
330 Int. J. Computational Science and Engineering, Vol. 14, No. 4, 2017

Copyright © 2017 Inderscience Enterprises Ltd.

Data or index: a trade-off in mobile delay tolerant
networks

Hong Yao, Han Zhang, Changkai Zhang and
Deze Zeng
Hubei Key Laboratory of Intelligent Geo-Information Processing,
School of Computer Science,
China University of Geoscience,
Wuhan, Hubei, 430074, China
Email: yaohong@cug.edu.cn
Email: sylarjohn@gmail.com
Email: cug09evan@gmail.com
Email: dazzae@gmail.com

Jie Wu* and Huanyang Zheng
Department of Computer and Information Sciences,
Temple University,
Philadelphia, PA 19122, USA
Email: jiewu@temple.edu
Email: huanyang.zheng@temple.edu
*Corresponding author

Abstract: Acquiring content through mobile networks is a basic and general topic. Mobile nodes
have two different ways of obtaining data. The first method is to download data quickly through
3G/4G networks, which is expensive. The second way is to get data from other nodes by means
of delay tolerant networks (DTN), which are much cheaper, but are time-consuming.
Throwboxes deployed in DTN act as fixed ferry nodes. The index records the historical
encounter information, in order to give the mobile nodes predictive abilities regarding future
encounter events. We try to compare the effectiveness when we replace some space for the data
to index. We bring forward an index-based buffer space management mechanism for throwboxes,
by which mobile nodes can have the chance to fetch data at a lower total cost. Preliminary
simulations demonstrate that the buffer space allocation strategy is affected by some system
parameters, and that replacing some space for data with an index can lower the system total cost
significantly in most cases. Simulation results also show that the index-based buffer space
management mechanism outperforms other mechanisms which only store data items or hold an
index of static size.

Keywords: mobile networks; delay tolerant networks; DTN; throwbox; index.

Reference to this paper should be made as follows: Yao, H., Zhang, H., Zhang, C., Zeng, D.,
Wu, J. and Zheng, H. (2017) ‘Data or index: a trade-off in mobile delay tolerant networks’,
Int. J. Computational Science and Engineering, Vol. 14, No. 4, pp.330–340.

Biographical notes: Hong Yao received his PhD in Computer Architecture from the Huazhong
University of Science and Technology, Wuhan, Hubei, China in 2010. He is currently an
Associate Professor with the School of Computer Science, China University of Geosciences,
Wuhan 430074, China. He is also with Hubei Key Laboratory of Intelligent Geo-Information
Processing, China University of Geosciences, Wuhan 430074, China. His current research
interests include computer networks and distributed systems.

Han Zhang received his Master degree in School of Computer Science, China University of
Geosciences, Wuhan 430074, China in 2015. His current research interests include computer
networks and distributed systems.

Changkai Zhang is pursing his MS in School of Computer Science at China University of
Geosciences, Wuhan 430074, China. His current research interests include computer networks,
and distributed systems.

 Data or index: a trade-off in mobile delay tolerant networks 331

Deze Zeng received his PhD and MS in Computer Science from the University of Aizu,
Aizu-Wakamatsu, Japan, in 2013 and 2009, respectively. He received his BS degree from the
School of Computer Science and Technology, Huazhong University of Science and Technology,
China in 2007. He is currently an Associate Professor with the School of Computer Science,
China University of Geosciences, China. He is also with Hubei Key Laboratory of Intelligent
Geo-Information Processing, China University of Geosciences, Wuhan 430074, China. His
current research interests include: cloud computing, software-defined sensor networks, data
centre networking, networking protocol design and analysis.

Jie Wu is the Chair and Laura H. Carnell Professor in the Department of Computer and
Information Sciences at Temple University. Prior to joining Temple University, he was a
Program Director at the National Science Foundation and Distinguished Professor at the Florida
Atlantic University. His current research interests include mobile computing and wireless
networks, routing protocols, cloud and green computing, network trust and security, and social
network applications. He regularly publishes in scholarly journals, conference proceedings and
books.

Huanyang Zheng received his BEng in Telecommunication Engineering from Beijing University
of Posts and Telecommunications, Beijing, China, in 2012. He is currently a PhD candidate in
the Department of Computer and Information Sciences, Temple University, Philadelphia,
Pennsylvania, USA. His current research focuses on mobile networks, social networks, and cloud
systems.

1 Introduction
The rapid growth of all kinds of mobile devices leads to a
mobile data explosion. According to Cisco Visual
Networking Index (Cisco VNI) (http://www.cisco.com/),
mobile data traffic will increase ten-fold between 2014 and
2019. Mobile data traffic will grow at a CAGR of 57%
between 2014 and 2019, reaching 24.3 exabytes per month
by 2019. Mobile data offloading seems to be the most
promising solution at this moment. On the other hand, a lot
of mobile data flows are not delay-sensitive, e.g.,
messaging, file transfer, and data dissemination. And, Lee et
al. (2013) indicate that delayed transmissions can achieve
substantial gains. In Mehmeti and Spyropoulos (2014), the
authors further analyse the problem and give some
expressions to choose the optimal deadline. In this paper,
we explore a new way to offload the mobile data by using
DTN as a collaborative entirety.

In Fall (2003), delay tolerant networks (DTN) performs
the so-called store-carry-forward paradigm to deliver
messages in an end-to-end fashion, since the mobile node
has a high node mobility, a low cache capability, and a
limited energy, sharing data between nodes may not be
efficient enough. An alternative approach is to equip the
DTN with dedicated fixed nodes, called throwboxes in Zhao
et al. (2006), which are stationary wireless nodes with
significantly improved storage and energy capabilities that
simply act as fixed relays. Traditional offloading strategy
and the deadline-driven mechanism make mobile nodes
always try to wait fetching data from throwboxes until the
deadline. For some data request which can hardly be fetched
before deadline, mobile nodes also have to wait till the
deadline. A lot of waiting time is unnecessary and wasted.

To address this issue, we bring index into throwboxes.
Index is a table file recording the historical contact
information between mobile nodes and throwboxes.
Throwboxes can use this knowledge to predict future

contact event and give mobile nodes prediction about
whether they can fetch the data from throwboxes. Many
mobility models in Jeremie et al. (2006), Spyropoulos et al.
(2006) and Ibrahim et al. (2007) prove that the contact event
between throwboxes and mobile nodes is predictable. With
the prediction, mobile nodes can make a wise choice to
avoid the meaningless waiting. However, the added index
file shares the limited buffer with the data. Some data space
must be sacrificed for storing the index file. So, here comes
the problem: is it worthy to add the index file into
throwboxes although it may reduce the hit rate of users
fetching data from throwboxes? Our initial motivation is to
find out the effect of replacing some of the data space with
the index file. We define that the total cost of the data
fetching is formed by the time consumption and
transmission cost. And how to balance data space and index
file space, to achieve the minimised total cost, under
different network conditions, is the objective of this work.

The key contributions of this paper are summarised as
follows:

• We add an index file to the throwboxes, making
throwboxes able to not only store data items, but also
give mobile nodes suggestions about how to fetch the
requested data in a min-cost way.

• We propose a novel future event prediction algorithm.
Differing from the traditional approach, we set the data
contact event as the prediction target instead of the
mobile node’s contact event.

• We present a index-based buffer allocation mechanism
to balance the data file space and index file space to
achieve the minimise total cost.

• We conduct extensive simulations to evaluate the
index-based mechanism. The results clearly show
that the index-based buffer allocation mechanism

332 H. Yao et al.

significantly outperforms the traditional data-only
mechanism.

The remainder of this paper is organised as follows. We
introduce the system model in Section 2, and then we
introduce the data encounter prediction approach in
Section 3. The buffer space allocation mechanism is
presented in Section 4. Simulation results which are
presented in Section 5 prove our theory. Finally, we review
the related work in Section 6 and conclude the paper in
Section 7.

2 System model
In this section, we introduce the system model, including
network model, utility model and delivery model.

2.1 Network model

We consider a mobile network with a node set N = Nt ∪ Nn,
where Nt and Nn donate the set of throwboxes and mobile
nodes, respectively. All the mobile nodes independently and
randomly move on a two-dimensional plane. Throwboxes
are distributed on some spots of the plane. We assume that
all the throwboxes are fully connected. All the data stored in
both mobile nodes and throwboxes form a dataset M. Each
data is with equal size and can be completely delivered
within one encounter. Mobile nodes randomly request data
i ∈ M. The data is stored in throwboxes and mobile nodes.
Each throwbox has a limited buffer. We consider all
distributed buffers form into an uniform one, because of
they are fully connected. The size of the big buffer is
denoted as B and we define that bdata and bindex represent the
size of buffer space stored data and index file, respectively.

Mobile nodes have two choices to fetch the requested
data:

1 fetch the data through cellular network with
transmission cost cc at any location

2 fetch the data from throwboxes via Wi-Fi with
transmission cost cd, when mobile nodes are in a
location near the throwbox, as shown in Figure 1.

Figure 1 The network model

2.2 Utility model
Based on the basic network model, we present the utility
model as follows. Each successful data fetching contains a
benefit, denoted by W(t). The benefit decreases linearly as
time t elapses. The initial benefit of a data is denoted by W,
while the initial benefits of different data are different. The
distribution for the initial benefits of different data follows
the truncated normal distribution, the mean value of which
is denoted by .W The decreased benefit value within each
unit time interval is defined as the benefit decay coefficient,
denoted by ζ. Formally, the benefit satisfies the following
formula:

()W t W t ζ= − ⋅ (1)

The utility is defined as the benefit minus the transmission
cost, denoted by U(t). Let c denote the total cost incurred by
message forwarding until time t, then the utility satisfies:

() ()U t W t c= − (2)

and (2) can be changed into:

() ()U t W tζ c= − + (3)

We define the td, which makes the utility equal zero, is the
deadline of a data fetching. Assume that the total cost of a
data fetching including the time consumption and
transmission cost is denoted as: a = tζ + c. Our objective is
to maximise the utility.

2.3 Delivery model
A mobile node generates different data requests, each
request with the deadline td. Once a data request is
generated, according to the comparison of deadline and
estimated encounter time, mobile nodes now need to decide
whether to fetch the data in the cellular network. Depending
on whether the throwbox stores the requested data or not,
there are two different modes for the mobile nodes to get the
data from throwbox:

Figure 2 Data contact timeline

2.3.1 Direct mode
If any throwbox holds the requested data, the mobile node
will reply with the requested data immediately.

2.3.2 Indirect mode
Otherwise, the throwbox replies an estimation about how
long it will take to get the requested data from DTN, and the

 Data or index: a trade-off in mobile delay tolerant networks 333

probability. Then, the node can make a decision whether to
fetch the data via cellular network right now.

3 Data contact prediction
In this section, we introduce the data contact prediction
algorithm. The data contact prediction includes two parts:
history record collecting and future contact prediction.

Table 1 Contact history records

Data items
Contact times

1st 2nd … kth

Data 1 t11 t12 ∙∙∙ t1k
Data 2 T21 t22 ∙∙∙ t2k
∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
Data i ti1 ti2 ∙∙∙ tik
∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
Data M tM1 tM2 ∙∙∙ tMk

3.1 History records collecting
When a mobile node carrying data item i contacts with a
throwbox, we consider this contact event as a data contact
of item i. Throwboxes will record the name of the data and
the current time. Then, throwboxes use these records to
build a data contact table. The data contact table is stored as
an index file in the big buffer. Table 1 gives an example.
Then, the time span in contact table can be used as input to
predict the time of the next data contact.

3.2 Future contact prediction
We introduce a novel algorithm to predict future data
contact: time-window-based predict algorithm. Figure 2
shows an example about one data item’s contact timeline
(a row in the data contact table), where the time spot is
denoted as t and tk represents the time spot of the
kth data contact. The offline time is denoted as T.
Time-window-based prediction uses the former k – 1 offline
times to predict the kth offline time Tk. J = {T1, T2, …, Ti, …,
Tk–1} represents the set of one data item’s offline time from
the first data contact to the kth. We consider the maximum
offline time in set J is TMax, TMax > ∀Ti ∈ J and we take Δt
as the minimum decrease meta, where .MaxT

kt∆ = Then we
use Δt to build an arithmetic progression K = {Δt, 2Δt, …,
iΔt, …, kΔt}. Every item in K is a candidate predicted
offline time. By comparing the candidate predicted offline
time with every historical offline time, we can find a most
reliable value. (4) uses these candidates of K as an input to
calculate the reliability R(iΔt) of each candidate predicted
offline time:

1 0
() , , [1,]

1

k
j jj

j
j

a i t T
R i t a i k

i t Tk
= ∆ ≤⎧

∆ = = ∈⎨ ∆ >⎩

∑
 (4)

where aj is an indicator and equals to 1 only when the
candidate is larger than the offline time Tj. Then, we
compare R(iΔt) with a threshold Rth, and take the minimum
R(iΔt) of all R(iΔt)s that larger than the threshold as Rm:

{ }min min () | () , [1,]thR R i t R i t R i k= ∆ ∆ > ∈ (5)

The threshold Rth can be used to control the preferred
R(iΔt), we take the Rth = 0.5 here. Under this setting, the
calculated iΔt is close to the median value of all the offline
time Ti. We take the iΔt whose reliability is Rmin as the final
predicted offline time PTk:

{ }min| ()kPT i t R i t R= ∆ ∆ = (6)

In reality, the data encounter frequency can change
dynamically because the mobile nodes do not hold the data
items all the time, the total copies of one data item is not
static. To quickly adapt to such dynamic factors, we
improve the basic method by a time-window technique. Its
principle is to segment the whole timeline into a series of
smaller time windows and to place the highest emphasis on
the most recent records while gradually decreasing the
emphasis on the preceding ones. Suppose the timeline was
divided into s time windows, and the set of the data
items’ offline time also was divided into small sets:

(1) (1) (1)1 2 1 2 1 1 2{ , , ..., }, { , ..., }, ..., { , ,k k k m k s k s k
s s s s s s

T T T T T T T T+ − −+ + + + ++

..., },kT and the accuracy calculated of the mth time window
is expressed as:

(1)

1 0
() ,

1

m k
s
mk
s

jj j
m j

j

a i t T
R i t a

i t Tk

+

= + ∆ ≤⎧
∆ = = ⎨ ∆ >⎩

∑
 (7)

Now, (4) can be improved and expressed as a weighted
average of Rm(iΔt) over s time windows:

1 1 2 2

1

() () () ... ()

()

s s
s

m m
m

R i t ω R i t ω R i t ω R i t

ω R i t
=

∆ = ∆ + ∆ + + ∆

= ∆∑ (8)

where ωm is the weight of the time window. Different
weight-selection methods (e.g., linearly or exponentially
decreasing weights) would discard the history data at
different rate. Here, we simply give the mth time window the
weight of:

1

m s

i

mω
i

=

=
∑

 (9)

Lots of prediction algorithms’ accuracy rate grows
extremely slowly after they have enough historical records,
which means there is a convergence state. Through test and
analysis, we find that the convergence accuracy of the
time-window-based prediction is 80% and the convergence
size of the index is 40 (more details will be shown in
Section 5).

334 H. Yao et al.

Figure 3 Data fetching timeline

Table 2 System parameters

Para. Explanation

cc Transmission cost of cellular network
cd Transmission cost of DTN
tr The time of users generate a data request
t1 The time of users meet a throwbox
t2 The time of users fetch a data from throwbox
td The deadline of a data request

4 Buffer space allocation
Because of the limited buffer size, a large index file means
less space to store data items. In order to achieve a better
system performance, an efficient buffer space allocation
strategy is needed imminently to consider the trade-off. In
this section, we propose a buffer space allocation
mechanism to manage the buffer space in throwboxes.

4.1 Data fetching process
Complete process of one success data fetching is shown in
Figure 3. All the parameters are listed in Table 2. Based on
the network and delivery model, a complete process of data
fetching could be any one of the following five situations:

• Case 1: If mobile node could not encounter any
throwbox before the deadline, which means its
impossible to fetch the data via DTN. The best
choice is to download the data via cellular networks
immediately. So, the total cost in this case is
A1 = trζ + cc.

• Case 2: If mobile node chooses not to fetch the data
via cellular networks at tr, then encounter a throwbox
before the request deadline at t1. Once the throwbox’s
buffer stores the requested data, mobile node can
complete this transmission by downloading it from the
throwbox. So, the total cost in this case is A2 = t1ζ + cd.

• Case 3: If mobile node meets a throwbox at t1 but the
throwbox does not have the data. Then, throwbox will
reply a time prediction which is t2, and let mobile node
to choose waiting for throwboxes to fetch it, or fetching
it via cellular networks immediately. If mobile node

chooses not to wait, then the total cost of this data
fetching is A3 = t1ζ + cc.

• Case 4: After meeting the throwbox for the first time,
the mobile node could wait and continue moving. At
time t2, mobile node fetches the data via DTN from
another throwbox in indirect mode successfully. Then,
the total cost is A4 = t2ζ + cd.

• Case 5: Similar to case 4, mobile node chooses to wait
to fetch the data in indirect mode. However, a wrong
time prediction makes it could not fetch the data via
DTN before the deadline. Mobile node has to fetch the
data via cellular networks at deadline td with the total
cost A5 = tdζ + cc.

4.2 Utility function optimisation
By analysing the data fetching progress, we present the
optimal size of the index file to achieve the maximum
utility.

Theorem 1: Suppose the size of the index buffer space is
denoted as s, the optimal size s achieved the maximum
utility can be found and can be changed under different
networks conditions.

To a request of data i, the utility is the remaining benefit
when the transmission is finished. Thus, the system total
benefit of m success data fetching for a certain time can be
presented as:

()
1

m

total j j
j

U W a
=

= −∑ (10)

where j represents the jth data fetching. Since mobile nodes
request the data randomly, the access probability of each
data i ∈ M is equal. Due to the distribution for the initial
benefits of different data follows the truncated normal
distribution with a mean value ,W the sum of m success
data fetching’s initial benefits can be calculated as

1
.

m
jj

W m W
=

= ⋅∑ Then (4) can be changed into:

1

m

total j
j

U m W a
=

= ⋅ −∑ (11)

So, our objective can be converted to minimising the total

cost
1

.
m

jj
a

=∑ Based on the five data fetching cases, the

total cost of one success fetching process a random data i
can be presented as:

() ()()0 1 0 1 2 11 1j xa P A P P A P A= + − + − (12)

where P0 is the probability that the data request deadline
comes before mobile nodes encountering a throwbox, and
P1 is the probability that requested data is existing in the
buffer of throwboxes. If requested data is not in the data
buffer, then the cost Ax can be presented as:

 Data or index: a trade-off in mobile delay tolerant networks 335

()2 2 31x yA P A P A= + − (13)

where P2 is the probability that the requested data is existing
in the index file of throwboxes, in other words, a predicted ti
can be delivered. Ay is the cost after the predicted ti is given
and Ay can be presented as:

()() ()3 4 3 4 4 3 51 1yA P P A P A P A= + − + − (14)

where P3 is the accuracy of the predicted offline time and P4
is the probability that predicted data contact delay is within
the request deadline. Simultaneously considering (14), (15)
and (16), the average total cost of one successful data
downloading can be presented as:

()(
() ()(){{
() () })

0 1 0 1 2

1 2 3 4 3 4 4

3 5 2 3

1

1 1

1 1

ja P A P P A

P P P P A P A

P A P A

⎧ = + −
⎪⎪ + − + −⎨
⎪

+ − + −⎪⎩

 (15)

In order to calculate the time cost and transmission cost
synthetically, we transform all the cost into the form of cd.
Suppose that:

1 1 2 2 3 4 4

0

, , ,r d d d d

c d

t m c t m c t m c t m c
c m c

= = = =⎧
⎨ =⎩

 (16)

where m0, …, m4 are controllable parameters, by changing
the value of m0, …, m4, the system can modify the weight of
time and transmission cost in the total cost and adapt
the delay-sensitive or the transmission-cost-sensitive
environment. Then, we can get:

()
()
()
()

1 0

2 2

3 2 0

4 3

5 4 0

1

1

d

d

d

d

d

A m c
A m c
A m m c
A m c
A m m c

=⎧
⎪ = +⎪⎪ = +⎨
⎪ = +⎪
⎪ = +⎩

 (17)

Simultaneous (17) and (19), we can change the problem into
calculating the minimised coefficient of cd. The size of data
index meta is k (as we explained in Section 3) and suppose
the size of the index buffer space are denoted as s. So, P1
and P2 can be presented as:

()*
1 2, , 0,B s sP P s s

M Mk
−= = ∈ (18)

where s* = min{B – 1, Mk} and it ensures that there is at
least one space to store the data item. P0, P3 and P4 are
known constant. Suppose that F(s) represents the coefficient
function of (9):

() i

d

aF s
c

= (19)

Then after merging similar terms, F(s) can be presented as:
2()F s s s γ= + +α β (20)

where α, β, γ are formed by parameters B, M, k, P0, P3, P4,
m0, m1, m2, m3, m4. The derivative of F(s) can be presented
as:

() 2F s s′ = +α β (21)

So, when α ≥ 0, F(s) achieve the minimum if:

2
s = − β

α
 (22)

so we can know that the optimal s satisfies:

*

* *

, 0
2 2

0, 0
2

,
2

s

s

s s

⎧− < − <⎪
⎪
⎪= > −⎨
⎪
⎪

− >⎪⎩

β β
α α

β
α

β
α

 (23)

and when α < 0, F(s) achieve the maximum if:

2
s = − β

α
 (24)

so we can know that the optimal s satisfies:

*

* *

10,
2 2

1,
2 2

s
s

s s

⎧ − >⎪⎪= ⎨
⎪ − ≤
⎪⎩

β
α
β
α

 (25)

□

With all the parameters mentioned above, the utility
function can evaluate the system total utility, and give the
optimal index file’s size .s

4.3 Buffer space management algorithm
Base on the theoretical analysis above, we develop the
index-based buffer space management algorithm, as shown
in Algorithm 1. The index-based buffer space management
guarantees that throwboxes will choose the best way to
allocate the buffer space to make sure the system total cost
is the minimum. Index-based buffer space management
includes four phrases: strategy-choosing phrase, fill-up
phrase, adjustment phrase and static phrase.

Buffer space management algorithm:

Input: System parameters: M, B, k, P0, P3, P4, m0, …, m4;
1: With all the parameters, calculate the s using (16);
2: According to different α, compare the s and s* to

determine the optimal ;s

3: for each data i contact event do
4: if optimal s = 0 then
5: if bdata < B then
6: if data i ∉ bdata then
7: fetch data i into the buffer;
8: end if

336 H. Yao et al.

9: else

10: break;
11: end if

12: else

13: if bdata + s < B then
14: record this contact information into index file;
15: if i ∉ bdata then
16: fetch data i into the buffer;
17: end if

18: else

19: if s s< then

20: delete the data item with the lowest initial
benefit and record this contact information;

21: else

22: delete the oldest contact information and
store this new one;

23: end if

24: end if

25: end if

26: end for

4.3.1 Strategy-choosing phrase
At the very beginning of the system’s operation, throwboxes
must determine the storage strategy. Steps 1 and 2 calculate
the s using (24) according to the corresponding parameters,
then comparing the s and s* to choose the optimal s which
achieves the maximum system benefit, and use the optimal
s to guide the later phrase.

4.3.2 Fill-up phrase
Steps 4 to 9 show that if the optimal s = 0, then throwboxes
will store the data item into the buffer until it is full, instead
of recording any contact information. After the buffer is full
of data, the system goes to the static phrase. If the optimal

*s s= or 2 ,s = − β
α then whenever a mobile node holding

some data items encounter a throwbox, throwbox will
record the data contact information into index file, and fetch
the data items into the buffer if these items have no copies
in the buffer (steps 10–14). This procedure will continue
until the buffer is full, after that, system goes to the next
phrase.

4.3.3 Adjustment phrase
Once the buffer is full, system using steps 16 to 19 to delete
one data item and use the empty space to store the
upcoming data contact information. After a while, the
empty space will be used up and another data item will be
deleted as before. This phrase will end as long as the index
file reaches the size of optimal s and system will go to the
static phrase.

4.3.4 Static phrase
In this phrase, the proportion of data buffer and the index
file will not change anymore. The replacement strategy of
new data contact records and new data items are same as the
strategy in adjustment phrase.

5 Evaluation and discussion
In this section, we present our simulation to evaluate the
performance of buffer space allocation algorithm under
various settings. The evaluation methods, settings, and
results are presented as follows.

5.1 Simulation settings and metrics
We use two types of traces to conduct our simulations. The
first trace is generated by the ONE simulator in Keranen
et al. (2009). We deploy 100 mobile nodes in a small area of
a real city: Helsinki, Finland. Mobile nodes perform shortest
path map-based movement patterns on the roads. The
second trace is a large-scale dataset of real GPS traces from
around 320 taxies operational in the urban area in Rome,
Italy. In the simulation, the virtual throwboxes are deployed
in the street in every two kilometres. Each mobile node has
a buffer to store five data items, and generate a request of a
random data item from the set M. At the initiate stage of the
system, mobile nodes store five data items randomly
selected from the set M and throwboxes have a short time to
warm up recognising the basic information of the whole
network.

We run the simulations under two different number of
data, M = 300, 400. Then we take P4, B and k as our main
objects of observation. Deadline is determined by the initial
benefit, the initial benefit W follows the truncated normal
distribution with the mean value W = 20,000. In order to
simplify the simulation, we set different request deadlines to
represent the initial benefit. We set the default index meta
size as 0.05 while the size of a data item is set as 1. We
combine all throwboxes buffer as one big buffer sized from
B = 55 to B = 100 because of the full connection.

In order to evaluate the effects of the index-based buffer
space management algorithm, we also implement a
traditional buffer management mechanism called data-only
buffer space management, where throwboxes use all storage
space to store the data item.

Table 3 Evaluation settings

Parameter name Default Range

Number of mobile nodes Nn 100 100–120
Number of data M 300 300–400
Deadline 20,000 5,000–45,000
Throwboxes buffer size B 75 60–100
Index meta size k 0.05 0.01–0.1

 Data or index: a trade-off in mobile delay tolerant networks 337

5.2 Results and discussion
Firstly, to evaluate the accuracy of the time-window-based
prediction, we run some tests and results are shown as
Figure 4. We record every encounter time of a random data
item i and repeat the simulation with different number of
contact records for 100 times each. Figure 4 shows that the
prediction accuracy is increasing as the historical records
grow up until the index records about 40 times contact
information. Then, the prediction accuracy stays around the
80%. So, in the following simulations, throwboxes’ index
only records 40 latest contact informations.

Figure 4 Prediction accuracy under different numbers of
historical records (see online version for colours)

5.2.1 Effects of the throwbox buffer size
Figure 5(a) and Figure 7(a) show the offloading ratio under
different throwbox buffer size. We can see that when the
size of the throwbox buffer increases, the offloading ratio of
two algorithms will increase and the offloading ratio of
index-based algorithm is always higher than the data-only
algorithm. And we also notice that the system performance
is different under different number of data items M = 300
and M = 400. More data items means more diversity data
requests, which will reduce the request hit rate in the
throwbox buffer. Figure 6(a) and Figure 8(a) give the
average delay of all the data fetching. As we had expected,
the average data fetching delay of index-based algorithm is
much lower than the data-only algorithm. This is due to the
future contact prediction algorithm.

Figure 5 System average offloading ratio under generated
traces, (a) offloading ratio vs. size of throwbox buffer
(b) offloading ratio vs. deadline (c) offloading ratio vs.
size of index meta (see online version for colours)

(a)

(b)

(c)

338 H. Yao et al.

Figure 6 System average delay under generated traces,
(a) delay vs. size of throwbox buffer (b) delay vs.
deadline (c) delay vs. size of size of index meta
(see online version for colours)

(a)

(b)

(c)

Figure 7 System average offloading ratio under real traces,
(a) offloading ratio vs. size of throwbox buffer
(b) offloadingratio vs. deadline (c) offloading
ratio vs. size of index meta (see online version
for colours)

(a)

(b)

(c)

 Data or index: a trade-off in mobile delay tolerant networks 339

Figure 8 System average delay under real traces, (a) delay vs.
size of throwbox buffer (b) delay vs. deadline (c) delay
vs. size of size of index meta (see online version
for colours)

(a)

(b)

(c)

5.2.2 Effects of the deadline
Figure 5(b) and Figure 7(b) show the offloading ratio under
different initial benefit. Initial benefits determined the
deadline of each data request, so we choose to change the
deadline to observe the system performance. The increasing

rate of the data-only algorithm is very low and increasing
rate of the index-based algorithm is much higher at the
beginning and gradually low down. To the data-only
algorithm, due to lack of network global information, data
items in throwboxes buffer do not change since the buffer is
full. It can increase the hit rate in throwboxes buffer but the
efficiency is quite low. When the deadline is long enough
for most data requests can be fetched from other mobile
nodes, the increasing rate reduces.

The initial benefit’s influence to average delay is
represented in Figure 6(b) and Figure 8(b). As we can see,
when the deadline is short, the gap between the two
algorithms is quite narrow. But as the deadline increased,
the gap is wider and wider. The reason is that when the
deadline is short, mobile nodes can hardly have chance to
meet the throwboxes more than once, so the index-based
algorithm can barely help mobile nodes to fetch data. But
when the deadline enlarges, the advantage of index-based
algorithm shows up and lots of requests were offloaded
before the deadline coming. However, a longer deadline
cannot give the data-only algorithm the same benefits, so
the gap becomes wider.

5.2.3 Effects of the index meta size
Figure 5(c) and Figure 7(c) show that as the size of the
index meta become larger, the offloading ratio is reducing.
This is because when the size of index meta is small (e.g.,
k = 0.01), replacing a data item can store 100 more data
index into the buffer and the space of three data items can
store all the data index if the number of data is 300, this
kind of replacing is very efficient. When the size of index
meta is increasing, replacing data items with index is still
useful but not that significantly. The average delay showed
in Figure 6(c) and Figure 8(c) also give the same results. A
smaller index meta size gives throwboxes more space to
store data items and it can bring a shorter delay.

6 Related work
Throwboxes-based DTN are first proposed in Zhao et al.
(2006). In the later works in Ibrahim et al. (2007, 2009),
simulation results and real deployments have demonstrated
that importing a number of throwboxes into the DTN can
indeed improve the routing performances and overall
throughput. Besides, some other studies focusing on
analytical models for delay distribution in Gu et al. (2010)
and designing/evaluating routing strategies in Gu et al.
(2010) for throwbox-based DTN are also presented.
Meanwhile, Banerjee et al. (2010) consider the problem
about energy efficiency of each throwbox node for
throwbox-based DTN. The main difference between our
work and previous work is that we implement a contact
prediction mechanism on throwboxes, by sacrificing some
data storage, and treat throwboxes as both data buffers and
forecast equipment. To the best of our knowledge, this is the
first work that makes throwboxes become multifunctional.

340 H. Yao et al.

In existing prediction-based schemes, mobile nodes’
mobility and contact is estimated based on a history of
observations. A representative case is using utility-routing
in Lindgren et al. (2003) and Zhang et al. (2007), where
mobile nodes consider the utility value as the predictor of
two nodes’ future likelihood of encounter. Deng and Chang
(2014) propose a multicast routing scheme based on social
difference (SDMR), which considers the social differences
between nodes, including both the similarity and the
centrality differences. LeBrun et al. (2005) propose a
routing algorithm for VANET that use the current position
and trajectories of nodes to predict their future position and
calculate the distance to the destination. Yeh et al. (2014)
reveal a system performance prediction and analysis method
for multi-core system by adopting electronic system-level
(ESL) design methodology. In Burns et al. (2005),
they propose a prediction scheme that uses past
frequencies of contacts, as well as the past contacts. Another
prediction-based generic algorithm for DTN routing is
MobySpace in Leguay et al. (2006), which uses a high-
dimensional Euclidean space constructed upon nodes
mobility patterns. The major difference between our
approach and previous works is we take the data as our
target of prediction.

7 Conclusions
In this paper, we introduce a novel throwbox design by
adding an index file into the buffer, which modifies the
throwbox from a pure data buffer into a data transfer helper
with future prediction. Aiming at the trade-off between data
and index, we propose a utility function to evaluate the
system performance under different combinations of
variables. Theoretical analysis shows that replacing some
data items with an index file in the buffer can reduce the
total cost effectively in most cases. Simulations results also
prove that the index-based prediction plays an important
role in reducing the transmission cost of data fetching.
Besides, simulations further show that the index-based
buffer space allocation mechanism outperforms the simple
index-added mechanisms. Our future work will mainly
focus on two aspects. The first is to extend current system
model to enable data transmission among mobile nodes.
Secondly, we will bring in real-world trace into simulations
to evaluate the system performance.

Acknowledgements
This research was supported by the NSF of China
(Grant Nos. 61402425, 61272470, 61305087, 61440060),
the China Postdoctoral Science Foundation funded
project (Grant No. 2014M562086), the Fundamental
Research Funds for National University, China University
of Geosciences, Wuhan (Grant No. CUG14065,
CUGL150829), the Provincial Natural Science Foundation
of Hubei (Grant No. 2015CFA065).

References
Banerjee, N., Corner, M.D. and Levine, B.N. (2010) ‘Design and

field experientation of an energy-efficient architecture for
DTN throwboxes’, IEEE/ACM Transactions on Networking,
Vol. 18, No. 2, pp.554–567.

Burns, B., Brock, O. and Levine, B.N. (2005) ‘MV routing and
capacity building in disruption tolerant networks’, in IEEE
INFOCOM.

Cisco Visual Networking Index (Cisco VNI) Forecast and
Methodology, 2014–2019 White Paper [online]
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/ip-ngn-ip-next-generation-
network/white_paper_c11-481360.html.

Deng, X. and Chang, L. (2014) ‘A time-considered multicast
routing scheme based on social differences in delay-tolerant
networks’, in International Journal of Embedded Systems,
Vol. 6, No. 1, pp.50–60.

Fall, K. (2003) ‘A delay tolerant network architecture for
challenged internets’, in ACM SIGCOMM.

Gu, B., Hong, X., Wang, P. and Borie, R. (2010) ‘Latency analysis
for thrown box based message dissemination’, in IEEE
Globecom.

Ibrahim, M., Al Hanbaliand, A. and Nain, P. (2007) ‘Delay and
resource analysis in MANETs in presence of throwboxes’,
Performance Evaluation, Vol. 64, Nos. 9–12, pp.933–947.

Ibrahim, M., Nain, P. and Carreras, I. (2009) ‘Analysis of relay
protocols for throwbox-equipped DTNs’, in WiOPT.

Jeremie, L., Timur, F. and Vania, C. (2006) ‘Evaluating mobility
pattern space routing for DTNs’, in IEEE INFOCOM.

Keranen, A., Ott, J. and Karkkainen, T. (2009) ‘The ONE
simulator for DTN protocol evaluation’, in Simutools.

LeBrun, J., Chuah, C. and Ghosal, D. (2005) ‘Knowledge based
opportunistic forwarding in vehicular wireless ad hoc
networks’, IEEE VTC, Vol. 4, pp.2289–2293.

Lee, K., Lee, J., Yi, Y., Rhee, I. and Chong, S. (2013) ‘Mobile data
offloading: how much can WiFi deliver?’, IEEE/ACM
Transactions on Networking, Vol. 21, No. 2, pp.536–550.

Leguay, J., Friedman, T. and Conan, V. (2006) ‘Evaluating
mobility pattern space routing’, in IEEE INFOCOM.

Lindgren, A., Doria, A. and Schelen, O. (2003) ‘Probabilistic
routing in intermittently connected networks’, ACM
SIGMOBILE Mobile Computing and Communications
Review, Vol. 7, No. 3, pp.19–20.

Mehmeti, F. and Spyropoulos, T. (2014) ‘Is it worth to be patient?
Analysis and optimization of delayed mobile data offloading’,
in IEEE INFOCOM.

Spyropoulos, T., Psounis, K. and Raghavendra, C.S. (2006)
‘Performance analysis of mobility-assisted routing’, in ACM
MobiHoc.

Yeh, J.C., Lin, C.H. and Liu, C.N. (2014) ‘Multi-core system
performance prediction and analysis at the ESL’, in
International Journal of Computational Science and
Engineering, Vol. 9, Nos. 1–2, pp.86–94.

Zhang, X., Neglia, G., Kurose, J. and Towsley, D. (2007)
‘Performance modeling of epidemic routing’, Computer
Networks, Vol. 51, No. 10, pp.2867–2891.

Zhao, W., Chen, Y., Ammar, M., Comer, M.D., Levine, B.N. and
Zegura, E. (2006) ‘Capacity enhancement using throwboxes
in DTNs’, in IEEE MASS.

