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Abstract—To maximize the data center network utilization, the
SDN control plane needs to frequently update the data plane via
flow migration as the network conditions change dynamically.
Since each switch updates its flow table independently and
asynchronously, the network state transition may result in serious
link congestion and packet loss if it is done directly from the
initial to the final stage. Deadlocks among flows and links may
also block update processes. In this paper, we novelly migrate
flows in a finer granularity of links, which is more likely to find a
deadlock-free update plan. We prove that it is NP-hard to check
the feasibility of a consistent flow migration. We also propose an
efficient heuristic for allocating link resources to avoid deadlocks.
We show the necessary and sufficient conditions for the deadlock
existence in special situations. Extensive simulations show that
our solution achieves a much higher probability of a consistent
flow migration than prior methods.

Index Terms—Software Defined Networks (SDNs), consistent
flow migration, link-based, deadlock.

I. INTRODUCTION

With the development of SDNs [1], there are many causes
for a network update: (1) changes in security policies [2]
(e.g., traffic from one subnetwork may have to be rerouted
via a firewall before entering another subnetwork); (2) traffic
engineering in the network [3] (to minimize the maximal
link load, an operator may decide to reroute parts of the
traffic along different links); (3) network maintenance works
[4, 5] (e.g., in order to replace a faulty router, it may be
necessary to temporarily reroute traffic); and (4) reactions to
link failures [6] (e.g., fast network update mechanisms are
required to react quickly to link failures and determine a
failover path). Key challenges come from the fact that some
unexpected events during the flow migration may happen.
These events consist of unpredicted, long switch update times,
and abnormal communication delays between the controller
and the switch. There are multiple reasons for those chaotic
situations, such as the imperfect clock synchronization and the
transient controller-data plane disconnection.

However, high performance network requirements are be-
coming more and more intense [7]. For example, data centers
usually claim that packet loss rates to be around 2% [8], while
the requirements for wide area networks (WANs) and carrier-
grade networks are much higher [9]. Specifically, carrier-
grade performance is often associated with the term “five
nines”, representing an availability of 99.999%. Finding a
migration plan without congestion, packet loss and deadlocks
is increasingly important. In this paper, we study the consistent

(a) Initial flow routing paths. (b) Final flow routing paths.

Fig. 1: A motivating example.

flow migration problem, which requires moving network flows
from their initial paths to their target ones in a lossless way.

Fig. 1 is a toy example to illustrate the superiority of a
link-based update scheme in avoiding deadlocks. Consider the
network in the graphs, in which the nodes represent switches
and the edges are bidirectional links. There are two flows, f1
and f2, whose initial and final routing paths are shown in Fig.
1a and Fig. 1b, respectively. Assume that each directional link
has a capacity of 1 Gbps and each flow has a demand for 1
Gbps bandwidth. All path-based plans require that each link
along a flow’s final path has enough capacity before migrating
the flow from its initial route to the final one. Then neither f1
nor f2 can be directly moved. This is because the initial routing
path of f1 overlaps the final routing path of f2, and vice versa.
Such a deadlock is challenging in terms of path-based flow
migrations. However, we find that migrating link by link is
able to avoid the deadlock. Specifically, each flow requests
each link capacity resource along its final path in sequence
and releases its occupying link resource of its initial route
one-by-one. Our insight is to fully utilize the time difference
between occupation and release. We assume that the times to
occupy and release one link resource is equal as one time step
(TS). In this example, in the first TS, f1 occupies the link v1
to v3 and frees the link v1 to v2, while f2 occupies the link v3
to v1 and frees the link v3 to v4. In the second TS, f1 is able to
use the link v3 to v4, which has been released by f2 in the first
TS. f2 occupies the link v1 to v2, which has been released by
f1 in the first TS. No deadlocks exist. A consistent migration
is completed with the fine link granularity scheduling.

In this paper, we study the consistent flow migration prob-
lem, and innovatively apply a link-based approach to avoid
deadlocks. We extend our previous work [10] to multi-unit
flow capacities. We prove the feasibility of a lossless flow
migration plan is NP-hard and propose a greedy algorithm



to decide a flow update order. A graph reduction method
is introduced to transform the original resource dependency
graph into a stuck graph. Then, we prove the necessary
and sufficient conditions for the deadlock existence. With
unavoidable deadlocks, we try to use an alternative path as an
intermediate state to resolve the deadlocks in a lossless way.
Extensive simulations show the efficiency and effectiveness
of our proposed methods. Because flow splitting may not
be feasible for certain applications that are sensitive to TCP
packet reordering, such as video applications, we assume all
flows are unsplittable in this paper.

We make four main contributions in this paper:
• We analyze current popular network update methods’

advantages and disadvantages.
• We propose a link-based update plan to achieve fine gran-

ularity network control and resilience to the migration
procedure with fewer deadlocks.

• We extensively analyze the necessity and sufficiency of
deadlock detection under the unit flow capacities.

• We do a comprehensive performance evaluation of our
algorithms in both DCN and WAN scenarios using pro-
duction topologies.

The remainder of this paper is organized as follows. Section
II surveys related works. Section III describes the model and
formulates the problem. Section IV introduces the theorems
and the flow migration algorithms. Section V includes the
experiments. Finally, Section VI concludes the paper.

II. RELATED WORK

There are two basic mainstream methods for flow migration
implementations: ordering [11, 12] and two-phase [13, 14].
The ordering strategy usually updates the forwarding tables
of switches one-by-one in a specified order that is carefully
calculated to preserve required properties, like being loop-free
and blackhole-free. However, this order might not exist when
both forwarding and policy demands must be guaranteed. The
two-phase scheme installs both the initial and final rules on
all switches and tags packets with a rule’s version number.
This method ensures the success of update, but it doubles the
number of rules on every switch, which wastes expensive and
power-hungry Ternary Content Addressable Memory (TCAM)
resource. This paper performs the two-phase commit using
version numbers for flow migrations. The major drawback of
the basic ordering and two-phase methods of flow migration
is that they can not guarantee consistency. Because congestion
may exist during flow migrations.

State-of-art work strives to find a path-based, congestion-
free update scheme that ensures there will be no congestion
independent of the update order. However, most congestion-
free update plans require part of the link capacity to be
left vacant and decrease utilization of the expensive network
infrastructure. As a typical link capacity reservation approach,
SWAN [15] has two main results. First, if a fraction s of
capacity is guaranteed to be free on each link for the old
and new flows, SWAN can update the network in d1/se − 1
steps. Second, in order to solve the problem efficiently, they

use linear programming to check whether a solution with
bounded steps exists. However, when there is no slack on
some edges, this algorithm may not halt in certain steps, which
will lead to a high computation complexity. Moreover, SWAN
always involves solving a series of linear programmings
(LPs) that is slow and does not scale well. A representative
of the intermediate state-involvement approach, ZUpdate [4]
attempts to compute and execute a sequence of steps to
migrate flows in a congestion-free way. However, it stretches
the update time, which makes the chaos of traffic migration
last longer. Another kind of time-awareness plan is based on
time synchronization technology. The timed consistent strategy
[16, 17] utilizes time-triggered network updates to achieve
consistency. However, this scheme asks too much of time
synchronization. Even with a straggling switch, the whole
following process is likely to be in total disorder.

We are aware that there is little network update research
on deadlock tackling. Dionysus [18] mentions rate limiting a
random number of flows until all the deadlocks are resolved.
When a link does not have enough remaining bandwidth for
several flows to update at the same time, Dionysus utilizes
the migration completion time as the default order of flow
priority. This kind of opportunistic scheduling is likely to
cause deadlocks where no progress can be made. MCUP
[19] proposes a migration approach to minimize transient
congestion during the update procedure when a congestion-
free update order does not exist, or specifically, when there
are deadlocks among update-awaiting flows.

III. OVERVIEW

A. Motivation and Background

It is a routine task to update the configurations in SDNs
in order to achieve better network performance in failure
recovery, transmission latency, and bandwidth utilization. Flow
migration is one of the most important and frequent configu-
ration changes. However, deadlocks may frequently occur and
cause severe traffic loss even when the current and the desired
network flow configurations are both valid and congestion-
free. Network administrators do not take flow path overlapping
information into consideration when reallocating flow routes.
We notice that almost all current research leaves out or looks
down upon the problem of avoiding and handling deadlocks.
Due to the restrictive demand for low packet loss rates in
networks, it is essential to elaborately handle deadlocks and
migrate flows while making the best effort to preserve the
consistency. An inappropriate migration order of flows can
also lead to deadlocks [18]. To the best of our knowledge,
our prior work [10] is the first one to focus on the efficient
deadlock resolution problem in network update. We show the
sufficient condition of the existence of a consistent update.
We demonstrate that even if there are multiple consistent
migration plans, finding the optimal one that occupies the
fewest leisure bandwidth resources is NP-hard. As a result,
a greedy algorithm with a theoretical performance guarantee
is generated, which is still a path-based flow migration plan.



In this paper, our key observation is that link-based update
scheduling works better to avoid deadlocks than the current
path-based methods, inspired by the toy example in Fig 1.
Since switches are now deeply buffered [20], it is practical to
accomplish fine granularity control over the update procedure.
Furthermore, we wish to schedule flows in an order that
avoids as many deadlocks as possible. To resolve unavoidable
deadlocks, we involve the intermediate state in the form of
spare paths. Migrating flows to their spare paths can vacate the
link resources of initial paths and break the deadlocks. We use
the two phase commit protocol to complete the modification of
the forwarding table in the switches. With the help of protocol,
each packet is stamped with a version number and is routed
to the path with the same number. Adding a new path means
inserting a new entry with the tag of the new version number
in each forwarding table of the switches along the route. In
order to guarantee per-packet consistency, the entries with the
old version number are only deleted after all the packets with
the old version tag arrive at the destination. Considering the
limited and expensive Ternary Content-Addressable Memory
(TCAM) in the routing tables, it is better to use as few links
for the spare paths as possible to cause less redundancy in
the network. By migrating fewer flows, we can control the
network with less temporary disruption and congestion.

B. Network Model and Problem Formulation

Before formulating the problem, we first present our model
of the directed network G = (V,E), where V is a set of
vertices (i.e., switches) and E ⊆ V 2 is a set of directed edges
(i.e., links). We use vi to denote the i-th vertex and eij to
denote the edge from vi to vj . Each edge is capacitated, and
we use cij and rij to denote the bandwidth of eij and its
remaining capacity respectively. The network G includes a set
of the given unsplittable flows F . We use fk to denote the
k-th flow, and its fixed assigned bandwidth during the whole
update is dk, which is equal to its demand. The initial and final
routing paths of fk are denoted by pk and p′k, respectively. A
path is an ordered set of edges. For example, in Fig. 1, we
have p1 = {e12, e24} and p′1 = {e13, e34}. e24 is the second
edge in f1’s initial path, denoted as p1(2) = e24, and its first
to second edges are denoted as p1(1 ∼ 2).

This paper studies consistent flow migrations requiring that
the bandwidth demands of all flows be satisfied without any
link congestion during the entire migration process. A time
step-by-step manner is used to migrate flows from their initial
to final routing paths. Initially, each flow occupies all the
link resources in its initial path, whose amount is equal to
its demand. In each time step, each flow can only request one
link resource in order along its final path and release one link
resource in order along its initial path. Both requesting and
releasing start from each flow’s first link. The amount that the
flow requests and releases is always equal to its demand. If
one link request is satisfied, the flow can release one link in
its initial path in the same time step. It makes sense that when
a flow is migrating from its initial to its final path, it occupies
the link resources in order from the head of the final path.

At the same time, no more packets are transmitted from the
source in its initial path. However, the previous packets along
the initial path still need time to complete the transmission.
Since we assume the transmission rate is identical, the time
it takes a packet to flow through one link is the same. It is
reasonable to suppose that when one flow is satisfied with a
new assigned link resource along its final path, it will release
one link in its initial route. For example, in the first time step,
f1 occupies p1(1 ∼ 2) and requests p′1(1) = e13. e13 has
enough remaining bandwidth to satisfy f1’s request. Then, f1
is assigned the request resource and releases p1(1).

Let bτij denote the bandwidth usage of eij in TS τ , which
equals to the total bandwidth demands of its passing flows.
We have T time steps in total, i.e., 0 ≤ τ ≤ T . Our problem,
extended from our prior work [10], is similar to the Klotski
game [21]. Based on the above network model, we formulate
the consistent flow migration problem as:

minimize
∑
eij∈E

[ max
0≤τ≤T

bτij ] (1)

s.t. bτij ≤ cij ∀ 0 ≤ τ ≤ T, eij ∈ E (2)∣∣{ fk | pτk 6= pτ+1
k }

∣∣ = 1 ∀ 0 ≤ τ ≤ T (3)

p0k = ∅ and pTk = p′k ∀ fk ∈ F (4)

In Eq. 1, the maximum bandwidth usage of eij among all
rounds is maxτ b

τ
ij . The objective is to minimize the total

maximum bandwidth usage among all edges during flow mi-
grations. We aim to use minimum spare bandwidth resources
to migrate flows without any link congestion. Two constraints
are involved. Eq. 2, meaning that the bandwidth usage of
eij , must be smaller than or equal to its capacity, cij . Eq. 3
means that only one link of each flow is requested in each TS
when migrating its routing path. Note that { fk | prk 6= pτ+1

k }
is the set of flows that have changed their routing paths from
TS τ to TS τ + 1. Meanwhile, | · | denotes set cardinality.
Eqs. 2 and 3 represent the consistency requirement during
flow migrations. However, the consistency may not always
be satisfied, leading to the feasibility problem. Finally, Eq. 4
represents the constraint that each flow is migrated from its
initial paths to final ones.

C. Resource Dependency Relationship

The primary challenge is to tractably describe the relation-
ships among flows and resources in the initial and final states.
In this paper, we leverage a directed graph to illustrate the
dependency relationship. We start with resource dependency in
flow migrations. There are two kinds of relationships between
flows and links: request and assign. In the Fig. 2a, we use
a directed link from the flow node to the link node to
represent the request. The reverse represents the assignment.
The capacity of the request and assignment is equal to the
flow demand, which is the value of the flow node. The link
node has the value of its remaining capacity in the current TS.
Then we have defined the following:
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Fig. 2: Illustration of the resource transition procedure.
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(b) TS 2 of our link-based schedule.

Fig. 3: Illustration of the link-based update procedure.

Definition 1: Resource Dependency Graph (RDG) is de-
fined by mapping flows and link resources as nodes and flows’
requests and assignments on links as directed edges.

RDG is generated to describe the relationships among flows
and links. There are two types of nodes in our dependency
graph: link nodes and flow nodes. Link nodes represent link
resources and are labelled with the amount of current residue
capacity. Flow nodes correspond to different flows marked
with demands. Example graphs, which correspond to our toy
example in the first section, are shown in Fig. 3. Each link
along a flow’s initial path is occupied by the flow, unless the
link is released. For all links of the final path, one flow is
able to request one link in each TS. Each resource node can
be requested only after all its predecessor edges have been
assigned to flows.

Definition 2: In RDGs, a deadlock is defined as a directed
cycle without repeated flow or link nodes and all inside
link nodes’ remaining capacities are impossible to satisfy any
request in the current TS.

In our toy example, with no resource left in e12 and e43,
neither f1 nor f2 is able to be migrated, which is a condition of
a deadlock. Fig. 2b is the RDG of a path-based schedule. There
is a deadlock among f1, e12, f2, and e43. With our link-based
schedule, we leverage the time difference among the request
and release. Through two TSs in Figs. 3a and 3b, the flows
are migrated consistently without any deadlocks because the
resources e12 and e43 are released before their next requests.

First, we study the feasibility problem, i.e., whether a
consistent flow migration exists or not with no assistance from
spare paths. If it is not feasible, there must be deadlocks among
flows and links. We start with the hardness proof:

Theorem 1: The feasibility of a consistent flow migration
is NP-hard to check.
Proof: A general proof is introduced in [22]. We can also
prove this using a special case of a network consisting of four
switches and n + 1 flows. Our proof is completed using a
polynomial reduction from the partition problem [23]. Let us
assume a partition problem with n items, each with a random
value wi, wi ∈ R, i ∈ {1, 2, ...,m}. We assume ϕ =

∑n
i=1 wi.

For each item, we introduce one flow fi with a demand wi.

(a) Initial flow routing paths. (b) Final flow routing paths.

Fig. 4: An example to explain NP-hardness.

Algorithm 1 Link-based Flow Migration Schedule (LifMig)

Input: Network G and flow set F ;
Output: The number of time steps TS;

1: TS = 0;
2: RDG =DependencyGraphGeneration(G,F );
3: while !MigrationFinish(RDG) do
4: TS = TS + 1;
5: EG =ExpedientGraphReduction(RDG);
6: (D,DDG) =DeadlockDetection(EG);
7: if !empty(D) then
8: DRG =DeadlockResolution(DDG);
9: UpdateGraph(DRG)

10: return TS;

Additionally, there is one more flow fn+1 with a demand of ϕ.
We construct a network as shown in Fig. 4. The capacity of all
links is 2ϕ. There are n flows f1, f2,..., fn that have an initial
path that is the upper route through v2. One flow, fn+1, has an
initial path that is the lower route through v4. The target stage
is that flows f1, f2,..., fn are routed in the lower path and
fn+1 is routed in the upper path. Flows are unsplittable. The
existence of a feasible consistent flow migration is equivalent
to a partition of flows, whose total demands are equal to ϕ. As
a result, any feasible partition of the items corresponds to a
feasible consistent flow migration plan, and vice versa. Since
the set partition problem is NP-complete and reduces to our
problem in polynomial time, our problem is also NP-hard. �

IV. LINK-BASED FLOW MIGRATION SCHEME

This section introduces the details of our Link-based f low
Migration scheme, LifMig. The process can be accomplished
with several update functions, all of which will be discussed
in the following. First, we create a dominant algorithm.

The dominant algorithm in Alg. 1 shows how LifMig
migrates flows in every time step. Given the network con-
figuration and flow information in the initial and final states,
we primarily generate the original resource dependency graph
(line 2). Then as long as the migration procedure does not
finish, we enter the scheduling phase in a new time step. (lines
4-9). We record the current TS in order to mark the request



Algorithm 2 DependencyGraphGeneration

Require: Network G and flow set F ;
Ensure: Resource Dependency Graph RDG

1: Initiate a directed graph RDG = empty;
2: for each link eij in the network do
3: Add a new resource node n with its residue capacity

rij = cij −
∑

dk
eij∈pk

as the value;

4: for each flow fk ∈ F do
5: Add a new flow node fk with the value of its demand

dk;
6: Add a directed link from fk to the first link of p′k;
7: Add a directed link from the first link of pk to fk;
8: return Resource Dependency Graph RDG;

position along flows’ final paths (line 4). Then we need to
elaborately allocate remaining resources in order to reduce the
graph to the stuck state (line 5). All deadlocks can be detected
(line 6) and resolved (lines 7-9) with the stuck graph if they
exist. Otherwise, we can continue our next step.

A. Dependency Graph Generation

Alg. 2 is used to construct the original dependency graph.
First, we add the link nodes with the value of their remaining
bandwidth resources (lines 2-3). Then, we add the flow nodes
with the value of their demands (line 5). We add a directed
link from the flow to the first link resource in its final path
(line 6) and a directed link from the first link node in its initial
path to the flow node (lines 7-8). The reason for adding only
one link from the flow node is that in each TS, we can only
release the headmost link in the flow’s initial path. Moreover,
this simplifies the graph and decreases the complexity of the
following processes. We return the accomplished graph.

B. Deadlock Avoidance and Detection

Even with the fine granularity link-based schedule, it is
possible to encounter deadlocks. An inappropriate order for the
remaining link allocation and the flow migration will lead to
deadlocks. Consequently, it is important to avoid unnecessary
deadlocks and detect all unavoidable deadlocks if any exists.
Although our problem is NP-hard, we have the following
theorems derived from [24]:

Theorem 2: A cycle in the RDG is a necessary condition
for deadlocks. If the RDG does not include a cycle, a feasible
solution can use the topological order of flow nodes in the
RDG to migrate flows.
Proof: This theorem is quite straightforward and we can prove
it by contradiction. If the graph does not contain a cycle,
each flow’s request can be satisfied with enough remaining
link bandwidth because the network’s final state is valid. This
means that the bandwidth usage of each link is within its
capacity. We can easily find a topological order among the
flows. As long as all of a flow’s predecessors have released
the resource, a flow can be assigned with its request resource

(a) A cycle is not suf-
ficiently a deadlock.

(b) A knot is sufficient for a deadlock in
a stuck RDG.

(c) A deadlock is not a knot.

Fig. 5: Illustrating examples of cycle and knot.

and release the link along its initial path. After all requests are
satisfied, the system can continue the update. �

Theorem 2 discusses the necessary condition for the feasi-
bility that a cycle is not sufficiently a deadlock. For example,
Fig. 5a is a cycle with c1 = c2 = 3. f2’s request can be
satisfied first as there is enough bandwidth in e2, and it will
release its occupying resource in e1. Then, f1 can get its
request resource of e1. Thus, the nodes f1, e1, f2, and e2
form a cycle, but not a deadlock. It is difficult to find the
sufficient condition because of the feasibility’s NP-hardness.
Consequently, we introduce a special state of an RDG and
show some interesting properties of it.

Definition 3: An RDG is in the stuck state when all link
nodes’ remaining capacity fail to satisfy any of the requests
in the current TS.

Definition 4: The reachable set of a node a is the set of all
nodes b such that a path is directed from a to b. A knot is a
non-empty set K of nodes such that the reachable set of each
node in K is exactly set K.

Theorem 3: In a stuck RDG, a knot is a sufficient condition
for the existence of a deadlock.
Proof: In definition 4, a knot only can have outside nodes
request resources in the knot. In the stuck graph, all flow nodes
are waiting for resources in the knot, while all edge nodes lack
the bandwidth necessary to satisfy any of the requests. The
edge nodes in the knot can have their available bandwidth
increased only through the release of the flow nodes in the
knot since there are no outer links to the nodes that are not in
the knot. Thus, there are deadlocks in the knot. Take Fig. 5b
as an example. Suppose c1 = c2 = c3 = 2 and that the RDG
is stuck. The nodes f1, e1, f2, and e2 form a knot which is
also a deadlock. �

However, a knot is not a necessary condition. Take the RDG
in Fig. 5c as a simple counterexample. Suppose c1 = c2 =
c3 = 2 and c4 = 1. Then, the RDG is in the stuck state. The
cycle e3, f4, e4, and f5 is a deadlock, but not a knot.

Theorem 4: In a stuck RDG with unit demands for all flows,
a knot is a necessary and sufficient condition for the existence
of a deadlock.



Algorithm 3 ExpedientGraphReduction

Input: Resource Dependency Graph RDG;
Output: Expedient Graph EG;

1: UpdateSafeFlows(RDG).
2: Compute wk = dk ∗ maxlk∈Lk

|lk| of each flow fk
involved in cycles;

3: for each eij in any existing cycle of RDG do
4: while rij ≥ minfk∈Rij

dk do
5: Find the set S of all flows with the demand less than

the remaining capacity;
6: Assign f∗ with d∗ bandwidth (w∗ = maxw);
7: rij = rij − d∗ and delete f∗ → eij ;
8: rkl = rkl + d∗ and delete ekl → f∗ (ekl is the

headmost occupying link in pk).
9: UpdateSafeFlows(RDG).

10: return Expedient Graph EG = RDG;

Proof: Since Theorem 3 states the sufficient condition proof,
we only need to show that when there are only unit demands,
a knot is necessary condition for deadlock. In a stuck RDG
of all unit flows, there are no edge nodes with a remaining
capacity of more than one unit. If the graph does not contain
any knot, there is a path from any requesting flow node to a
occupying flow node, whose request can be satisfied. If any
such flow node exists, the graph is not stuck, which violates
our assumption. Hence, when there is no knot, no flow nodes
are deadlocked. �

It is important to first allocate the remaining link resources
to reduce the RDG to the stuck state. We propose a greedy
heuristic algorithm, Alg. 3, to elaborately allocate resources
based on the flow benefit value w. In Alg. 3, we present a
graph reduction algorithm to transform an RDG into a stuck
state for the following deadlock detection procedure. Alg. 3
updates all the safe flows, flows whose father link node has
enough remaining bandwidth to satisfy all requests, with the
function UpdateSafeFlows(RDG). The function completes the
flow’s request link assignment and occupying link release by
deleting the links of the flow node and renewing its predeces-
sor and successor’s value (line1). The details are omitted in this
paper. Then we calculate all the leftover flows’ benefit values
(line2). We use the benefit value w = d∗maxl∈L |l| to measure
the importance of a flow. L is the set containing all the cycles
the flow is involved in, and l is a cycle in L whose size |l| is
equal to the number of inside nodes. Lines 3-9 describe the
process of exhaustively allocating each cycle-involving edge
node’s remaining bandwidth to flows sequenced in decreasing
order of their benefit values. In each TS, because each flow
requests only one link resource, as long as the request is
satisfied, the flow is no longer in any cycle. As long as each
edge node satisfies all its requests from flows, all directed
links towards the node are deleted and the node is not in
any cycle. To maximize avoiding the deadlocks, we use the
function UpdateSafeFlows(RDG) to update some new, safe
flows. We do the allocation until there are no cycles or until

(a) WAN topology.

(b) Fat-tree topology of data center.

Fig. 6: Topology setting.

no more possible assignments exist.
If the EG is a directed acyclic graph (DAG), there must

exist the topological order among all the unscheduled flows,
and no deadlocks may exist . After the graph reduction to the
stuck state, finding deadlocks utilizing the theorem 3 is simple.
Since a knot is only a sufficient condition for deadlocks, there
are some deadlocks that we do not find.

C. Deadlock Resolution

In order to resolve the deadlocks, we primarily utilize
the leisure link capacity resources as spare paths to release
the links involved in deadlocks. The details of finding and
applying the spare paths to break deadlocks are included in
our previous work [10]. If there are still unresolved deadlocks,
we try to rate limit some flows as discussed in our work [25].

V. EXPERIMENT

Simulated experiments are conducted to evaluate the per-
formances of the proposed algorithms. After presenting the
network and flow settings, the results are shown from different
perspectives to provide insightful conclusions.

A. Real Traffic Traces and Settings

We evaluate various aspects under two different topologies
in Fig. 6a and Fig. 6b. Our experiments study the relationships
between the traffic load and three metrics: the number of rate-
limiting flows (when a consistent migration plan does not
exist), spare resource usage (bandwidth), and traffic loss (the
total number of lost packets). We change the traffic load ratio
from 30% to 80% to simulate independent variables. Flows
in the network are generated randomly at the granularity of
1Mbps. We assume the initial and final states of the network
are all valid. There are no more new flows coming into the
network during the update. No flow paths have any loops, and
each link load is within its capacity.
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Fig. 7: Performance in the WAN topology.
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Fig. 8: Performance in the Fat-tree topology.

B. Benchmark Schemes

There are two comparison algorithms in our simulations:
Dionysus [18] and NUSL [10]. Dionysus has already been in-
troduced in our related work section. It builds the dependency
graph to describe the relationships among different flow states
and uses topological order to migrate flows. As for deadlocks,
it opportunistically rate limit flows to zero until all deadlocks
are resolved. NUSL is a path-based consistent update strategy
that avoids deadlocks with the help of spare paths.

C. Evaluation Results for the WAN

The experimental results in the WAN topology are shown
in Fig. 7. Experiments focus on our algorithm’s performance
with respect to different traffic loads’ ratios. Different colors
of lines represent the aforementioned mentioned schemes.

Fig 7 shows that our algorithm LifMig achieves a satisfying
result compared to Dionysus and NUSL. LifMig limits the
fewest flows and maintains the highest throughput with the
least traffic loss in Fig. 7(c). When the load ratio is 80%,
LifMig limits 44% less flows than Dionysus and 26% less
flows than NUSL. LifMig does, however, have a longer update
time as shown in Fig. 7(a). It takes about 31% more time than
NUSL with a load ratio of 70%. LifMig and NUSL introduce
the intermediate state of the update flows. They utilize the
leisure bandwidth resource to reduce traffic loss during the
update process by migrating some flows to their alternate links.
In this way, they vacates some competing link resources to
break more deadlocks among flows. As LifMig is link-based,
it is more likely to find a consistent update plan. Additionally,
it needs only several link resources instead of whole path

resources. As a result, LifMig uses fewer spare resources, as
shown in Fig. 8(b). It is clear that Dionysus does not introduce
intermediate states so its spare resource usage is a constant: 0.
As shown in Fig. 8(a), Dionysus leads in extra update time. As
long as there is no chaos during the update, it is acceptable to
stretch the time when the controller orderly operates flows one
by one. Dionysus performs fine, but it does not have a good
strategy for breaking deadlocks, and thus experiences more
traffic loss than LifMig, as shown in Fig. 7(c). Even in update
time, Dionysus has no obvious advantage over our approach.

D. Evaluation Results for the Data Center

The experimental results for the Fat-tree topology in the
data centers are shown in Fig. 8. From the figures, we can
see that the basic tendencies and relationships of the Fat-tree
topology are almost the same as those of the WAN topology.
We focus on the differences between Fat-tree and WAN. It
should be first noted that the Fat-tree can hold more than five
times the flows the WAN topology can hold under the same
traffic load ratio. In contrast, the update time, as shown in Fig.
8(a), and traffic loss, as shown in Fig. 8(c), of LifMig is better
than in the WAN. This may be because of Fat-tree’s excellent
load balancing property. The performance of our algorithms
is also better than that of the other two. In the update time,
the difference between LifMig and NUSL is smaller. The
data center is able to achieve a relative faster update because
all flows have a fixed path length. Fig. 8(a) reveals there is
actually little difference among the three approaches. LifMig
more frequently uses spare paths under the Fat-tree topology
than WAN, as shown in Fig. 8(b). Because Fat-tree always



distributes traffic in a more balanced manner. It is easier to
find spare links to assist in consistently updating flows. What’s
more, when the traffic is heavy, it is more difficult to find spare
paths under the balancing network. However, the number of
flows to be migrated to spare links is also much smaller, which
indirectly proves the advantage of a regular topology.

Fig. 7 and Fig. 8 show that there is comparatively, less
traffic loss in data centers that have the regular topology
and balanced traffic. This proves the sensibility of applying a
regular topology in the data centers. The number of the flows
involved in deadlocks is larger because if one link is busy, it
will affect a large number of flows competing for bandwidth
resource. It is harder to be intertwined with other flows that are
routed in a tidy pattern. It is also more likely to find a feasible
update plan using the Fat-tree topology; with the same load
ratio, the probability is about 24% higher. Thus, LifMig is
well suited for the patterned topology.

VI. CONCLUSION

The SDN control plane needs to frequently update the data
plane via flow migration as network conditions change. In
this paper, we creatively propose a link-based flow migration
approach that updates the network in a fine granularity. We
prove the NP-hardness of the feasibility of finding a consistent
flow migration plan. Consequently, we propose an efficient
heuristic to allocate the remaining resources to update flows to
avoid deadlocks. Several important theorems related to dead-
locks are introduced based on the concepts of knot and cycle.
Our extensive experiments’ results show that our algorithm
LifMig can reduce more transient congestions, save more link
resources and lose less traffic.
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