
Modeling and Deploying Networklet
Sheng Zhang†, Yu Liang†, Zhuzhong Qian†, Mingjun Xiao§, Jie Wu‡, Fanyu Kong♯, and Sanglu Lu†

†State Key Lab. for Novel Software Technology, Nanjing University, P.R. China
§School of Computer Science and Technology / Suzhou Institute for Advanced Study,

University of Science and Technology of China, P.R. China
‡Center for Networked Computing, Temple University

♯Ant Financial, P.R. China
Email: sheng@nju.edu.cn

Abstract—The lines between IaaS, PaaS, and SaaS are be-
coming blurred as datacenter providers seek to create cloud
platforms that can widen their appeal to developers. With this
kind of hybrid datacenter, resource requests from tenants are
increasingly transforming into hybrid requests that may simul-
taneously demand IaaS, PaaS, and SaaS resources. This paper
tackles the challenge of modeling and deploying hybrid tenant
requests in datacenter networks, for which we coin “networklet”
to represent a set of VMs that collaboratively provide some PaaS
or SaaS service. Through extracting networklets from tenant
requests and thus sharing them between multiple tenants, we
can achieve a win-win situation for datacenter providers and
tenants. Extensive evaluations show that, the proposed model and
deployment algorithm indeed improve DCN resource utilization
while maintaining performance guarantee.

I. INTRODUCTION

A. Motivation

Today’s public datacenters (e.g., Amazon EC2, and Mi-
crosoft Azure) focus on computation-oriented resource reser-
vation [11, 19], which only allows tenants to specify comput-
ing and memory demands, but totally ignores networking, i.e.,
most datacenters just offer best-effort networking service.
Although simple, this model results in highly unpredictable
performance of tenants virtual machines (VMs) [12].

To provide performance guarantee, prior works [12, 13, 15–
17, 19, 20] have proposed several novel abstractions that allow
tenants to explicitly specify networking as well as computing
demands. However, most of them fit comfortably under one
of two headings: hose [12, 15, 19], or clique [13, 16–18, 20,
21, 23, 24]. In the hose model, all tenant VMs are connected
to a common virtual switch by links of homogeneous or
heterogenous capacities; while in the clique model, tenants can
specify bandwidth requirements between all pairs of VMs. In
fact, these two types of abstractions represent two extremes in
the design space; we want to propose a new abstraction model
that may help datacenter providers cater to resource allocation
in hybrid datacenters.

We find that, the lines between Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service
(SaaS) are becoming blurred as datacenter providers seek to
create cloud platforms that can satisfy the needs of enterprises
and widen their appeal to developers. According to some For-
rester’s top cloud analysts [10], the popular wisdom that cloud

computing comes in three flavors—IaaS, PaaS, and SaaS—
no longer describes reality. Specifically, IaaS providers are
trying to cater to application development (e.g., AWS Elastic
Beanstalk provides PaaS-like development layers [5]); PaaS
providers are exposing more infrastructure APIs to tenants
(e.g., Engine Yard begin to support some IaaS APIs [6]);
and SaaS providers are allowing tenants to set up their apps
within their software (e.g., Salesforce is providing application
extension tools [9]). With this kind of hybrid datacenter,
resource requests from tenants are increasingly transforming
into hybrid requests that may simultaneously demand IaaS,
PaaS, and SaaS resources (e.g., a tenant can set up a website
using IaaS VMs, and meanwhile store/retrieve pictures of the
website using SaaS APIs [8]).

B. Proposed Approach and Key Contributions
Motivated by these observations, this paper tackles the

challenge of modeling and deploying hybrid tenant resource
requests in hybrid datacenter networks (DCNs). A hybrid
tenant request can be seen as a set of IaaS VMs, the bandwidth
requirements between them, and a set of PaaS or SaaS services
it may access. We coin the word networklet [22] to represent
a set of VMs that collaboratively provide some PaaS or SaaS
service. As we know, tenants usually do not access or occupy
a PaaS or SaaS service throughout the duration of the request;
thus, it is reasonable to share networklets among multiple
tenants. As long as the sum of the demands for a networklet
from multiple tenants does not exceed the service capacity
of a networklet, we can guarantee predictable performance
of tenant applications. We will shortly see that, extracting
networklets from tenant requests greatly benefit both tenants
and providers, achieving a win-win situation.

The primary contribution of this paper is the concept of
networklet. A networklet can be shared by multiple tenant
requests, depending on its service capacity and tenant demands
for it. From the perspective of a tenant, it pays less than before
as it shares some networklets with others. From the perspective
of a provider, its revenue is higher than before as physical
resource utilization becomes higher.

The second contribution is the deployment algorithm for
hybrid tenant requests with shared networklets. We want to
use a simple yet efficient algorithm to solve the deployment
problem, after observing many practical algorithms and simple

Primary

DB

Backup

DB

DB

Front

3 1

2

DataBase Networklet G

Pic.

Server

Pic.

Server

2 2

Pic.

Server

2

Picture Storage Networklet G

Fig. 1: Two networklet examples that represent database and picture storage
services, respectively.

principles behind them implicitly advocated by many pioneer-
s, e.g., [12, 17, 19, 20]. The main idea is to put VMs that have
large bandwidth demands between them as close as possible,
so as to reduce the bandwidth consumption.

Thirdly, extensive evaluations are conducted to confirm
the effectiveness and advantages of the proposed concept
and algorithm. For a batch of tenant resource requests, the
proposed algorithm achieves a completion time that is only
64% of baseline’s completion time, and of course, produces a
better physical resource utilization than two baselines.

II. NETWORKLET AND HYBRID TENANT REQUEST

A. Networklet

We coin networklet from the standpoint of IaaS datacen-
ter providers, who are in a race to differentiate themselves
by producing tenant-friendly features that may increase the
agility of tenants. Almost all IaaS providers have focused
on computing and storage resources in the past. Now more
and more of them begin to pay attention to services that
can accelerate the development by abstracting away the com-
plexities of the underlying infrastructure such as orchestration
and automation. For example, Amazon starts to offer four
different databases as a service (DBaaS) offerings: RDS for
MySQL/Oracle [3], DynamoDB for NoSQL [1], ElasticCache
for in-memory caching service [2], and Redshift for cost-
effective data warehousing [4]; and OpenStack also includes
its DBaaS component, i.e., Trove [7], in its latest release.

Therefore, we use networklet to represent a PaaS or SaaS
service while taking a stand as IaaS providers. Fig. 1 shows t-
wo networklet examples: database networklet—a PaaS service,
and picture storage networklet—a SaaS service. A networklet
is denoted by an undirected graph, where vertices represent
VMs and edges represent bandwidth requirements between
them. For ease of exposition, we choose to abstract away de-
tails of the non-network resources as in previous work [12, 19];
thus, each VM requires a fixed VM slot in DCN servers. Every
networklet has an ingress node which is the first node accessed
by tenant requests. Each networklet has a service capacity,
indicating how much workload it can handle in time.

More formally, we assume that the IaaS provider decides to
offer L types of networklets, based on market investigation
and historical data mining. The j-th networklet is denoted
by a graph Gl

j = (V l
j , E

l
j), where V l

j is the set of VMs
and El

j is the set of bandwidth requirements. For an edge
el = (vla, v

l
b) ∈ El

j , b(el) or b(vla, v
l
b) denotes its bandwidth

requirement. Gl
j has a service capacity Ci. Without loss of

generality, we assume vl0 is its ingress component/node.

Web Web

Logic

33
2

Logic

3

G G

G

(a)

v v

v

3

4

2

G G

G
v

2

vv

11

1 G

(b)

Fig. 2: HTR examples, where Gl
1 and Gl

2 denote the database and picture
storage networklets, respectively, in Fig. 1. Note that, Gd is a bipartite graph
specifying the connections between IaaS VMs and networklets.

Edge Switch

PM PM PM PM

Aggregate Switch

B B

B B B B

Fig. 3: A tree-like DCN example with K = 2, D = 2, and Q = 3

B. Hybrid Tenant Request (HTR)

When an IaaS datacenter specifies L types of networklets,
resource requests from tenants could be hybrid.

A hybrid tenant request (HTR) contains a set of IaaS
VMs, the bandwidth requirements between them, and a set
of networklets it access. We choose to use two graphs, i.e.,
Gb = (V b, Eb), and Gd = (V d, Ud, Ed), to represent an HTR.
The basic graph Gb specifies IaaS VMs and the bandwidth
requirements between them. For an edge eb = (vb1, v

b
2) ∈ Eb,

b(eb) or b(vb1, v
b
2) denotes its bandwidth requirement. The

external graph Gd tells us its requirements on networklets. Gd

is a bipartite graph with two non-overlapping vertex set V d

and Ud, where V d is a non-empty subset of V b and Ud is the
set of networklets it access. For an edge ed = (vd, ud) ∈ Ed,
b(ed) or b(vd, ud) denotes its bandwidth requirement. Besides,
each vertex ud in Ud is associated with a weight c(ud), which
is the demand for the service capacity of the corresponding
networklet. Each HTR has a lifetime of t, i.e., after the HTR
is successfully deployed for a duration of t, it is finished and
the physical resources allocated to it would be released.

The principle behind the notations in this paper is that,
superscripts “l”, “b”, and “d” represent networklet, basic
graph, and external graph, respectively.

In Fig. 2(a), the number next to Gl
1 indicates that, the

demand for the service capacity of Gl
1 is 3. Fig. 2(b) shows a

request that requires access to two networklets Gl
1 and Gl

2.

C. Datacenter Network

We assume the DCN topology is a simple tree1, however,
extending our work to other topologies is not hard. More
specifically, denote by T the underlying DCN, which is a full
K-ary tree of depth D. Thus, there are altogether M = KD

physical machines (PMs). Each PM contains Q VM slots, i.e.,
each PM could host at most Q tenant or networklet VMs. The
bandwidth capacity of the physical links in the same layer are
assumed to be same; denote by Bi the bandwidth capacity of
the links between (i − 1)-th and i-th layer switches. Fig. 3

1Our private conversation with researchers from two large cloud vendors
shows that, the topologies of their datacenters are indeed simple trees.

Web Web
Primary

DB

Backup

DB

DB

Front

3

3

Logic

8 6 5
3

Virtual Switch

(a)

14 14

PM PM

Primary

DB

DB

Front

Backup

DB

Logic

Web

Web

(b)
PM PM

Primary

DB

DB

Front

Backup

DB

Logic

Web

Web

2 2

(c)

Fig. 4: Advantages of HTR+networklet over hose. The underlined number
next to each edge represents the bandwidth used in each corresponding link.
(a) The hose model. (b) Deploying the hose model in Fig. 4(a). (c) Deploying
HTR+networklet in Fig. 2(a).

shows an example where K = 2, D = 2, and Q = 3. Without
loss of generality, we denote DCN PMs in the figure from left
to right by PM0, PM1, ..., and PMM−1.

III. ADVANTAGES OF HTR+NETWORKLET

Comparison with the hose model. Fig. 4(a) shows the
corresponding hose model of the same tenant request shown
in Fig. 2(a). When converting the request in Fig. 2(a) into
the one in Fig. 4(a), we must ensure that, each tenant VM has
enough bandwidth for communication with the other VMs. For
example, the maximum rate of the ‘Logic’ VM exchanging
data is 3+3+2=8 in Fig. 2(a), so the virtual link connecting
the ‘Logic’ VM to the virtual switch is 8 in Fig. 4(a).

Fig. 4(b) shows the deployment of the hose model in the
DCN in Fig. 3, where the underlined number next to each
edge represents the bandwidth used in each corresponding link.
No matter how to partition these six tenant VMs, the total
physical bandwidth it consumes is 14+14=28. However, if we
use the HTR+networklet model, the bandwidth it consumes
is only 2+2=4, as demonstrated in Fig. 4(c). We see that,
HTR+networklet better resembles physical topologies and thus
conserves physical bandwidth consumption.

Comparison with the clique model. Fig. 5(a) shows
the corresponding clique model of the same tenant request
shown in Fig. 2(a). The only difference between Fig. 5(a) and
Fig. 2(a) is that, the database networklet is shared in Fig. 2(a)
while it is exclusively occupied by the 3-tiered web application
in Fig. 5(a). For comparison purpose, Figs. 5(b) and 5(c) show
another tenant request that needs two VMs (VM1 and VM2)
plus the database networklet.

Fig. 5(d) shows the deployment of the two tenant requests
using the clique model in Figs. 5(a) and 5(b), where the
underlying DCN is shown in Fig. 3. We find that, they
consume altogether 11 VM slots. However, suppose the service
capacity of the database networklet is 10, which is larger than
the sum of the requirements of these two tenant requests, i.e.,
3 + 4 < 10; then they can share the database networklet. The
resulting deployment is shown in Fig. 5(e), which consumes
altogether 8 VM slots. We see that, HTR+networklet achieves
a better computing resource utilization through sharing net-
worklets.

Summary. Table I summarizes the comparison results of
hose, clique, and HTR+networklet on three design dimensions.
Overall, our HTR+networklet model not only closely resem-
bles the physical topologies used by datacenter tenants, but
also improves physical resource utilization.

Web Web

Logic

Primary

DB

Backup

DB

DB

Front

33

2

3 1

2

(a)

VM1

VM2

Primary

DB

Backup

DB

DB

Front

5

3

3 1

2

(b)

VM1

VM2

5 3

VM2

4

G G

G

(c)

PM PM PM PM

2 2 3

Primary

DB

DB

Front

Backup

DB

Logic

Web

Web

VM2

VM1

Primary

DB

DB

Front

Backup

DB

3

(d)
PM PM PM PM

Primary

DB

DB

Front

Backup

DB

Logic

Web

Web

VM2

VM1

2 5 3

33

(e)

Fig. 5: Advantages of HTR+networklet over clique. (a) The clique model
of the request in Fig. 2(a). (b) and (c) Another request in the clique model
and the HTR+networklet model, respectively. (d) Deploying two clique-based
requests in Figs. 5(a) and 5(b). (e) Deploying two HTRs in Figs. 2(a) and 5(b).

TABLE I: Comparison between the hose, clique, and HTR+networklet models

Abstraction Tenant
Cost

Provider
Revenue

Provider
Flexibility

VC/VOC [12] High Low High
VDC [16]/VN [20] Medium Medium Low
HTR+Networklet Low High Medium

IV. DEPLOYING HTR+NETWORKLET

A. Overview

We concentrate on the online version of the deployment
problem. HTRs arrive one by one over time, we want to design
an algorithm to allocate resources for an HTR.

The ultimate goal of deployment is to maximize provider
revenue while guaranteeing tenant application performance. As
we mentioned before, this goal is equivalent to maximizing
physical resource utilization, since DCN usually charges a
tenant based on the amount of resources reserved for it. Max-
imizing resource utilization is further reduced to conserving
physical resource consumption.

To conserve physical resource consumption, we have two
sorts of strategies. The first one is to share networklets among
multiple tenants, after observing a tenant usually does not
occupy networklets throughout the duration of the HTR. As
long as the sum of the demands for a networklet from multiple
tenants does not exceed the service capacity of a networklet,
we can guarantee predictable performance of tenant appli-
cations. The second one is to place VMs that have large
bandwidth requirements between them as close as possible, so
as to reduce the bandwidth consumption in underlying DCNs.

B. Preliminaries

Denote by P the set of all PMs in the underlying DCN. For
a tenant VM v, we use h(v) to represent the location of it; we
also use h(S) to denote the locations of a set S of VMs.

• The function r(·) gives the amount of residual resources
of an entity. For example, r(PMi) denotes the amount of

available VM slots on PMi; r(Gl) denotes the residual
service capacity of a networklet Gl.

• The distance d(·, ·) returns the number of hops between
two entities, e.g., d(PMi, PMj) is the number of hops
between PMi and PMj ; d(vi, vj) is the number of hops
between two PMs that host vi and vj , respectively.

• The function sort(S,metric,+/−) sorts all elements in a
set S in the non-decreasing (+) or non-increasing (−) or-
der of the given metric. For example, sort(P, r(PM),−)
sorts all PMs in the non-increasing order of the residual
resource of each PM; sort(P, d(PM,PM0),+) sorts all
PMs in the non-decreasing order of the distance between
each PM and PM0.

Algorithm 1 HTR+Networklet Deployment Alg. (HNDA)

Input: An HTR described by Gb = (V b, Eb) and Gd =
(V d, Ud, Ed), a DCN described by T

Output: Allocation for this HTR
1: for i=1 to |Ud| do
2: AllocNL(T,Gl

i, c(G
l
i))

3: r(Gl
i)← r(Gl

i)− c(Gl
i)

4: end for
5: AllocHTR(T,Gb, Gd)

C. HTR+Networklet Deployment Algorithm

The HTR+Networklet Deployment Algorithm (HNDA) is
shown in Alg. 1. It contains two parts: allocation for net-
worklets (lines 1-4), and allocation for HTR (line 5).

Allocation for Networklets. As we mentioned before, an
HTR is composed of Gb, which captures the relationships
between its IaaS VMs, and Gd, a bipartite graph indicating the
networklets it needs to access. For each networklet Gl it needs
to access, if the underlying DCN has one instance of Gl with
sufficient residual service capacity, i.e., r(Gl) > c(Gl) (line
1 of Alg. 2), where c(Gl) is the demand for this networklet,
then we do not need to set up a new one.

Otherwise, we must allocate resource for building a new
instance of Gl. Lines 2-5 of Alg. 2 allocate VM slot for the
ingress node vl0 of Gl, in which we first sort all PMs in the
non-increasing order of their residual VM slots (line 3), and
attempt to deploy vl0 in a PM with sufficient residual resource
in the sorted order.

The rest of Alg. 2 deals with the other nodes in V l.
Denote by S the set of already-allocated nodes in V l. In
each iteration, we select an edge which has the maximum
bandwidth requirement connecting an unallocated node vl1 and
an already-allocated node vl2 (line 8); then we sort all PMs
in the non-decreasing order of their distances to the host of
vl2, i.e., h(vl2), and attempt to deploy vl1 in a PM with sufficient
residual resource in the sorted order, after which we allocate
bandwidth for this edge and update S.

Please note that, for a certain type of networklet, there may
be multiple instances in the DCN, depending on the demands
for a networklet.

Allocation for HTR. After the allocation for possible net-
worklets is completed, we begin to allocate physical resources
for the HTR itself. The IaaS VMs can be partitioned into two
non-overlapped sets: V d and V b − V d, where “−” represents
the set minus operation. We first deal with nodes in V d (lines
1-10 in Alg. 3), then deal with the rest nodes in V b (lines
11-19 in Alg. 3).

Algorithm 2 AllocNL(T , Gl, c)

1: if Gl with sufficient residual service capacity (r(Gl) ≥ c)
exists then return

2: // allocation for the ingress node vl0
3: sort(P, r(PM),−)
4: attempt to deploy vl0 in a PM with sufficient residual

resource in the sorted order, update T
5: // allocation for the rest nodes in V l

6: S ← {vl0}
7: while V l ̸= S do
8: (vl1, v

l
2)← arg max

vl
1∈V l−S,vl

2∈S
b(vl1, v

l
2)

9: sort(P, d(PM,h(vl2)),+)
10: attempt to deploy vl1 in a PM with sufficient residual

resource in the sorted order, update T
11: allocate bandwidth for all edges between vl1 and S
12: S ← S ∪ {vl1}
13: end while
14: return

Denote by V d′ the set of already-allocated nodes in V d.
In each iteration, we select an edge which has the maximum
bandwidth requirement connecting an already-allocated net-
worklet ud and an unallocated node vd ∈ V d − V d′ (line
4); then we sort all PMs in the non-decreasing order of their
distance to the host of the ingress node of ud, and attempt
to deploy vd in a PM with sufficient residual resource in the
sorted order, after which we allocate bandwidth for all edges
between vd, Ud, and V d′, and update V d′. Using the same
heuristic, we can allocate resources for the rest of V b.

In retrospect, HNDA can be decomposed into four main
phases: find a physical location for the ingress node of a
networklet (lines 2-5 of Alg. 2), find physical locations for
the rest nodes of a networklet (lines 5-13 of Alg. 2), find
physical locations for nodes in the external graph (lines 1-10
of Alg. 3), and find physical locations for the rest nodes in
the basic graph (lines 11-19 of Alg. 3).

D. Discussions
DCN Topology. A fat-tree network with more than 2 tiers of

switches can be recursively yet easily constructed using 2 tier
fat-tree networks as building blocks [15], and any results on 2
tier fat-tree networks can be extended to fat-tree networks with
more tiers. Therefore, it is sufficient to show how to handle
path diversity in the basic 2 tier fat-tree network: there are m
core switches, each is connected with r edge switches, each of
which is further connected to n servers. Thus, there are in fact
m different paths between two edge switches. When applying

HNDA, we can take these m paths as a single path and use
ECMP to balance packets among these paths.

Heterogeneous VM Demands. It is not hard to extend HNDA
to respect heterogenous VM demands. When we place VMs on
PMs, we just have to additionally check whether the residual
resource is sufficient for the requirement of the current VM.

Algorithm 3 AllocHTR(T , Gb, Gd)

1: // allocation for nodes in V d

2: V d′ ← ∅
3: while V d ̸= V d′ do
4: ed = (vd, ud)← arg max

vd∈V d−V d′,ud∈Ud
b(vd, ud)

5: sort(P, d(PM, h(ud)),+)
6: attempt to deploy vd in a PM with sufficient residual

resource in the sorted order, update T
7: allocate bandwidth for all edges between vd and Ud

8: allocate bandwidth for all edges between vd and V d′

9: V d′ ← V d′ ∪ {vd}
10: end while
11: // allocation for nodes in V b − V d

12: V b′ ← V d

13: while V b ̸= V b′ do
14: eb = (vb1, v

b
2)← arg max

vb
1∈V b−V b′,vb

2∈V b′
b(vb1, v

b
2)

15: sort(P, d(PM, h(vb2)),+)
16: attempt to deploy vb1 in a PM with sufficient residual

resource in the sorted order, update T
17: allocate bandwidth for edges between vb1 and V b′

18: V b′ ← V b′ ∪ {vb1}
19: end while
20: return

Work-conserving. The bandwidth requirement serves as the
minimum guarantee (min-guarantee) for tenants. Whenever
there is any residual bandwidth resource, it could be fairly
shared among coexisted flows/connections.

Generalized Networklet. Although networklet is coined to
represent some PaaS or SaaS service. It can be generalized to
more entities, e.g., network virtualization functions (NFVs).
Placing NFVs in DCNs is an interesting problem [14].

Service Model of Networklet. We assume each networklet
has a service capacity and each HTR has a demand, and as far
as the sum of demands is not larger than the service capacity,
the tenant application performance is not affected. In fact, such
kind of simplification is made for ease of exposition. We can
easily extend the main idea of the paper to the scenario where
the service model of a networklet follows queuing theory.

V. PERFORMANCE EVALUATION

A. Simulation Setup

In our simulations, the underlying multi-tenant datacenter
topology is a simple tree with K = 5, D = 3, Q = 10,
B1 = 60, and B2 = 120 (see Fig. 3). We assume that there
are L = 5 types of networklets, and their topologies are
shown in Fig. 6. We leave as future work extensive evaluations

Networklet GNetworklet GNetworklet G Networklet G Networklet G

Fig. 6: Five types of networklets used in our simulations

with more complex and natural topologies of networklets.
The bandwidth requirement of each edge in networklets is
uniformly generated from 1 to 3. The service capacity of each
networklet is uniformly generated from 15 to 20.

By default, the number of tenant requests is 1000, each
of which accesses 0 to 2 networklets. The service demand
for each networklet is uniformly generated from 1 to 3. The
number of IaaS VMs, i.e., the number of vertices in V b, is
uniformly generated from 3 to 5. Each pair of IaaS VMs
communicate with a probability p = 0.3. We continue to
generate the communication graph (i.e., topology) until we
get a connected one. The bandwidth requirement of each edge
in HTRs is uniformly generated from 1 to 3. The lifetime of
a request varies uniformly in the range from 10 to 20.

We compare the proposed algorithm, i.e., HNDA, with
the following two algorithms: HoseAlg, which converts a
HTR+networklet request into a hose request and then de-
ploys it using the allocation algorithm devised in [12], and
CliqueAlg, which converts a HTR+networklet request into a
clique request and then deploys it using Alg. 2 of this paper.
Performance metrics are as follows:

• Completion time, which is the time to complete all tenant
requests. The smaller the completion time is, the better
the performance is. In fact, a smaller completion time also
implies that, physical resources are utilized efficiently.

• Computing resource utilization, which is defined as the
ratio of the number of occupied VM slots to the total
number of VM slots in the given DCN.

B. Simulation Results
Fig. 7(a) shows the completion time achieved by three

algorithms versus the number of requests. Note that, the
completion time is the time to complete all tenant requests,
not the running time of each deployment algorithm. In general,
we find that, in all settings, the completion time of all requests
using HNDA is the smallest among them, while using HoseAlg
has the largest completion time. This observation is consistent
with the perceptual comparison results in Table I.

When the number of requests increases from 200 to 1000,
the increases in the completion time of HNDA, CliqueAlg,
and HoseAlg are 110, 154, and 178, respectively, i.e., the
completion time using HNDA is only 64% of using HoseAlg.
The increase speed of HNDA is the smallest, implying the
good scalability of our model and algorithm.

Fig. 7(b) shows the computing resource utilization over time
when the number of tenant requests is 1000. The completion
times of these 1000 requests using HNDA, CliqueAlg, and
HoseAlg are 146, 205, and 228, respectively. After HNDA or
CliqueAlg finishes the batch of tenant requests, we assume
their computing resource utilization is zero. We plot the

 0

 50

 100

 150

 200

 250

200 300 400 500 600 700 800 900 1000

C
o

m
p

le
tio

n
 T

im
e
 (

h
o
u

rs
)

Number of Tenant Requests

HNDA
CliqueAlg
HoseAlg

(a) Completion time comparison

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

C
o

m
p

u
tin

g
 R

e
so

u
rc

e
 U

til
iz

a
tio

n

Time (hours)

HNDA
CliqueAlg
HoseAlg

HNDA finishes

CliqueAlg finishes

(b) Computing resource utilization over time

Fig. 7: Simulation results

computing resource utilizations at the beginning of each hour.
We see that, the utilization ratio of HNDA is always higher
than the other two algorithms before it finishes the batch of
requests; CliqueAlg achieves a better resource utilization than
HoseAlg, which is especially clear from the 120th hour to the
145th hour in the figure.

We note that, the resource utilization of HoseAlg fluctuates
over time. There may be some relatively large tenant request
among these 1000 requests. For such a large request described
in the hose model, it may demand much more bandwidth
than it needs if it is described using other models. The
large resource requirements make it hard to deploy in the
underlying DCN, which may embarrass the underly DCN in
a sense: DCN has some residual resource, but cannot afford
this large request. In summary, some relatively large tenant
requests make HoseAlg’s computing resource utilization vary
over time, which suggests the disadvantage of the hose model.

In summary, the proposed model and deployment algorithm
achieve shorter completion time and better resource utilization
than the hose or clique-based algorithm. We admit that the
above-presented results are far from exhaustive; however, we
hope these results can provide insights into modeling and
deploying hybrid tenant resource requests and thus open a new
avenue for resource allocation in multi-tenant datacenters.

VI. CONCLUSIONS

In this paper, we introduce networklet, a notion that helps
to explore the tradeoff between performance guarantee and
resource utilization in hybrid datacenters. Sharing networklets
between multiple tenants achieves better multiplexing which
benefits both tenants and providers. Extensive evaluations
show that, extracting networklets from hybrid tenant requests
indeed improves DCN resource utilization while maintaining
performance guarantee.

ACKNOWLEDGMENTS

This work was supported in part by NSFC (61502224,
61472181, 61472185, 61321491), China Postdoctoral Science
Foundation (2015M570434, 2016T90444), CCF-Tencent Open
Research Fund (AGR20160104), Jiangsu NSF (BK20151392,
BK20151390), and Collaborative Innovation Center of Novel
Software Technology and Industrialization.

REFERENCES
[1] “Amazon DynamoDB,” https://aws.amazon.com/dynamodb/.
[2] “Amazon ElastiCache,” https://aws.amazon.com/elasticache/.
[3] “Amazon RDS,” https://aws.amazon.com/rds/.
[4] “Amazon RedShift,” https://aws.amazon.com/redshift/.
[5] “AWS Elastic Beanstalk,” http://aws.amazon.com/elasticbeanstalk.
[6] “Engine Yard,” https://www.engineyard.com.
[7] “OpenStack Trove,” https://wiki.openstack.org/wiki/Trove.
[8] “QINIU,” http://www.qiniu.com.
[9] “Salesforce,” http://salesforce.com/platform/solutions/employee-apps.

[10] “Thoughts on Cloud,” http://alturl.com/hmxbr.
[11] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud
computing,” CACM, vol. 53, no. 4, pp. 50–58, 2010.

[12] H. Ballani, P. Costa, T. Karagiannis, and A. I. Rowstron, “Towards
predictable datacenter networks,” in Proc. ACM SIGCOMM 2011, pp.
242–253.

[13] M. Chowdhury, M. Rahman, and R. Boutaba, “ViNEYard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
IEEE/ACM TON, vol. 20, no. 1, pp. 206–219, 2012.

[14] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz, “Near optimal place-
ment of virtual network functions,” in Proc. IEEE INFOCOM 2015, pp.
1346–1354.

[15] J. Duan, Z. Guo, and Y. Yang, “Cost efficient and performance guaran-
teed virtual network embedding in multicast Fat-Tree DCNs,” in Proc.
IEEE INFOCOM 2015, pp. 136–144.

[16] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” in Proc. ACM CoNEXT 2010, pp. 1–12.

[17] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and
P. Sharma, “Application-driven bandwidth guarantees in datacenters,”
in Proc. ACM SIGCOMM 2014, pp. 467–478.

[18] Y. Liang and S. Zhang, “Embedding parallelizable virtual networks,”
Computer Communications, vol. 102, pp. 47–57, 2017.

[19] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only constant
is change: incorporating time-varying network reservations in data
centers,” in Proc. ACM SIGCOMM 2012, pp. 199–210.

[20] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM CCR, vol. 38, no. 2, pp. 17–29, 2008.

[21] S. Zhang, Z. Qian, J. Wu, S. Lu, and L. Epstein, “Virtual network
embedding with opportunistic resource sharing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 25, no. 3, pp. 816–827, 2014.

[22] S. Zhang, Y. Liang, Z. Qian, M. Xiao, J. Wu, F. Kong, and S. Lu,
“Networklet: Concept and deployment,” in Proc. IEEE ICDCS 2017,
pp. 2624–2625.

[23] S. Zhang, Z. Qian, S. Guo, and S. Lu, “Fell: A flexible virtual network
embedding algorithm with guaranteed load balancing,” in Proc. of IEEE
ICC 2011, pp. 1–5.

[24] S. Zhang, Z. Qian, J. Wu, and S. Lu, “Leveraging tenant flexibility in
resource allocation for virtual networks,” in Proc. of IEEE ICCCN 2014,
pp. 1–8.

