even if the numbers of taxis

vary. On the other hand, the passenger dissatisfaction becomes

higher when there are fewer taxis, as shown in Fig. 6(b). This

is because passengers are less likely to find nearby taxis when

there are fewer taxis. Fig. 6(c) shows that NSTD-P and NSTD-

T have great improvements in terms of the taxi dissatisfaction,

especially when there are fewer taxis. The reason is that taxis

in NSTD-P and NSTD-T can choose passengers, when there

are fewer taxis (i.e., there are more passenger requests). We

also study the impact of the clock time, as shown in Fig. 7.

The pattern is significant for 9am and 6pm, when people travel

between home and work place. In 9am and 6pm, there are

more passenger requests (i.e., there are relatively fewer taxis),

leading to a larger average dispatch delay, a higher average

passenger dissatisfaction, and a lower taxi dissatisfaction.

In summary, the proposed NSTD-P and NSTD-T have very

limited performance gaps to the existing algorithms in terms

of the dispatch delay and the passenger dissatisfaction. As a

trade-off, they significantly outperform the existing algorithms

in terms of the taxi dissatisfaction, especially when the number

of taxis is fewer than the number of passenger requests or

during the peak hours. Our approach considers the interests

of both passengers and taxis, and refuses to dispatch taxis to

passengers that are not preferred. In addition, NSTD-P and

NSTD-T prioritize passengers and taxis, respectively.

D. Results for Sharing Taxi Dispatches

For sharing taxi dispatches, results in the New York and

Boston traces are shown in Figs. 8 and 9, respectively. Being

different from non-sharing taxi dispatches, STD-P and STD-T

clearly outperform the comparison algorithms (RAAI, SARP,

and Zhang), in terms of these three metrics. Although RAII

minimizes the total travel distance of taxis, its spatio-temporal

indices are information-lossy. SARP is based on the directed
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Fig. 8. Algorithm performance for sharing taxi dispatches in the New York trace.
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Fig. 9. Algorithm performance for sharing taxi dispatches in the Boston trace.

TSP. However, its approximation ratio is large, leading to a

poor performance. Zhang uses the integer linear programming

to pack passenger requests to a taxi, but it does not consider

a good matching between them. Our approach firstly packs

passenger requests that can share a taxi, and secondly uses

stable matchings to balance the interests of passengers and taxi

drivers, resulting in good performances. Another observation

is that, compared to non-sharing taxi dispatches, sharing taxi

dispatches have a smaller dispatch delay (since the number of

passenger requests is fewer after packing), a higher passenger

dissatisfaction (since passenger requests need to wait for the

taxi to pick up), and a lower taxi dissatisfaction (since taxis

have relatively longer distances to carry passengers).

VII. CONCLUSION

This paper focuses on the O2O taxi dispatches, in which the

interests of passengers, drivers, and the company may not align

with one another. To balance these interests, a stable marriage

approach is proposed. The numbers of passenger requests and

taxis can be different, and they can be matched to dummy part-

ners. Both non-sharing and sharing taxi dispatches are studied.

Experiments show the superior performances of our approach.
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