
A Novel Algorithm for NFV Chain Placement in
Edge Computing Environments

Zhiqi Chen†, Sheng Zhang†, Can Wang†, Zhuzhong Qian†, Mingjun Xiao§, Jie Wu‡, Imad Jawhar]
†State Key Lab. for Novel Software Technology, Nanjing University, P.R. China

§School of Computer Science and Technology, University of Science and Technology of China, P.R. China
‡Center for Networked Computing, Temple University,]Midcomp Research Center, Saida, Lebanon

Email: sheng@nju.edu.cn

Abstract—Edge computing is gaining popularity these years,
more service providers are shifting their services from clouds to
the edge for better QoS provision. Recent studies in NFV also
tend to deploy Network Function Virtualization (NFV) services
in the edge network. However, the NFV deployment in the edge
network is a challenging problem and differs from the similar
problem in data centers. We mainly focus on a new NFV Chain
Placement (NCP) problem in the paper. It is well known that
the edge of the network is dynamic, and edge computing aims to
utilize the physical edge resources efficiently and quickly. We first
prove that the NCP problem is NP-complete. Then we propose
a novel metric that can better measure the balance condition of
the physical resources. We also analyze its advantages. Finally,
we design an efficient algorithm, MINI, based on this metric.
We evaluate MINI using extensive simulations. The results show
that MINI has great advantages over a genetic algorithm (GA)
in terms of physical resource utilization, acceptance rate, and
running time.

Index Terms—NFV, Placement, Edge Computing, SDN,
Heuristic Algorithm

I. INTRODUCTION

Recently, we observed a considerable amount of trends
booming for network domains. Network managers, especially
employed in large-scale datacenters, are seeking for more
effective and efficient moethods for managing networks. As
a result, Network Function Virtualization (NFV) [1], [2] has
emerged as a new approach to designing, deploying, and
managing network infrastructure. It decouples the network
functions from proprietary hardware and runs them as soft-
ware applications on general purpose hardware. This shift in
paradigm toward “softwarization” allows cost reduction and
service agility. Traditionally, middle-boxes widely deployed
in datacenters are proprietary hardware devices. However,
the substantial dependence of networks on their underlying
hardware and the existence of various specialized hardware
appliances, such as firewalls (FW), deep packet inspection
(DPI) equipment, and network address translation (NAT) in
the network infrastructure have escalated the challenges facing
network service providers [3]. NFV provides many benefits
to the telecommunications industry. Some of these benefits
are openness of platforms, scalability and flexibility, operating
performance improvement, and shorter development cycles.

In NFV infrastructure, hardware-based devices are no
longer needed. Instead, we merely take use of general com-
modity servers located in small cloud nodes which are dis-

tributed across the entire network. Concretely, network func-
tions would be virtualized and operated on general commercial
machines. For instance, a service chain is often composed of
one or more network functions like IDS, Firewall, and VPN.

As we know, most related studies have focused on NFV
Placement problem in cloud computing environments, which
is different from our work. Driven by the visions of Internet
of Things and 5G communications, recent times have seen
a shift in computing paradigm, from the centralized Cloud
Computing towards Edge Computing (EC) [4], [5]. The main
feature of EC is to push mobile computing, network control
and storage to the network edges (e.g., base stations and access
points) so as to enable computation-intensive and latency-
critical applications at the resource-limited edge devices. Edge
computing promises dramatic reduction in latency, tackling
the key challenges for materializing 5G vision. The promised
gains of EC have motivated extensive efforts in both academia
and industry on developing the technology. This paper mainly
focuses on the NCP problem in the edge computing environ-
ments. We believe that a perfect scheme of NFV placement
could decrease unnecessary wastes of resources.

In this paper, we propose a feasible and brand-new criteria
to evaluate the efficiency of NCP scheme in edge computing
environments and demonstrate that the NCP problem is NP-
Complete. Afterwards, this problem is formulated as an Inte-
ger Nonlinear Programming (INLP) problem, and we propose
a heuristic algorithm to solve it. To evaluate our algorithm, a
genetic-based algorithm (GA) is designed for comparison.

The rest of the paper is organized as follows. In section
II, we present the related works. In section III, we give the
formal definitions of the NCP problem in edge environments
and a novel performance metric is introduced. In section IV,
we prove that the NCP problem is NP-Complete. In section
V, we propose and analyze our heuristic algorithm. In section
VI, we evaluate our algorithm by simulations. We conclude
this paper in Section VII.

II. RELATED WORK

Previous works in NFV mainly focus on how to deploy
network functions on commodity servers and to minimize the
total placement cost [6], [7], [8]. In [6], the authors aim to
minimize the distance between clients and virtual network
functions to provide better QoS. Meanwhile, the setup cost of

these functions is taken into consideration. In [9], the authors
study the problem of VNF Placement with replications and
proposed a GA heuristics to solve this problem. The other
related work [10] focuses on the VNF Managers (VNFM)
placement and aims at minimizing the operational cost without
violating the performance requirements. In addition, recent
researchers [11] consider NFV Placement as an Integer Linear
Problem (ILP) and approximation algorithm based on ILP
relaxation and rounding have been proposed. Another work
[12] is proposed for placement of multi-component applica-
tions in edge computing environments , which is related to our
work. Roughly speaking, they model the user application as
an application graph and the physical computing system as a
physical graph. However, in our paper, NCP problem in edge
network is a variant of Bin Packing Problem [13], which is
quite different compared to previous works. The Bin Packing
Problem was investigated widely in [14], [15].

III. PROBLEM FORMULATION

A. Overview

We introduce two kinds of graphs called Application Graph
(GA) and Physical Graph (GP). A mapping from GA to GP

corresponds to a feasible NFV placement scheme. The essence
of the problem is how to construct an injective mapping from
GA to GP . For convenience, we introduce some notations
which would be used later.

Fig. 1. One application graph is mapped onto the physical graph.

B. Definitions

1) Definition of Application Graph: When network traffic
comes, it is supposed to go through the designated service
chain in the right order. In this paper, we consider network
functions as application graph nodes and suppose these service
chains are in a linear shape, which is assumed in many
works [3], [8], [9]. An application graph can be denoted as
GA = (VA, EA), where each vetex corresponds to a NF node
in the service chain. The weight of each node is calculated
by a function c-weight(·), which represents its demands for
computing resources, storage resources, and bandwidth in real
scenarios. Analogously, the weight of an edge in the graph
indicates the required network bandwidth for the two nodes
it connects. For instance, suppose the bandwidth between
NF function vA(i) and NF function vA(j) is at least 100
kbps, b-weight(i, j) should be set to 100. Table I shows the
notations which would be used for an application graph.

2) Definition of Physical Graph: The physical device
network could be represented in a physical graph as well,
which is denoted as GP . Actually, nodes and edges on the
physical graph represent physical devices and physical links
deployed in Software-defined networking (SDN). Suppose

TABLE I
THE NOTATIONS FOR THE APPLICATION GRAPH

Symbols Definitions

Gk
A = (V k

A , Ek
A)

The kth application graph for the kth ser-
vice chain

V k
A = V (Gk

A) The vertex set of the kth application graph

vkA(i) ∈ V k
A The ith vertex of the kth application graph

c-weight(i)
The amount of resources demanded by ver-
tex vkA(i)

Ek
A = E(Gk

A) The edge set of the kth application graph

ekA ∈ Ek
A

One of the edges of the kth application
graph

ekA(i, j)
The vertexes vkA(i) and vkA(j) are connect-
ed by the edge ekA

b-weight(i, j)
The essential amount of bandwidth required
by the edge ekA(i, j)

GP = (VP , EP) (denote the physical vertex set as VP and
the physical edge set as EP). For each vertex vP ∈ VP ,
let c-capacity(i) and b-capacity(i, j) denote the maximum
computing capacity of the physical node vP (i) and the maxi-
mum bandwidth capacity of connections between node vP (i)
and node vP (j). Table II shows the notations related to the
physical graph GP .

TABLE II
THE NOTATIONS FOR THE PHYSICAL GRAPH

Symbols Definitions

GP = (VP , EP) The physical graph

VP = V (GP) The vertex set of the physical graph

vP (i) ∈ VP The ith vertex of the physical graph

c-capacity(i) The amount of resources which can be
provided by vertex vP (i)

EP = E(GP) The edge set of the physical graph

eP ∈ EP
One of the edges in the edge set of the
physical graph

eP (i, j)
The vertexes vP (i) and vP (j)are connect-
ed by the edge eP

b-capacity(i, j)
The amount of bandwidth resources which
can be provided by the physical edge
eP (i, j)

3) Definition of Mapping π: As we mentioned before, a
mapping π from GA to GP corresponds to a feasible NFV
placement scheme, since each function in the NFV chain
should be assigned to a server node in GP . Additionally, we
use an indicator variable xkij ∈ {0, 1} to indicate whether
vkA(i) is deposed at vP (j). As a matter of fact, the following
constraint shoule be obeyed:∑

j

xkij = 1,∀i, k (1)

As for constraints on edges, we introduce an indicator
variable ykpqst ∈ {0, 1} to indicate whether ekA(p, q) goes
through eP (s, t), resulting in the following constraint:∑

s

∑
t

ykpqst ≥ 1,∀k, p, q (2)

C. Optimization Goal and Constraints

Maximizing the resource utilization ratio is an essential
objective of NFV placement, so we aim to reduce the resource
fragmentation on physical servers after the placement of
NFVs. However, there are several issues worth our attention:

1) How to evaluate the utilization: Fairly it is unsuitable
to directly use the whole utilization ratio of GP (the ratio
of used physical capacity to overall physical capacity) as
our optimization objective, because no matter how GA are
placed, the utilization ratio of GP will never change. To
solve the problem above, we redesign our objective function.
We decide to maximize the sum of the squares of the
remaining capacity in all physical nodes, which is a more
challenging problem. The appropriateness behind the new
metric is that the capacity of each physical node is limited, and
we should make full use of these capacities, so the remaining
capacity of each physical node should be as small as possible
after the application nodes are deployed. We could impose a
“penalty” factor on the remaining capacity of each node (but
accumulating the remaining capacity of each node directly
would cause the same problem as the former method, because
essentially the two methods are the same in mathematical
sense). By introducing the sum of the squares of the remaining
capacity, we could avoid the annoying problem and better
know about the condition of the network resource allocation.

2) Whether bandwidth utilization should be taken into
consideration in the optimization objective: The answer is
no. As far as we know, more than one application graph
edge could be mapped onto the same physical graph edge
at the same time, which is a disadvantage for considering
bandwidth utilization. If our algorithm was aimed to maximize
the bandwidth utilization of GP , it would be easily inclined
to a terrible solution which triggers great waste of bandwidth.
The algorithm would attempt to separate two nodes for the
purpose of maxmizing the bandwidth utilization.

3) How to set computing and bandwidth constraints:
On the one hand, for each vP (j), the sum of the re-
sources required by all vkA(i) deployed above denoted
as
∑

k

∑
i x

k
ijc-weight(k, i) cannot exceed the capacity of

vP (j), which is denoted as c-capacity(j).∑
k

∑
i

xkijc-weight(k, i) ≤ c-capacity(j),∀j (3)

On the other hand, each ekA(p, q) in Gk
A corresponds to

multiple edges in GP after mapping from Gk
A to GP . This

suggests that for each eP (s, t), the sum of the bandwidth
required by the corresponding edge of Gk

A that it carries
cannot exceed the maximum actual bandwidth that eP (s, t)
could provide. i.e., ∀s, t, we have∑

k

∑
p

∑
q

ykpqstb-weight(k, p, q) ≤ b-capacity(s, t) (4)

where the left part is the bandwidth required and the right part
is the bandwidth capacity.

D. Optimization Objective

The optimization objective is to maximize the sum of the
squares of the remaining capacity in all physical nodes. The
formulation is given as follows (constraints are based on
former statements):

max
π

∑
j

(
c-capacity(j)−

∑
k

∑
i

xkijc-weight(k, i)

)2

s.t.∑
k

∑
i

xkijc-weight(k, i) ≤ c-capacity(j) ∀j,∑
k

∑
p

∑
q

ykpqstb-weight(k, p, q) ≤ b-capacity(s, t) ∀s, t,∑
j

xkij = 1 ∀k, i,∑
s

∑
t

ykpqst ≥ 1 ∀k, p, q,

xkij ∈ {0, 1} ∀k, i, j,
ykpqst ∈ {0, 1} ∀k, p, q, s, t

(5)

IV. NP-COMPLETENESS OF NFV PLACEMENT PROBLEM

We can prove that the NCP problem is NP-Complete by
reducing Bin Packing Problem to it. Bin Packing problem is
well-known as a NPC problem. The proof is as follows.
• Decision version of Bin Packing Problem: Given n items
{a1, · · · , an}, N bins (each with capacity V),and B
(whose capacity is B), the question is whether we can
use no more than B bins to hold all items.

• Decision version of NCP Problem: Given n GAs, GP and
T , the information related to the two types of graphs such
as weights of nodes and edges is all available (the weight
of vA are noted as {c1, · · · , cn} and the capacity of vP
are noted as {s1, · · · , s|GP |}). The question is whether
there exists a mapping π according to which we can
figure out a NFVs placement scheme whose objective
value (calculated by (5)) is at least T .

When given a mapping π from GA to GP , we are able to
verify whether the sum of squares of remaining capacity can
reach T or not by simulation. It is easily concluded that the
complexity of the verifying operation is polynomial. Hence,
the NCP problem belongs to NP.

Next, we remove the constraint on capacity of edges and
suppose that all n GA merely contain a single node (their com-
puting resources are notated as {c1, · · · , cn}). The reduction
from Bin Packing Problem to NCP problem is as follows:
• {B1, · · · ,BN} = GP

• ai = ci,∀i ∈ {1, · · · , n = |GA|}
• V = s1 = · · · = s|GP |
If we have an algorithm which can figure out the optimal

solution πOPT for Bin Packing Problem in polynomial time,
then the solution of NCP problem could be constructed
accordingly. We would next prove that the solution we obtain
is also optimal in NCP problem.

Denote the operation of moving an item from one bin to
another as T , based on which the current placement plan π

is transformed into a new placement plan π
′

as : π T−→ π
′
.

Theorem 4.1: In an operation T , if an empty box is
involved, Tnew > T (Tnew is the cost of new placement
scheme) would increase.

Proof. Consider two bins B1,B2 and suppose there is an
item with weight x1 in B1 before the transformation. Then
assume that the total weight of other items is in B1 is x2
and B2 is empty. As we mentioned before T is the sum of
squares of remaining capacity, in current placement we have
T = (V − x1 − x2)

2 + V 2. After the movement, we have
can update T to Tnew which can be expressed as Tnew =
(V − x2)2 + (V − x1)2. The difference between T and Tnew
turns out as 2x1x2 > 0, which means Tnew > T . Therefore,
theorem 4.1 follows immediately. �

Theorem 4.2: The NCP problem is NP-Complete.
Proof. Assuming πOPT is not optimal in the NCP problem,

denote π
′

OPT as optimal. Due to optimality of πOPT , π
′

OPT

might occupy more bins than πOPT (according to Theorem
4.1), T of πOPT is less than that of π

′

OPT , which violates
optimality of π

′

OPT in NCP. In summary, πOPT is optimal in
the NCP problem. �

V. SOLUTION

Since we are informed that NCP problem is NP-Complete,
if we attempted to solve it optimally, it should take tremendous
computing resources and operating time inevitably, which is
against our expectations. Hence, an efficient heuristics algo-
rithm is designed. In the following section, we will introduce
our algorithm with fast operating time and good performance.

A. MINI Algorithm

Algorithm 1 Minimal Neighbourhood (MINI) Algorithm
Input: GP , G

k
A(k = 1, . . . ,K)

Output: place
1: init place
2: for k = 1 to K do
3: parent ← null
4: for node i in Gk

A do
5: candidates ← seek for parent or parent’s neigh-

bours if it’s a satisfied node
6: if candidates == ∅ then
7: candidates← do BFS until find one candidate
8: end if
9: place node i at the minimal remaining c-capacity one

in candidates
10: update place, parent, all capacity information
11: end for
12: end for
13: return place

In this section, we propose a greedy algorithm called Mini-
mal Neighbourhood (MINI) Algorithm. The principle idea of
MINI is that when an new GA arrives, MINI would attempt to

find a vP with the least remaining computing capacity (but vP
has enough capacity to accommodate the first GA node). As
for the rest GA nodes, following principles should be obeyed:
• If possible, deploy the current node at parent node (the
vP where the last vA is deployed).

• If the parent node overflows, turn to seek for the neigh-
bors of parent, which satisfy computing and bandwidth
constraints as candidates.

For the next step, we would choose the vP with minimal
c-capacity from candidates as the goal node; if candidates
are empty, we have no choice but make a breadth-first search
(BFS). This would loop until it discovers the vP which
satisfies the constraints. Then we update bandwidth constraint
information along the returned paths. However, if BFS fails,
our MINI algorithm has to claim that there is no solution
found. We can find that the algorithm complexity of MINI
is O(K × |VA| × (|VP | log |VP | + |EP |)). MINI has several
advantages as follows:
• Putting things into the smallest bucket is a greedy strate-

gy which seems simple but works very well in solving the
NCP problem. Actually, the solution of it approximates
the optimal solution.

• The principle of proximity placement makes the band-
width requirement for the entire application graph much
less, leaving enough remaining bandwidth capacity for
subsequent nodes.

• This heuristic strategy is fast and has good performance.
Besides, it is also very easy to be developed into an online
algorithm, because the only thing we need to do is to
use the algorithm to perform corresponding calculations
whenever a new GA arrives.

B. Example

Let us give an example to better understand the operation of
the algorithm. As Figure 2 shows, suppose we have GP and
3 GA to be placed, whose sequences are determined by order
of arrival. According to the MINI algorithm, the first node
v1A(A) in G1

A should be placed at the minimal node vP (4) in
GP , then the remaining capacity of vP (4) should be 0. Fig.2
shows the case that G1

A is placed onto GP completely.

Fig. 2. Place G1
A onto GP .

Next, we choose to place G2
A. Since its first node capacity

is 2 (although the node capacity of vP (4) and vP (3) is smaller
at the same time, the placement constraints are not satisfied),
we can only place it on vP (2), and then treat it as parent to
find the placement of subsequent nodes in the future.

Finally, when we are placing the last application graph G3
A,

we can only choose to place G3
A(F) to GP (0) (for the reason

Fig. 3. Place G3
A onto GP

of constraints). As a result, parent is GP (0). However, be-
cause the candidates which satisfy the placement constraints
cannot be found, the MINI algorithm chooses to perform a
BFS and finds the suitable node vP (3). Consequently, all 3
GA are placed, and resources of all these physical graph nodes
are used up luckily.

C. Baseline : Genetic Algorithm
In order to demonstrate efficiency of the heuristic algorithm,

we compare the MINI algorithm with the GA algorithm [9]
in simulation.

Algorithm 2 Genetic Algorithm (GA)
Input: Population,Generation, TargetF itness
Output: ~x

1: Pop ← Generate 1st generation randomly
2: for i = 1 to Generation do
3: newPop ← ∅
4: for p = 1 to Population do
5: if any Pop’s fitness ≥ TargetF itness then
6: Break;
7: end if
8: Pick up two individuals from Pop by fitness
9: if random(0,1) < Probabilty of crossover then

10: Cross two individuals
11: end if
12: if random(0,1) < Probabilty of mutation then
13: Mutate two individuals
14: end if
15: newPop ← newPop ∪ two new individuals
16: end for
17: end for

Genetic Algorithm is a meta-heuristic method targeted at
providing an approximate optimal solution for general opti-
mization problems. In the NCP problem, the solution space
contains all mappings from VA to VP . Define the quantity
of VA as m and the quantity of VP as n, as well as the
size of its solution space is nm. In fact, we could represent
a problem solution as a string. Concretely, consider a string
S, whose length is the same as that of GA. Si stands for vP
holding vkA(i), such as the physical node A, B or C. The
string is similar to the form AAB · · ·AC. In addition, it is
better to design Fitness Function fitness in advance (with
the constraints of nodes’ and edges’ capacity). The Crossover
Function crossover and the Mutation Function mutation
would be utilized to the gene exchange and the gene mutation
among strings in one generation.

VI. EVALUATION

Firstly, we study a case in which the application graphs
and the physical graph are shown in Figure 1. The weight
of nodes in the physical graph is set according to array
{200; 0; 200; 300}, and the weight of edges and nodes in
GA are both generated according to a uniform distribution.
Afterwards, we use our MINI algorithm to solve the NCP
problem, and the GA-based algorithm is complemented for
comparison. The square term of the remaining empty space
is a metric to evaluate quality of placement scheme generated
by these two algorithms.

Fig. 4. With the increase of the mean computing weight of application graphs,
the percentage of square of remaining empty space decreases in GA and
MINI.

From Figure 4, we can see that with the increase of the
mean of nodes in application graphs, the cost of the two
algorithms gradually decreases, indicating that the remaining
capacity on servers is gradually occupied by NFV nodes.
Among them, the fitted curve of MINI Algorithm is smoother
, which shows how the MINI algorithm outperforms the GA
algorithm in stability.

Fig. 5. As the number of application graphs increases, the cost calculated
by the two placement algorithms has begun to decline.

Then, we set up a controlled experiment as follows. To
study the influence of the number of GA on the algorithm
performance, we increase the number of application graphs
while keeping the quantity of physical nodes unchanged. The
GA and MINI algorithm was exploited to solve each test cases
separately. As we can see from Figure 5, as the number of
application graphs increases, the cost calculated by the two
placement algorithms declines, but the solutions generated by
MINI are better than that of the GA algorithm. At the same
time, with the increase of the number of application graphs,
the difference of two algorithms becomes more significant. It
is illustrated in Fig.5. that the solution generated by the MINI
algorithm is better than GA algorithm in general cases with
respect to the solution quality.

Figure 6 shows the running time of these two algorithms.
Apparently, MINI algorithm use much less time to generate

Fig. 6. The average operating time of GA algorithm and MINI algorithm.

the final results than the GA algorithm, it can still figure
out the results within milliseconds even when the size of
application graphs grow larger. In the mean time, we can
see that the size of application graphs does not have a great
impact on the operating time of the two Algorithms. The fast
speed of MINI algorithm makes it suitable and practical for the
edge computing environments. In conclusion, MINI achieves
a better tradeoff between optimality and running time.

Fig. 7. The average accepted rate of GA algorithm and MINI algorithm.

We simulate the arrival of K application graphs randomly,
and then use the two algorithms to calculate the allocation
cost of application graphs separately. In the whole process,
we perform the simulation 64 times and count the number of
times that they are successfully accepted. From Figure 7 we
can find that the acceptance rate of the two algorithms is about
63%(GA) and 68%(MINI), indicating that the performance of
MINI in acceptance rates is superior to that of GA.

The above work uses a simple simulation of the program.
Conducting extensive simulations using real-world traces is
part of our future work.

VII. CONCLUSION

Network Function Virtualization (NFV) has emerged as a
new approach to designing, deploying and managing network
infrastructure. It decouples the network functions from pro-
prietary hardware and runs them as software applications on
general purpose hardware. This shift in paradigm toward “soft-
warization” allows cost reduction and service agility. Previous
works in NFV mainly focus on the placement of NFVs in data
centers; different to them, we rethink the NCP problem at
network edge [16]. We first propose a new metric to evaluate
the efficiency of the NCP problem. Its main idea is to reduce
the capacity fragmentation caused by the deployment of NFV
as much as possible, and thus the resources of physical devices
can be fully utilized. Secondly, we have proved that the NCP
problem is NP-Complete by reducing Bin Packing Problem to
it. Thirdly, we propose a heuristic algorithm called MINI to
solve the NCP problem. In the evaluation, we compare MINI

with a GA-based approch and discover MINI has significant
improvements in processing time, service acceptance rate, and
resource utilization rate compared to GA. The fast speed
of the MINI algorithm makes it suitable and practical for
the edge computing environments. Besides, MINI is flexible,
since it can achieve a tradeoff between optimality and running
time. We believe that our work can help network managers to
orchestrate NFV efficiently.

ACKNOWLEDGMENTS

This work was supported in part by National Key R&D Pro-
gram of China (2017YFB1001801), NSFC (61502224, 61472181,
61472185), CCF-Tencent Open Fund, Ministry of Education & China
Mobile Research Foundation (MCM20170307), NSF (CNS 1757533,
CNS 1629746, CNS 1564128, CNS 1449860, CNS 1461932, CNS
1460971, and IIP 1439672), and Collaborative Innovation Center of
Novel Software Technology and Industrialization.

REFERENCES

[1] M. Chiosi, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, H. Deng et al., “Network functions
virtualisation: An introduction, benefits, enablers, challenges and call
for action,” in SDN and OpenFlow World Congress, 2012, pp. 22–24.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[3] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–
29, 2008.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computinga key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[6] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in Computer Communications
(INFOCOM), 2015 IEEE Conference on. IEEE, 2015, pp. 1346–1354.

[7] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic aware
placement of interdependent nfv middleboxes,” in INFOCOM 2017-
IEEE Conference on Computer Communications. IEEE, 2017, pp.
1–9.

[8] W. Ma, J. Beltran, Z. Pan, D. Pan, and N. Pissinou, “Sdn-based traffic
aware placement of nfv middleboxes,” IEEE TNSM, vol. 14, no. 3, pp.
528–542, 2017.

[9] F. Carpio, S. Dhahri, and A. Jukan, “Vnf placement with replication for
loac balancing in nfv networks,” in Proc. of ICC 2017. IEEE, 2017,
pp. 1–6.

[10] M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati, “On the
placement of vnf managers in large-scale and distributed nfv systems,”
IEEE TNSM, vol. 14, no. 4, pp. 875–889, 2017.

[11] P. Vizarreta, M. Condoluci, C. M. Machuca, T. Mahmoodi, and
W. Kellerer, “Qos-driven function placement reducing expenditures in
nfv deployments,” in Proc. of ICC 2017. IEEE, 2017, pp. 1–7.

[12] S. Wang, M. Zafer, and K. K. Leung, “Online placement of multi-
component applications in edge computing environments,” IEEE Access,
vol. 5, pp. 2514–2533, 2017.

[13] V. V. Vazirani, Approximation algorithms. Springer Science & Business
Media, 2013.

[14] N. Karmarkar and R. M. Karp, “An efficient approximation scheme for
the one-dimensional bin-packing problem,” in Foundations of Computer
Science, 1982. SFCS’08. 23rd Annual Symposium on. IEEE, 1982, pp.
312–320.

[15] S. S. Seiden, “On the online bin packing problem,” Journal of the ACM
(JACM), vol. 49, no. 5, pp. 640–671, 2002.

[16] C. Wang, S. Zhang, H. Zhang, Z. Qian, and S. Lu, “Edge cloud capacity
allocation for low delay computing on mobile devices,” in 2017 IEEE
International Symposium on Parallel and Distributed Processing with
Applications. IEEE, 2017, pp. 1–8.

