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Abstract: Acquiring content through mobile networks is a basic and general topic. Mobile nodes 
have two different ways of obtaining data. The first method is to download data quickly through 
3G/4G networks, which is expensive. The second way is to get data from other nodes by means 
of delay tolerant networks (DTN), which are much cheaper, but are time-consuming. 
Throwboxes deployed in DTN act as fixed ferry nodes. The index records the historical 
encounter information, in order to give the mobile nodes predictive abilities regarding future 
encounter events. We try to compare the effectiveness when we replace some space for the data 
to index. We bring forward an index-based buffer space management mechanism for throwboxes, 
by which mobile nodes can have the chance to fetch data at a lower total cost. Preliminary 
simulations demonstrate that the buffer space allocation strategy is affected by some system 
parameters, and that replacing some space for data with an index can lower the system total cost 
significantly in most cases. Simulation results also show that the index-based buffer space 
management mechanism outperforms other mechanisms which only store data items or hold an 
index of static size. 
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1 Introduction 
The rapid growth of all kinds of mobile devices leads to a 
mobile data explosion. According to Cisco Visual 
Networking Index (Cisco VNI) (http://www.cisco.com/), 
mobile data traffic will increase ten-fold between 2014 and 
2019. Mobile data traffic will grow at a CAGR of 57% 
between 2014 and 2019, reaching 24.3 exabytes per month 
by 2019. Mobile data offloading seems to be the most 
promising solution at this moment. On the other hand, a lot 
of mobile data flows are not delay-sensitive, e.g., 
messaging, file transfer, and data dissemination. And, Lee et 
al. (2013) indicate that delayed transmissions can achieve 
substantial gains. In Mehmeti and Spyropoulos (2014), the 
authors further analyse the problem and give some 
expressions to choose the optimal deadline. In this paper, 
we explore a new way to offload the mobile data by using 
DTN as a collaborative entirety. 

In Fall (2003), delay tolerant networks (DTN) performs 
the so-called store-carry-forward paradigm to deliver 
messages in an end-to-end fashion, since the mobile node 
has a high node mobility, a low cache capability, and a 
limited energy, sharing data between nodes may not be 
efficient enough. An alternative approach is to equip the 
DTN with dedicated fixed nodes, called throwboxes in Zhao 
et al. (2006), which are stationary wireless nodes with 
significantly improved storage and energy capabilities that 
simply act as fixed relays. Traditional offloading strategy 
and the deadline-driven mechanism make mobile nodes 
always try to wait fetching data from throwboxes until the 
deadline. For some data request which can hardly be fetched 
before deadline, mobile nodes also have to wait till the 
deadline. A lot of waiting time is unnecessary and wasted. 

To address this issue, we bring index into throwboxes. 
Index is a table file recording the historical contact 
information between mobile nodes and throwboxes. 
Throwboxes can use this knowledge to predict future 

contact event and give mobile nodes prediction about 
whether they can fetch the data from throwboxes. Many 
mobility models in Jeremie et al. (2006), Spyropoulos et al. 
(2006) and Ibrahim et al. (2007) prove that the contact event 
between throwboxes and mobile nodes is predictable. With 
the prediction, mobile nodes can make a wise choice to 
avoid the meaningless waiting. However, the added index 
file shares the limited buffer with the data. Some data space 
must be sacrificed for storing the index file. So, here comes 
the problem: is it worthy to add the index file into 
throwboxes although it may reduce the hit rate of users 
fetching data from throwboxes? Our initial motivation is to 
find out the effect of replacing some of the data space with 
the index file. We define that the total cost of the data 
fetching is formed by the time consumption and 
transmission cost. And how to balance data space and index 
file space, to achieve the minimised total cost, under 
different network conditions, is the objective of this work. 

The key contributions of this paper are summarised as 
follows: 

• We add an index file to the throwboxes, making 
throwboxes able to not only store data items, but also 
give mobile nodes suggestions about how to fetch the 
requested data in a min-cost way. 

• We propose a novel future event prediction algorithm. 
Differing from the traditional approach, we set the data 
contact event as the prediction target instead of the 
mobile node’s contact event. 

• We present a index-based buffer allocation mechanism 
to balance the data file space and index file space to 
achieve the minimise total cost. 

• We conduct extensive simulations to evaluate the 
index-based mechanism. The results clearly show  
that the index-based buffer allocation mechanism 
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significantly outperforms the traditional data-only 
mechanism. 

The remainder of this paper is organised as follows. We 
introduce the system model in Section 2, and then we 
introduce the data encounter prediction approach in  
Section 3. The buffer space allocation mechanism is 
presented in Section 4. Simulation results which are 
presented in Section 5 prove our theory. Finally, we review 
the related work in Section 6 and conclude the paper in 
Section 7. 

2 System model 
In this section, we introduce the system model, including 
network model, utility model and delivery model. 

2.1 Network model 

We consider a mobile network with a node set N = Nt ∪ Nn, 
where Nt and Nn donate the set of throwboxes and mobile 
nodes, respectively. All the mobile nodes independently and 
randomly move on a two-dimensional plane. Throwboxes 
are distributed on some spots of the plane. We assume that 
all the throwboxes are fully connected. All the data stored in 
both mobile nodes and throwboxes form a dataset M. Each 
data is with equal size and can be completely delivered 
within one encounter. Mobile nodes randomly request data  
i ∈ M. The data is stored in throwboxes and mobile nodes. 
Each throwbox has a limited buffer. We consider all 
distributed buffers form into an uniform one, because of 
they are fully connected. The size of the big buffer is 
denoted as B and we define that bdata and bindex represent the 
size of buffer space stored data and index file, respectively. 

Mobile nodes have two choices to fetch the requested 
data: 

1 fetch the data through cellular network with 
transmission cost cc at any location 

2 fetch the data from throwboxes via Wi-Fi with 
transmission cost cd, when mobile nodes are in a 
location near the throwbox, as shown in Figure 1. 

Figure 1 The network model 

 

2.2 Utility model 
Based on the basic network model, we present the utility 
model as follows. Each successful data fetching contains a 
benefit, denoted by W(t). The benefit decreases linearly as 
time t elapses. The initial benefit of a data is denoted by W, 
while the initial benefits of different data are different. The 
distribution for the initial benefits of different data follows 
the truncated normal distribution, the mean value of which 
is denoted by .W  The decreased benefit value within each 
unit time interval is defined as the benefit decay coefficient, 
denoted by ζ. Formally, the benefit satisfies the following 
formula: 

( )W t W t ζ= − ⋅  (1) 

The utility is defined as the benefit minus the transmission 
cost, denoted by U(t). Let c denote the total cost incurred by 
message forwarding until time t, then the utility satisfies: 

( ) ( )U t W t c= −  (2) 

and (2) can be changed into: 

( ) ( )U t W tζ c= − +  (3) 

We define the td, which makes the utility equal zero, is the 
deadline of a data fetching. Assume that the total cost of a 
data fetching including the time consumption and 
transmission cost is denoted as: a = tζ + c. Our objective is 
to maximise the utility. 

2.3 Delivery model 
A mobile node generates different data requests, each 
request with the deadline td. Once a data request is 
generated, according to the comparison of deadline and 
estimated encounter time, mobile nodes now need to decide 
whether to fetch the data in the cellular network. Depending 
on whether the throwbox stores the requested data or not, 
there are two different modes for the mobile nodes to get the 
data from throwbox: 

Figure 2 Data contact timeline 

 

2.3.1 Direct mode 
If any throwbox holds the requested data, the mobile node 
will reply with the requested data immediately. 

2.3.2 Indirect mode 
Otherwise, the throwbox replies an estimation about how 
long it will take to get the requested data from DTN, and the 
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probability. Then, the node can make a decision whether to 
fetch the data via cellular network right now. 

3 Data contact prediction 
In this section, we introduce the data contact prediction 
algorithm. The data contact prediction includes two parts: 
history record collecting and future contact prediction. 

Table 1 Contact history records 

Data items 
Contact times 

1st 2nd … kth 

Data 1 t11 t12 ∙∙∙ t1k 
Data 2 T21 t22 ∙∙∙ t2k 
∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ 
Data i ti1 ti2 ∙∙∙ tik 
∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ 
Data M tM1 tM2 ∙∙∙ tMk 

3.1 History records collecting 
When a mobile node carrying data item i contacts with a 
throwbox, we consider this contact event as a data contact 
of item i. Throwboxes will record the name of the data and 
the current time. Then, throwboxes use these records to 
build a data contact table. The data contact table is stored as 
an index file in the big buffer. Table 1 gives an example. 
Then, the time span in contact table can be used as input to 
predict the time of the next data contact. 

3.2 Future contact prediction 
We introduce a novel algorithm to predict future data 
contact: time-window-based predict algorithm. Figure 2 
shows an example about one data item’s contact timeline  
(a row in the data contact table), where the time spot is 
denoted as t and tk represents the time spot of the  
kth data contact. The offline time is denoted as T.  
Time-window-based prediction uses the former k – 1 offline 
times to predict the kth offline time Tk. J = {T1, T2, …, Ti, …, 
Tk–1} represents the set of one data item’s offline time from 
the first data contact to the kth. We consider the maximum 
offline time in set J is TMax, TMax > ∀Ti ∈ J and we take Δt 
as the minimum decrease meta, where .MaxT

kt∆ =  Then we 
use Δt to build an arithmetic progression K = {Δt, 2Δt, …, 
iΔt, …, kΔt}. Every item in K is a candidate predicted 
offline time. By comparing the candidate predicted offline 
time with every historical offline time, we can find a most 
reliable value. (4) uses these candidates of K as an input to 
calculate the reliability R(iΔt) of each candidate predicted 
offline time: 

1 0
( ) , , [1, ]

1

k
j jj

j
j

a i t T
R i t a i k

i t Tk
= ∆ ≤⎧

∆ = = ∈⎨ ∆ >⎩

∑
 (4) 

where aj is an indicator and equals to 1 only when the 
candidate is larger than the offline time Tj. Then, we 
compare R(iΔt) with a threshold Rth, and take the minimum 
R(iΔt) of all R(iΔt)s that larger than the threshold as Rm: 

{ }min min ( ) | ( ) , [1, ]thR R i t R i t R i k= ∆ ∆ > ∈  (5) 

The threshold Rth can be used to control the preferred 
R(iΔt), we take the Rth = 0.5 here. Under this setting, the 
calculated iΔt is close to the median value of all the offline 
time Ti. We take the iΔt whose reliability is Rmin as the final 
predicted offline time PTk: 

{ }min| ( )kPT i t R i t R= ∆ ∆ =  (6) 

In reality, the data encounter frequency can change 
dynamically because the mobile nodes do not hold the data 
items all the time, the total copies of one data item is not 
static. To quickly adapt to such dynamic factors, we 
improve the basic method by a time-window technique. Its 
principle is to segment the whole timeline into a series of 
smaller time windows and to place the highest emphasis on 
the most recent records while gradually decreasing the 
emphasis on the preceding ones. Suppose the timeline was 
divided into s time windows, and the set of the data  
items’ offline time also was divided into small sets: 

( 1) ( 1) ( 1)1 2 1 2 1 1 2{ , , ..., }, { , ..., }, ..., { , ,k k k m k s k s k
s s s s s s

T T T T T T T T+ − −+ + + + ++  

..., },kT  and the accuracy calculated of the mth time window 
is expressed as: 

( 1)

1 0
( ) ,

1

m k
s
mk
s

jj j
m j

j

a i t T
R i t a

i t Tk

+

= + ∆ ≤⎧
∆ = = ⎨ ∆ >⎩

∑
 (7) 

Now, (4) can be improved and expressed as a weighted 
average of Rm(iΔt) over s time windows: 

1 1 2 2

1

( ) ( ) ( ) ... ( )

( )

s s
s

m m
m

R i t ω R i t ω R i t ω R i t

ω R i t
=

∆ = ∆ + ∆ + + ∆

= ∆∑  (8) 

where ωm is the weight of the time window. Different 
weight-selection methods (e.g., linearly or exponentially 
decreasing weights) would discard the history data at 
different rate. Here, we simply give the mth time window the 
weight of: 

1

m s

i

mω
i

=

=
∑

 (9) 

Lots of prediction algorithms’ accuracy rate grows 
extremely slowly after they have enough historical records, 
which means there is a convergence state. Through test and 
analysis, we find that the convergence accuracy of the  
time-window-based prediction is 80% and the convergence 
size of the index is 40 (more details will be shown in 
Section 5). 
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Figure 3 Data fetching timeline 

 

Table 2 System parameters 

Para. Explanation 

cc Transmission cost of cellular network 
cd Transmission cost of DTN 
tr The time of users generate a data request 
t1 The time of users meet a throwbox 
t2 The time of users fetch a data from throwbox 
td The deadline of a data request 

4 Buffer space allocation 
Because of the limited buffer size, a large index file means 
less space to store data items. In order to achieve a better 
system performance, an efficient buffer space allocation 
strategy is needed imminently to consider the trade-off. In 
this section, we propose a buffer space allocation 
mechanism to manage the buffer space in throwboxes. 

4.1 Data fetching process 
Complete process of one success data fetching is shown in 
Figure 3. All the parameters are listed in Table 2. Based on 
the network and delivery model, a complete process of data 
fetching could be any one of the following five situations: 

• Case 1: If mobile node could not encounter any 
throwbox before the deadline, which means its 
impossible to fetch the data via DTN. The best  
choice is to download the data via cellular networks 
immediately. So, the total cost in this case is  
A1 = trζ + cc. 

• Case 2: If mobile node chooses not to fetch the data  
via cellular networks at tr, then encounter a throwbox 
before the request deadline at t1. Once the throwbox’s 
buffer stores the requested data, mobile node can 
complete this transmission by downloading it from the 
throwbox. So, the total cost in this case is A2 = t1ζ + cd. 

• Case 3: If mobile node meets a throwbox at t1 but the 
throwbox does not have the data. Then, throwbox will 
reply a time prediction which is t2, and let mobile node 
to choose waiting for throwboxes to fetch it, or fetching 
it via cellular networks immediately. If mobile node 

chooses not to wait, then the total cost of this data 
fetching is A3 = t1ζ + cc. 

• Case 4: After meeting the throwbox for the first time, 
the mobile node could wait and continue moving. At 
time t2, mobile node fetches the data via DTN from 
another throwbox in indirect mode successfully. Then, 
the total cost is A4 = t2ζ + cd. 

• Case 5: Similar to case 4, mobile node chooses to wait 
to fetch the data in indirect mode. However, a wrong 
time prediction makes it could not fetch the data via 
DTN before the deadline. Mobile node has to fetch the 
data via cellular networks at deadline td with the total 
cost A5 = tdζ + cc. 

4.2 Utility function optimisation 
By analysing the data fetching progress, we present the 
optimal size of the index file to achieve the maximum 
utility. 

Theorem 1: Suppose the size of the index buffer space is 
denoted as s, the optimal size s  achieved the maximum 
utility can be found and can be changed under different 
networks conditions. 

To a request of data i, the utility is the remaining benefit 
when the transmission is finished. Thus, the system total 
benefit of m success data fetching for a certain time can be 
presented as: 

( )
1

m

total j j
j

U W a
=

= −∑  (10) 

where j represents the jth data fetching. Since mobile nodes 
request the data randomly, the access probability of each 
data i ∈ M is equal. Due to the distribution for the initial 
benefits of different data follows the truncated normal 
distribution with a mean value ,W  the sum of m success 
data fetching’s initial benefits can be calculated as 

1
.

m
jj

W m W
=

= ⋅∑  Then (4) can be changed into: 

1

m

total j
j

U m W a
=

= ⋅ −∑  (11) 

So, our objective can be converted to minimising the total 

cost 
1

.
m

jj
a

=∑  Based on the five data fetching cases, the 

total cost of one success fetching process a random data i 
can be presented as: 

( ) ( )( )0 1 0 1 2 11 1j xa P A P P A P A= + − + −  (12) 

where P0 is the probability that the data request deadline 
comes before mobile nodes encountering a throwbox, and 
P1 is the probability that requested data is existing in the 
buffer of throwboxes. If requested data is not in the data 
buffer, then the cost Ax can be presented as: 
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( )2 2 31x yA P A P A= + −  (13) 

where P2 is the probability that the requested data is existing 
in the index file of throwboxes, in other words, a predicted ti 
can be delivered. Ay is the cost after the predicted ti is given 
and Ay can be presented as: 

( )( ) ( )3 4 3 4 4 3 51 1yA P P A P A P A= + − + −  (14) 

where P3 is the accuracy of the predicted offline time and P4 
is the probability that predicted data contact delay is within 
the request deadline. Simultaneously considering (14), (15) 
and (16), the average total cost of one successful data 
downloading can be presented as: 

( )(
( ) ( )( ){{
( ) ( ) })

0 1 0 1 2

1 2 3 4 3 4 4

3 5 2 3

1

1 1

1 1

ja P A P P A

P P P P A P A

P A P A

⎧ = + −
⎪⎪ + − + −⎨
⎪

+ − + −⎪⎩

 (15) 

In order to calculate the time cost and transmission cost 
synthetically, we transform all the cost into the form of cd. 
Suppose that: 

1 1 2 2 3 4 4

0

, , ,r d d d d

c d

t m c t m c t m c t m c
c m c

= = = =⎧
⎨ =⎩

 (16) 

where m0, …, m4 are controllable parameters, by changing 
the value of m0, …, m4, the system can modify the weight of 
time and transmission cost in the total cost and adapt  
the delay-sensitive or the transmission-cost-sensitive 
environment. Then, we can get: 

( )
( )
( )
( )

1 0

2 2

3 2 0

4 3

5 4 0

1

1

d

d

d

d

d

A m c
A m c
A m m c
A m c
A m m c

=⎧
⎪ = +⎪⎪ = +⎨
⎪ = +⎪
⎪ = +⎩

 (17) 

Simultaneous (17) and (19), we can change the problem into 
calculating the minimised coefficient of cd. The size of data 
index meta is k (as we explained in Section 3) and suppose 
the size of the index buffer space are denoted as s. So, P1 
and P2 can be presented as: 

( )*
1 2, , 0,B s sP P s s

M Mk
−= = ∈  (18) 

where s* = min{B – 1, Mk} and it ensures that there is at 
least one space to store the data item. P0, P3 and P4 are 
known constant. Suppose that F(s) represents the coefficient 
function of (9): 

( ) i

d

aF s
c

=  (19) 

Then after merging similar terms, F(s) can be presented as: 
2( )F s s s γ= + +α β  (20) 

where α, β, γ are formed by parameters B, M, k, P0, P3, P4, 
m0, m1, m2, m3, m4. The derivative of F(s) can be presented 
as: 

( ) 2F s s′ = +α β  (21) 

So, when α ≥ 0, F(s) achieve the minimum if: 

2
s = − β

α
 (22) 

so we can know that the optimal s  satisfies: 

*

* *

, 0
2 2

0, 0       
2

,       
2

s

s

s s

⎧− < − <⎪
⎪
⎪= > −⎨
⎪
⎪

− >⎪⎩

β β
α α

β
α

β
α

 (23) 

and when α < 0, F(s) achieve the maximum if: 

2
s = − β

α
 (24) 

so we can know that the optimal s  satisfies: 

*

* *

10,
2 2

1,
2 2

s
s

s s

⎧ − >⎪⎪= ⎨
⎪ − ≤
⎪⎩

β
α
β
α

 (25) 

□ 

With all the parameters mentioned above, the utility 
function can evaluate the system total utility, and give the 
optimal index file’s size .s  

4.3 Buffer space management algorithm 
Base on the theoretical analysis above, we develop the 
index-based buffer space management algorithm, as shown 
in Algorithm 1. The index-based buffer space management 
guarantees that throwboxes will choose the best way to 
allocate the buffer space to make sure the system total cost 
is the minimum. Index-based buffer space management 
includes four phrases: strategy-choosing phrase, fill-up 
phrase, adjustment phrase and static phrase. 

Buffer space management algorithm: 

Input: System parameters: M, B, k, P0, P3, P4, m0, …, m4; 
1: With all the parameters, calculate the s using (16); 
2: According to different α, compare the s and s* to 

determine the optimal ;s  

3: for each data i contact event do 
4:  if optimal s = 0 then 
5:   if bdata < B then 
6:    if data i ∉ bdata then 
7:     fetch data i into the buffer; 
8:    end if 
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9:   else 

10:    break; 
11:   end if 

12:  else 

13:   if bdata + s < B then 
14:    record this contact information into index file; 
15:    if i ∉ bdata then 
16:     fetch data i into the buffer; 
17:    end if 

18:   else 

19:    if s s<  then 

20:     delete the data item with the lowest initial 
benefit and record this contact information; 

21:    else 

22:     delete the oldest contact information and 
store this new one; 

23:    end if 

24:   end if 

25:  end if 

26: end for 

4.3.1 Strategy-choosing phrase 
At the very beginning of the system’s operation, throwboxes 
must determine the storage strategy. Steps 1 and 2 calculate 
the s using (24) according to the corresponding parameters, 
then comparing the s and s* to choose the optimal s  which 
achieves the maximum system benefit, and use the optimal 
s  to guide the later phrase. 

4.3.2 Fill-up phrase 
Steps 4 to 9 show that if the optimal s = 0, then throwboxes 
will store the data item into the buffer until it is full, instead 
of recording any contact information. After the buffer is full 
of data, the system goes to the static phrase. If the optimal 

*s s=  or 2 ,s = − β
α  then whenever a mobile node holding 

some data items encounter a throwbox, throwbox will 
record the data contact information into index file, and fetch 
the data items into the buffer if these items have no copies 
in the buffer (steps 10–14). This procedure will continue 
until the buffer is full, after that, system goes to the next 
phrase. 

4.3.3 Adjustment phrase 
Once the buffer is full, system using steps 16 to 19 to delete 
one data item and use the empty space to store the 
upcoming data contact information. After a while, the 
empty space will be used up and another data item will be 
deleted as before. This phrase will end as long as the index 
file reaches the size of optimal s  and system will go to the 
static phrase. 

4.3.4 Static phrase 
In this phrase, the proportion of data buffer and the index 
file will not change anymore. The replacement strategy of 
new data contact records and new data items are same as the 
strategy in adjustment phrase. 

5 Evaluation and discussion 
In this section, we present our simulation to evaluate the 
performance of buffer space allocation algorithm under 
various settings. The evaluation methods, settings, and 
results are presented as follows. 

5.1 Simulation settings and metrics 
We use two types of traces to conduct our simulations. The 
first trace is generated by the ONE simulator in Keranen  
et al. (2009). We deploy 100 mobile nodes in a small area of 
a real city: Helsinki, Finland. Mobile nodes perform shortest 
path map-based movement patterns on the roads. The 
second trace is a large-scale dataset of real GPS traces from 
around 320 taxies operational in the urban area in Rome, 
Italy. In the simulation, the virtual throwboxes are deployed 
in the street in every two kilometres. Each mobile node has 
a buffer to store five data items, and generate a request of a 
random data item from the set M. At the initiate stage of the 
system, mobile nodes store five data items randomly 
selected from the set M and throwboxes have a short time to 
warm up recognising the basic information of the whole 
network. 

We run the simulations under two different number of 
data, M = 300, 400. Then we take P4, B and k as our main 
objects of observation. Deadline is determined by the initial 
benefit, the initial benefit W follows the truncated normal 
distribution with the mean value W  = 20,000. In order to 
simplify the simulation, we set different request deadlines to 
represent the initial benefit. We set the default index meta 
size as 0.05 while the size of a data item is set as 1. We 
combine all throwboxes buffer as one big buffer sized from 
B = 55 to B = 100 because of the full connection. 

In order to evaluate the effects of the index-based buffer 
space management algorithm, we also implement a 
traditional buffer management mechanism called data-only 
buffer space management, where throwboxes use all storage 
space to store the data item. 

Table 3 Evaluation settings 

Parameter name Default Range 

Number of mobile nodes Nn 100 100–120 
Number of data M 300 300–400 
Deadline 20,000 5,000–45,000 
Throwboxes buffer size B 75 60–100 
Index meta size k 0.05 0.01–0.1 
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5.2 Results and discussion 
Firstly, to evaluate the accuracy of the time-window-based 
prediction, we run some tests and results are shown as 
Figure 4. We record every encounter time of a random data 
item i and repeat the simulation with different number of 
contact records for 100 times each. Figure 4 shows that the 
prediction accuracy is increasing as the historical records 
grow up until the index records about 40 times contact 
information. Then, the prediction accuracy stays around the 
80%. So, in the following simulations, throwboxes’ index 
only records 40 latest contact informations. 

Figure 4 Prediction accuracy under different numbers of 
historical records (see online version for colours) 

 

5.2.1 Effects of the throwbox buffer size 
Figure 5(a) and Figure 7(a) show the offloading ratio under 
different throwbox buffer size. We can see that when the 
size of the throwbox buffer increases, the offloading ratio of 
two algorithms will increase and the offloading ratio of 
index-based algorithm is always higher than the data-only 
algorithm. And we also notice that the system performance 
is different under different number of data items M = 300 
and M = 400. More data items means more diversity data 
requests, which will reduce the request hit rate in the 
throwbox buffer. Figure 6(a) and Figure 8(a) give the 
average delay of all the data fetching. As we had expected, 
the average data fetching delay of index-based algorithm is 
much lower than the data-only algorithm. This is due to the 
future contact prediction algorithm. 

 

 

 

 

 

 

Figure 5 System average offloading ratio under generated  
traces, (a) offloading ratio vs. size of throwbox buffer 
(b) offloading ratio vs. deadline (c) offloading ratio vs. 
size of index meta (see online version for colours) 
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Figure 6 System average delay under generated traces,  
(a) delay vs. size of throwbox buffer (b) delay vs. 
deadline (c) delay vs. size of size of index meta  
(see online version for colours) 
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Figure 7 System average offloading ratio under real traces,  
(a) offloading ratio vs. size of throwbox buffer  
(b) offloadingratio vs. deadline (c) offloading  
ratio vs. size of index meta (see online version  
for colours) 
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Figure 8 System average delay under real traces, (a) delay vs. 
size of throwbox buffer (b) delay vs. deadline (c) delay 
vs. size of size of index meta (see online version  
for colours) 

 
(a) 

 
(b) 

 
(c) 

5.2.2 Effects of the deadline 
Figure 5(b) and Figure 7(b) show the offloading ratio under 
different initial benefit. Initial benefits determined the 
deadline of each data request, so we choose to change the 
deadline to observe the system performance. The increasing 

rate of the data-only algorithm is very low and increasing 
rate of the index-based algorithm is much higher at the 
beginning and gradually low down. To the data-only 
algorithm, due to lack of network global information, data 
items in throwboxes buffer do not change since the buffer is 
full. It can increase the hit rate in throwboxes buffer but the 
efficiency is quite low. When the deadline is long enough 
for most data requests can be fetched from other mobile 
nodes, the increasing rate reduces. 

The initial benefit’s influence to average delay is 
represented in Figure 6(b) and Figure 8(b). As we can see, 
when the deadline is short, the gap between the two 
algorithms is quite narrow. But as the deadline increased, 
the gap is wider and wider. The reason is that when the 
deadline is short, mobile nodes can hardly have chance to 
meet the throwboxes more than once, so the index-based 
algorithm can barely help mobile nodes to fetch data. But 
when the deadline enlarges, the advantage of index-based 
algorithm shows up and lots of requests were offloaded 
before the deadline coming. However, a longer deadline 
cannot give the data-only algorithm the same benefits, so 
the gap becomes wider. 

5.2.3 Effects of the index meta size 
Figure 5(c) and Figure 7(c) show that as the size of the 
index meta become larger, the offloading ratio is reducing. 
This is because when the size of index meta is small (e.g.,  
k = 0.01), replacing a data item can store 100 more data 
index into the buffer and the space of three data items can 
store all the data index if the number of data is 300, this 
kind of replacing is very efficient. When the size of index 
meta is increasing, replacing data items with index is still 
useful but not that significantly. The average delay showed 
in Figure 6(c) and Figure 8(c) also give the same results. A 
smaller index meta size gives throwboxes more space to 
store data items and it can bring a shorter delay. 

6 Related work 
Throwboxes-based DTN are first proposed in Zhao et al. 
(2006). In the later works in Ibrahim et al. (2007, 2009), 
simulation results and real deployments have demonstrated 
that importing a number of throwboxes into the DTN can 
indeed improve the routing performances and overall 
throughput. Besides, some other studies focusing on 
analytical models for delay distribution in Gu et al. (2010) 
and designing/evaluating routing strategies in Gu et al. 
(2010) for throwbox-based DTN are also presented. 
Meanwhile, Banerjee et al. (2010) consider the problem 
about energy efficiency of each throwbox node for 
throwbox-based DTN. The main difference between our 
work and previous work is that we implement a contact 
prediction mechanism on throwboxes, by sacrificing some 
data storage, and treat throwboxes as both data buffers and 
forecast equipment. To the best of our knowledge, this is the 
first work that makes throwboxes become multifunctional. 
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In existing prediction-based schemes, mobile nodes’ 
mobility and contact is estimated based on a history of 
observations. A representative case is using utility-routing 
in Lindgren et al. (2003) and Zhang et al. (2007), where 
mobile nodes consider the utility value as the predictor of 
two nodes’ future likelihood of encounter. Deng and Chang 
(2014) propose a multicast routing scheme based on social 
difference (SDMR), which considers the social differences 
between nodes, including both the similarity and the 
centrality differences. LeBrun et al. (2005) propose a 
routing algorithm for VANET that use the current position 
and trajectories of nodes to predict their future position and 
calculate the distance to the destination. Yeh et al. (2014) 
reveal a system performance prediction and analysis method 
for multi-core system by adopting electronic system-level 
(ESL) design methodology. In Burns et al. (2005),  
they propose a prediction scheme that uses past  
frequencies of contacts, as well as the past contacts. Another 
prediction-based generic algorithm for DTN routing is 
MobySpace in Leguay et al. (2006), which uses a high-
dimensional Euclidean space constructed upon nodes 
mobility patterns. The major difference between our 
approach and previous works is we take the data as our 
target of prediction. 

7 Conclusions 
In this paper, we introduce a novel throwbox design by 
adding an index file into the buffer, which modifies the 
throwbox from a pure data buffer into a data transfer helper 
with future prediction. Aiming at the trade-off between data 
and index, we propose a utility function to evaluate the 
system performance under different combinations of 
variables. Theoretical analysis shows that replacing some 
data items with an index file in the buffer can reduce the 
total cost effectively in most cases. Simulations results also 
prove that the index-based prediction plays an important 
role in reducing the transmission cost of data fetching. 
Besides, simulations further show that the index-based 
buffer space allocation mechanism outperforms the simple 
index-added mechanisms. Our future work will mainly 
focus on two aspects. The first is to extend current system 
model to enable data transmission among mobile nodes. 
Secondly, we will bring in real-world trace into simulations 
to evaluate the system performance. 
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