
Multi-hop Coflow Routing and Scheduling
in Data Centers

Yang Chen and Jie Wu
Center for Networked Computing, Temple University, USA

Email: {yang.chen, jiewu}@temple.edu

Abstract—Communication in data centers often involves many
parallel flows that all share the same performance goal. A useful
abstraction, coflow, is proposed to express the communication
requirements of prevalent data parallel paradigms. The multiple
coflow routing and scheduling problem faces challenges when
deriving a good theoretical performance ratio because coexisting
coflows will compete for the same network resources such as
link bandwidths. In this paper, we focus on the coflow problem
in the most popular data center infrastructure: the Leaf-Spine
topology. We first formulate the problem and study the path
selection issue on this two-tier structure. In order to minimize
the average coflow completion time (CCT), we propose a Multi-
hop Coflow Routing and Scheduling strategy (MCRS) for inter-
coflows and intra-coflows and prove that our method has a
reasonably good competitive ratio. Extensive experiments show
that MCRS outperforms other state-of-art schemes.

Index Terms—Leaf-spine, coflow, routing, scheduling.

I. INTRODUCTION

With the explosive growth of data-parallel computation
frameworks such as MapReduce, Spark, Google Dataflow, etc.,
some applications only care about application-level informa-
tion instead of an individual flows behaviour. An abstraction,
coflow, is proposed to model such application-level informa-
tion scenarios. A coflow is defined as a collection of parallel
flows with a common performance goal [1]. In this paper,
we focus on minimizing the average coflow completion time
(CCT) in a most popular data center topology: Leaf-Spine [2].
For simplification, we assume that all flows within a coflow
are generated at the same time. Every single flow can be routed
towards only one path to avoid packet reorder costs.

We use a simple example in Fig. 1 to illustrate our mo-
tivation. Each link in the network has a 1 Mbps available
bandwidth. At time t, two coflows: coflows a and b, are
generated. Coflow a in the yellow solid line has two flows, f (a)1

from h1 to h3 and f (a)2 from h2 to h3, both with a workload
size of 1 Mb; coflow b in the dotted blue line has two flows,
f
(b)
1 from h1 to h2 and f (b)2 from h2 to h3, both with a size

of 3 Mb. A reasonable routing assignment is shown in Fig.
1. The flows’ paths are all one-hop paths that pass through
only one spine switch. The optimal scheduling plan allocates
both flows of coflow a 0.25 Mbps bandwidth and both flows
of coflow b 0.75 Mbps bandwidth. After 1s, a new coflow c in
a dashed red line is generated with only one flow, f (c)1 , from
h1 to h3. The biggest available bandwidth among all one-hop
paths for f (c)1 is 0.25 Mbps. This strategy’s average CCT is
4.75s. However, we notice that there is a detour two-hop path

Spine
Tier

Leaf
Tier

 Serversh1
h2 h3

S1 S2

f1(a)

f1(b)

f2(a)
L1

L2 L3

f1(c) f2(b)

Fig. 1: Coflow example.

with 0.75 Mbps bandwidth, which passes L1, S1, L2, S2, and
L3. Its average CCT is 4.25s, which is 0.5s shorter. It inspires
us to obtain a shorter average CCT by trading a longer path.

In this paper, we dive into the online coflow routing
and scheduling problem with an objective of minimizing the
average CCT in the Leaf-Spine topology. We start with the
routing issue on the one-hop and two-hop path selection and
give a blocking probability analysis of multi-hop paths. To
minimize the average CCT, we present both inter-coflow and
intra-coflow routing and scheduling algorithms based on some
crucial observations. A sound competitive performance ratio is
given with a detailed proof. We also apply work conservation
to refine our algorithms. Current load balancing strategies in-
tended to use one-hop routing paths for all flows. However, our
previous work [3] showed that multi-hop paths can improve
bandwidth utilization. Extensive simulations demonstrate the
efficiency of our strategies against some state-of art works.

The remainder of the paper is organized as follows. Section
II surveys the related work. Section III states the problem
formulation and studies the routing issues. Section IV focuses
on the intra- and inter-coflow routing and scheduling solutions.
Section V provides a theoretical analysis of our scheme
and proves it has a reasonably competitive ratio. Section VI
includes the experiments. The paper concludes in Section VI.

II. RELATED WORK

Though coflow management is a relatively novel topic,
a growing body of recent work [4–8] has demonstrated
that using coflows can significantly improve the communi-
cation performance of distributed data-parallel applications.
The coflow abstraction was first proposed as “a networking
abstraction to express the communication requirements of
prevalent data parallel programming paradigms” [9], which
studied the communication requirements of diverse cluster
computing applications and proposed to use grouped data
flows as the network model for data parallel jobs. Originally,
some papers [6, 7] studied coflow scheduling only. However,

Rapier [4] proved that scheduling-only coflow strategies could
not optimize the application-level performance. Rapier took
both coflow routing and scheduling into consideration and
advanced a heuristic solution for the general topology. Yu et
al. [8] presented a rounding-based randomized approximation
algorithm for single coflow routing and scheduling, which was
the first online theoretical performance-guaranteed solution
for multi-coflows. Nevertheless, the competitive ratio is loose
because the single coflow routing and scheduling problem for
minimizing the CCT is already NP-hard [10]. With multi-
ple coflows, the inter-coflows’ and intra-coflows’ paths will
overlap and flows will compete for the same link resources.
What’s more, cluster computing frameworks are dynamic in
providing enough prior knowledge, which demands an online
approach. Consequently, we relax the problem into a the Leaf-
Spine network architecture.

III. FRAMEWORK

A. Model and Formulation

A Leaf-Spine network is modelled as a directed graph,
G = (V,E), where E is the edge set and V is the node
set. The network size is denoted as n = |V |. In data center
networks (DCNs), each node, v ∈ V , can be a server or
a switch. Each edge, e ∈ E, has a capacity of Re. There
are two layers of switches: leaf switches and spine switches.
A series of leaf switches, L, form the access layer. These
switches are fully meshed to a series of spine switches, S. A
coflow is a collection of related parallel flows with a common
performance goal (e.g. to minimize the average CCT in this
paper). Assume there are m coflows in total during the whole
process. Note coflow Ci (1 ≤ i ≤ m), which arrives at time
Ti and contains wi individual flows. A flow j (1 ≤ j ≤ wi)
within a coflow Ci is defined by a 3-tuple (sj , tj , vj) ∈ Ci,
where sj and tj ∈ V are the source and destination nodes, and
vj > 0 is the flow volume. The path and the bandwidth for
flow j in coflow Ci are denoted as p(i)j and b(i)j , respectively.

Without loss of generality, we assume that a coflow Ci has
all the information about its flows and starts to transmit when
it arrives at the network at time Ti, similar to [8]. At time
x ≥ Ti, flow (sj , tj , vj) ∈ Ci is then forced to be routed on
p
(i)
j with a rate of b(i)j . Note that b(i)j can be zero for some

time, which means that this flow is waiting for transmission.
Because we relax our problem into the special Leaf-Spine
topology, the path for each flow is simplified. In our paper,
we only allow one-hop and two-hop paths, which limits the
path length to be less than 4. A one-hop path passes only
one spine switch during the flow’s transmission and so on.
Furthermore, the number of paths between any pair of nodes
is bounded by poly(n) because there are |S| one-hop paths
and |S|2 ∗ (|L|−2) two-hop paths and we have O(|S|+ |S|2 ∗
(|L| − 2)) = O(|S|2 ∗ (|L| − 2)) = O(n3) = O(poly(n)). A
routing and scheduling strategy for a coflow, Ci, is defined
as Si := {p(i)j (x), b

(i)
j (x)}wi

j=1 A time-slotted system is
considered. We then define the CCT ti for coflow Ci to be the
minimum time, such that

∑Ti+ti
x=Ti

b
(i)
j (x) ≥ v

(i)
j ,∀j ∈ [1, wi]

Spine Tier

Leaf Tier

Servers

a b c

Fig. 2: Unbalanced traffic situation.
which is the earliest time that all the flows in Ci finish
transmitting their data. We further define the total CCT for all
the coflows as t =

∑m
i=1 ti Since frequent flow rerouting will

cause a severe coordination overhead, which is not desirable in
practice, we assume each flow’s path can only be decided once.
A valid strategy is that each link’s bandwidth is no less than the
sum of the assigned bandwidth for all the flows. Information
about the future coflows is not known. With the above settings,
we define the online multiple coflow routing and scheduling
problem as follows.

Problem 1: In a network, m coflows, C1, C2, ..., Cm,
arrive at time T1, T2, ..., Tm. The information of every coflow
Ci := {(sj , tj , vj)}wi

j=1, is given at its arrival, which includes
the corresponding source-destination pair and its volume. The
available path set for the flow j ∈ Ci is P i

j , consisting of
its one-hop and two-hop paths. The problem is designing
an algorithm to find a valid routing and scheduling strategy,
{Si}mi=1, for each coflow so that the average completion time
of the coflows, t

m , is minimized.

B. Routing Path Block Probability Analysis

We assume that the routing path is either one-hop or two-
hops long under the Leaf-Spine topology. It is inspired by a
recently proposed distributed routing mechanism for the Leaf-
Spine topology, called CONGA. CONGA scheduled paths
based on a real-time fabric congestion situation, which was
obtained by feedback from the remote switches. CONGA
limited packets to a one-hop routing path. However, traffic
is likely to be heavily unbalanced in data centers because of
bursts in a few congested links, shown as the black dotted lines
in Fig. 2. The red and blue lines are the current idle links. In
this example, when Server a wants to transfer a flow to Server
b, the blue one-hop path is chosen. But if the destination is
Server c, there are no available congestion-free one-hop paths,
and CONGA will suffer severe transmission delays. However,
we notice that a two-hop red line path [3], which detours at
the second leaf switch, is able to avoid the congested links.
The theoretical analysis is as follows.

Suppose there are |S| spine tier switches and |L| leaf tier
switches. We use ρb and ρn to denote the blocking and non-
blocking probability of its paths. p(i, k) is the non-blocking
probability of the link from switch i to switch k. As a result,
the blocking probability of the one-hop path is calculated
as ρb =

∏
k∈S [1 − p(i, k) ∗ p(k, j)] So, the non-blocking

possibility is ρn = 1 − ρb = 1 −
∏

k∈S [1 − p(i, k) ∗ p(k, j)]
Suppose L′ is the set of all the leaf switches except the
flow’s source switch, i, and destination switch j. The non-
blocking probability of our path set is calculated as ρ′n =
ρn +

∑
k,k′∈S,m∈L′ [p(i, k) ∗ p(k,m) ∗ p(m, k′) ∗ p(k′, j)]. So,

the difference between ρ′n and ρn is calculated as ρ′n − ρn =∑
k,k′∈S,m∈L′ [p(i, k)∗p(k,m)∗p(m, k′)∗p(k′, j)]. Intuitively,

the bigger the non-blocking probabilities of the links from the
source to the idle leaf switch and from the idle switch to the
destination are, the larger the difference of ρ′n − ρn is. The
traffic spike and an unbalanced bursty traffic condition can
make our routing strategy superior [3].

IV. COFLOW ROUTING AND SCHEDULING STRATEGY

There are two key observations in our strategy as follows.
Observation 1: Inter-coflow scheduling should apply the

minimum remaining time first strategy.
This observation is inspired by the famous optimal job

scheduling approach- Smallest Remaining Time First (SRTF).
In order to minimize the total completion time, SRTF selects
the process with the smallest amount of time remaining until
completion to execute. It’s a preemptive method. In this case,
even if a coflow is occupying the bandwidth in the network,
it will be preempted by the new ’smaller’ coflows.

Observation 2: Big intra-coflows should be scheduled first
when we have an idle bandwidth.

It is intuitive that it is always the big flows in a single
coflow that are the last ones to finish their transmissions. As a
result, in order to shorten the CCT, if there is leisure bandwidth
available for multiple flows, we should select the flows with
a larger workload to execute first.

MCRS optimized the average CCT in the data-intensive
Leaf-Spine topology DCNs by considering both the routing
and scheduling of the coflows. MCRS mainly focuses on
large coflows in the DCNs, while deadline-driven individual
flows or small coflows are routed directly as background
traffic. We use a site broker to periodically measure the usage
of background traffic in each link and update the available
bandwidth for the large coflows we need to schedule. We
provide two algorithms for inter-coflows and intra-coflows
respectively in Alg. 1 and Alg. 2. The algorithms are invoked
whenever a new coflow comes or an existing coflow finishes.
More specifically, when a new coflow arrives, Alg. 1 is used to
compute the path and bandwidth arrangement for each single
flow of it. Alg. 2 is used to sort the order of coflows that are
waiting to be transmitted. When an existing coflow finishes,
the bandwidth of all the links that are occupied by its flows
will be released. We need to schedule unfinished coflows to
utilize the bandwidths.

Alg. 1 solves the single coflow routing and scheduling prob-
lem with a minimum CCT. It first solves a linear programming
problem. Then, it schedules each flow to its one-hop path with
the maximum bandwidth and calculates its completion time.
If it is less than the current coflow completion time, we will
try to check whether its two-hop paths have a path with a
larger bandwidth. After choosing the path with the shortest
completion time, we scale up all arranged flows to ensure that
they have the same completion time and update the residual
bandwidth. Alg. 2 describes the inter-coflow arrangement
method of MCRS. We sort the coflows in the order of their
remaining completion times and execute them one-by-one.

Algorithm 1 Smallest Remaining Coflow First Inter-
coflow Algorithm

In: All the coflows C’s information Ci := {(sj , tj , vj)}wi
j=1;

Out: The coflow executing order;

1: Use the Intra-coflow Algorithm to calculate each remain-
ing coflows’ completion time ti;

2: Sort these coflows’ completion time ti non-increasingly
according to their transmission time;

3: Apply the allocation to the coflow with the smallest ti.

V. THEORETICAL PERFORMANCE ANALYSIS

A. Single Coflow Routing and Scheduling
We first consider the single coflow case [4]: Ci :=
{(sij , tij , vij)}

wi
j=1. According to the above setting, for each flow

fj ∈ Ci, the source-destination pair and the volume are given.
The path set, P i

j , for each flow fj ∈ Ci only includes one-
hop and two-hop paths in order to limit the number of the
paths for each flow within O(n3). The capacity for each edge
e is Re. Our goal is to find a valid strategy for C with the
minimum average CCT when it monopolizes the network. We
use Program A to describe the initial problem as follows.

min ti (1)

subject to
vij = bij ∗ ti, 1 ≤ j ≤ wi (2)

wi∑
j=1

∑
e∈p

bijx
i
j,p ≤ Re, e ∈ E (3)∑

p∈P i
j

xij,p = 1, 1 ≤ j ≤ wi (4)

xij,p = {0, 1}, 1 ≤ j ≤ wi (5)

In this program, variable ti denotes the CCT of C. Variable bij
denotes the average bandwidth of the j-th flow, and variable
xij,p denotes whether or not we choose path p for the j-th
flow, which has an integer value of 0 or 1. It is impractical to
find the optimal solution of Program A because it is not only
nonlinear, but also has binary variables. This problem is an
integer multi-commodity flow problem that is proven to be NP-
hard [10]. Therefore, we do some equivalence transformations
to Program A. Based on the first constraint, we know that the
rate of each flow is directly proportional to its volume, i.e.,
bij = αi ∗ vij . As for the binary variable, we relax the binary
constraint into a continuous one. Thus, we have αi =

1
ti

and
Program A can be modified as:

max αi (6)

subject to
wi∑
j=1

∑
e∈p

αiv
i
jx

i
j,p ≤ Re, e ∈ E (7)∑

p∈P i
j

xij,p = 1, 1 ≤ j ≤ wi (8)

0 ≤ xij,p ≤ 1, 1 ≤ j ≤ wi (9)

Algorithm 2 The Intra-coflow Algorithm

In: Coflow Ci = {(sj , tj , vj)w
i

j=1};
Out: ti for Ci and {pij , bij} for each flow belongs to Ci;

1: Calculate the optimal solution {yij,p, p ∈ P i
j}

wi
j=1 for the

Linear Program B.
2: for each flow fj in C ′ do
3: Choose p ∈ P i

j with max{yij,p} as the route pij for fj .
4: Find the link e∗ with the maximum (

∑
e∈pi

j
vij)/Re.

5: ti = (
∑

e∗∈pi
j
vij)/Re∗ .

6: for each flow fi in C do
7: bij = vij/ti.
8: return ti and {pij , bij}.

However, the product of the two variables αi and xij,p in its
above first constraint makes the problem a concave problem
that is hard to handle. So, we bring in new variables yij,p
to replace the product, i.e., yij,p = αix

i
j,p. According to

Eq. 14, we get αi =
∑

p∈P i
j
yij,p = 1

wi

∑wi

j=1

∑
p∈P i

j
yij,p.

Consequently, our problem can be transformed into the linear
Program B as follows:

max
1

wi

wi∑
j=1

∑
p∈P i

j

yij,p (10)

subject to
wi∑
j=1

∑
e∈p

vijy
i
j,p ≤ Re, e ∈ E (11)

yij,p ≥ 0, 1 ≤ j ≤ wi (12)

Program B is a linear programming problem that has∑wi

j=1 |P i
j | variables and |E| +

∑wi

j=1 |P i
j | constraints. The

optimal fractional solutions of the relaxed LP can be obtained
in polynomial time using standard solvers.

Theorem 1: Alg. 1 is |S|2(|L| − 2)-competitive, where |S|
and |L| are the numbers of spine and leaf switches.
Proof: Suppose the solution of the Program B is {y′ij,p}. From
Alg. 1, we route each flow to the path with the maximum
{yij,p} and hence, we have yij,p ≥ y′

i
j,p/|S|2(|L| − 2), where

|S|2(|L| − 2) is the maximum number of the candidate paths
for the flow j. This is a loose bound, because in practice, the
number of paths used in the optimal solution of Program B is
much smaller than the maximum number of paths.

B. Multiple Coflow Routing and Scheduling

From above, we know that the competitive ratio ρ in Alg.
1 executes a single coflow. Then, we apply Alg. 2 to multiple
coflows. The underlying scheduling policy is based on the
well-known minimum remaining first (MRTF) strategy.

Theorem 2: Suppose the competitive ratio of Alg. 1 is ρ.
Then, Alg. 2 is (m+1)

2 ∗ ρ-competitive for the online multiple
coflow routing and scheduling problem.

Proof: Suppose OPT is the offline minimum completion
time for {(Ci, Ti)}mi=1 and t is the completion time of our
strategy. Denote OPTi as the optimal completion time for

coflow Ci. After applying Alg. 2, the coflows are renum-
bered as C ′1, C

′
2, ..., C

′
m, whose completion times have the

relationship of OPT1 ≤ OPT2 ≤ ... OPTm. If our strategy
is without work conservation, we only allow one coflow to
transmit after the last coflow finishes, which means every
coflow will monopolize the network. The time of this situation
is t′ and we have t < t′. Trivially, the completion time of the
coflow i is ti = OPT1 +OPT2 + ...+OPTi Then, t′ can be
represented as

t′ =t1 + t2 + ...+ tm = (OPT1) + (OPT1 +OPT2) + ...+

(OPT1 +OPT2 + ...+OPTi) =

m∑
i=1

(m− i+ 1) ∗OPTi

Because of OPT1 ≤ OPT2 ≤ ... OPTm, apply the Chebyshev’s
inequality, and we get

m∑
i=1

(m− i+ 1) ∗OPTi ≤
1

m
(

m∑
i=1

OPTi)(

m∑
i=1

i)

=
1

m
(

m∑
i=1

OPTi)
m(m+ 1)

2
=

(m+ 1)

2
(

m∑
i=1

OPTi)

Thus, we have t ≤ t′ ≤ (m+1)
2 (

∑m
i=1OPTi). Therefore, our

theorem is proven. �
We can combine the results of Theorem 1 and Theorem 2

to get the following corollary.
Corollary 1: Our algorithm is |S|2(|L| − 2)(m + 1)/2-

competitive, where m is the number of coflows.
Compared to the performance bound in [8], our algorithm,
MCRS, has a much tighter competitive ratio.

C. Work-Conservation Improvement

From the above two algorithms, we know that each coflow
will monopolize the network when it is transmitting. However,
some idle bandwidth will be wasted, which should be used to
execute more flows. We pursue the work-conserving property
by distributing the remaining bandwidth to flows to further
increase the overall system performance. The challenge in dis-
tributing the remaining bandwidth is determining the preempt-
ing order of flows. At first, for the coflows that have already
been scheduled, their CCTs cannot be improved by allocating
more bandwidth to their intra-flows. Therefore, among all
coflows, the coflows that have not been scheduled should have
a higher priority in using the remaining bandwidth. This also
helps prevent coflow starvation. Within a coflow, we prefer
to allocate more bandwidth to the larger flows than to the
smaller ones. This is because the flows with a larger traffic
volume are more likely to be the bottleneck of a coflow, i.e.,
complete the transmitting last if all the flows are served by a
best-effort delivery. Based on this observation, when there is
free bandwidth in the network, we allow the “elephant” flows
to utilize the resources first.

VI. PERFORMANCE EVALUATION

We evaluate our MCRS’s performance by packet-level simu-
lations. The input is a suite of production traces in the Coflow-

TABLE I: Coflow categories by length and width

Coflow type 1 2 3 4
Length Short Long Short Long
Width Narrow Narrow Wide Wide

Ratio of coflows 52% 16% 15% 17%
Ratio of bytes 0.01% 0.67% 0.22% 99.10%

Benchmark [11]. These traces are synthesized from the one-
hour workload collected from Facebook. We compare MCRS
with the following state-of-the-art methods: 1) Routing-only:
all the individual flows are routed by ECMP [12], in which
all flows’ bandwidths are assigned by the max-min fairness
strategy; 2) Scheduling-only (baseline): MCRS with only one-
hop path; 3) Heuristic: the barrier-aware strategy (BAS) [13]
routes and schedules inter-coflows fairly and intra-coflows to
finish at the same time.

A. Experimental Settings

Coflow Parameters: A coflow is measured by three main
features: 1) width: the total number of individual flows; 2)
length: the size of the largest flow it contains; and 3) size:
the total amount of data in megabytes. Similar to [6, 8], we
divide non-zero coflows into 4 categories as shown in Table
I. A coflow is W (wide) if it involves more than 50 flows,
and otherwise it is N (narrow); a coflow is L (long) if its
length is greater than 5MB, and otherwise it is S (short). Our
leaf-spine topology includes 4 leaf and 4 spine switches. Each
leaf switch is connected to 8 servers. Each link has a bisection
bandwidth of 10 Gbps. We measure the improvement, η, in
the average CCT when comparing two schemes. Take MCRS
with the baseline Scheduling-only as an example. It can be
calculated as η(%) = ave CCT (Baseline)−ave CCT (MCRS)

ave CCT (Baseline) .

B. Performance Comparison

Fig. 3 illustrates our results in three aspects: the average
CCT, the maximum CCT, and the number of the concurrent
coflows. Fig. 3a shows that all four strategies’ average CCTs
increase with the growth of the traffic load. With more coflows,
the competition for bandwidth becomes more severe and
more coflows have to wait a much longer time to transmit.
We observe that MCRS always outperforms all the other
methods. It can reduce the average CCT by up to 74.3%
compared to the Routing-only strategy, while Scheduling-only
and Heuristic can only reduce it by 51.4% and 35.8%. In
this case, the coflow scheduling will contribute more than the
coflow routing when minimizing the CCTs. Since Scheduling-
only, Heuristic, and MCRS consider coflow routing, they have
a better perfomance than Routing-only. Moreover, we can
see that MCRS performs even better than Heuristic, which
illustrates the advantages of our intra and inter coflow routing
and scheduling algorithms.

In the aspect of the maximum CCT among all the coflows,
the tendency of each line is still increasing with larger traffic
loads, shown in Fig. 3b. The reason is that with more coflows,
the waiting time for coflows with a longer remaining time
increases. We can see that MCRS always has the smallest CCT

among these four approaches. Compared to the Scheduling-
only strategy, MCRS reduces the maximum CCT by up to
69.2%, while Routing-only and Heuristc reduce it by 17.9%
and 68.1%. Though the difference between MCRS and Heuris-
tic is not so obvious, as in Fig. 3a, the results still show that
MCRS is in an advantageous position.

We further investigate the number of coflows. Fig. 3c
illustrates that MCRS has less concurrent coflows on average.
Compared to the Routing-only approach, MCRS has only
50.1% of its coflows when the traffic load ratio is 60%, while
Scheduling-only and Heuristic have 45% and 48.3% of their
coflows on average. This is because MCRS applies the shortest
remaining time first algorithm to transmit the smallest number
of coflows at the same time.

C. Impact of Coflow Parameters

We also study the impacts of different coflow parameters on
the performance of MCRS, such as the total coflow number,
the coflow width, the coflow size, and the inter-coflow arrival
interval. We use the Scheduling-only strategy, as the baseline
and traffic load ratio is about 20%-45%. Generally, in Fig. 4,
MCRS has the performance improvement at least 41.8% for
low traffic loads.

Coflow Number: To evaluate the impact of the coflow num-
ber on the performance of the routing and scheduling schemes,
we fix the other parameters, i.e., setting the coflow width,
the coflow size, and the mean inter-coflow arrival interval
to 100, 0.5GB, and 100ms, respectively [8]. We then inject
different numbers of coflows into the network, and calculate
the improvement of the average CCTs for MCRS compared
with the baseline. Fig. 4a shows that the improvement in the
average CCT increases with the growth of the coflow numbers.
The reason is that more coflows would lead to a more severe
competition for resources, and efficient solutions will gain
more benefits. MCRS can reduce the average CCT by up to
44.1% (see the case of 100 coflows) against the baseline.

Coflow Width: Recall that the coflow width is the number
of flows within it. We fix the coflow number, the size, and the
mean inter-coflow arrival interval to 100, 500MB, and 100ms,
respectively, and then, study the influence of the coflow width
on the average CCTs. Fig. 4b shows that the larger coflow
width, the more improvement on the average CCT is gained
by each of the three schemes. The reason is still that more
data communications lead to a more severe competition for
the network resources. MCRS can reduce the average CCT by
up to 55.7% compared to the baseline.

Coflow Size: We fix the coflow number, the width, and
the mean inter-coflow arrival interval to be 100, 100, and
100ms, respectively. We send coflows of the same size into the
network. For different coflow sizes, Fig. 4c shows that MCRS
can reduce the average CCT by up to 50.2% compared to
the baseline. The improvement in the average CCTs basically
increases with the growth of the coflow sizes. This is because
under the online setting, a larger coflow size leads to more
severe collisions among coflows. Compared with baseline,
MCRS can result in a much smaller number of concurrent

0.1 0.2 0.3 0.4 0.5 0.6
Traffic Load Ratio

0

5

10

15

Av
er

ag
e

C
C

T

Routing-only
Scheduling-only
Heuristic
MCRS

(a) Average coflow completion time.

0.1 0.2 0.3 0.4 0.5 0.6
Traffic Load Ratio

0

10

20

30

40

50

M
ax

 C
C

T

Routing-only
Scheduling-only
Heuristic
MCRS

(b) Maximum coflow completion time.

0.1 0.2 0.3 0.4 0.5 0.6
Traffic Load Ratio

0

100

200

300

M
ax

 C
on

cu
rre

nt
 C

of
lo

w
 N

um Routing-only
Scheduling-only
Heuristic
MCRS

(c) Maximum concurrent coflow number.

Fig. 3: Performance comparisons between MCRS and others.

20 40 60 80 100
Coflow Number

0

20

40

60

Pe
rfo

rm
an

ce
 Im

pr
ov

em
et

 (%
)

(a) Coflow number.

10 20 50 100 200
Coflow Width

0

20

40

60

Pe
rfo

rm
an

ce
 Im

pr
ov

em
et

 (%
)

(b) Coflow width.

0.01 0.1 1 10 100
Coflow Size (GB)

0

20

40

60

Pe
rfo

rm
an

ce
 Im

pr
ov

em
et

 (%
)

(c) Coflow size.

0 50 500 1000 2000
Inter-Coflow Arrival Interval (ms)

0

20

40

60

Pe
rfo

rm
an

ce
 Im

pr
ov

em
et

 (%
)

(d) Inter-coflow arrival interval.

Fig. 4: Performance improvement.

coflows. Compared with baseline, our strategy also conducts
scheduling, which contributes to the relief of the collisions.

Inter-Coflow Arrival Interval: The mean inter-coflow
arrival interval is fixed to a value by modifying the intervals in
the original setting. The other parameters are fixed as in the
previous sections. We investigate the intervals starting from
0, which means that all coflows arrive at the same time (the
same as the offline model). The results are shown in Fig. 4d.
We can see that MCRS reduces the average CCT by up to
51.0% when compared with the baseline. Moreover, we can
observe that when the interval becomes extremely large, the
improvements of the schemes will decrease significantly, i.e.,
when the interval is 2s, little improvement can be gained. The
reason is that if the interval is too large, most coflows will
finish their transmissions during the interval and there will be
little interaction among the coflows. The coflow routing will
contribute more than the scheduling in minimizing the CCTs.

VII. CONCLUSION

We focus on the coflow routing and scheduling problem
under the Leaf-Spine topology. The single coflow’s routing
and scheduling problem has already been proven to be NP-
hard, and multiple coflows surely make the problem more
challenging. Our goal is to minimize the average CCT of
multiple coflows. First, we analyze the path-blocking prob-
ability of this two-tier structure and propose to apply both
one-hop and two-hop paths for all the flows. Then we pro-
pose two algorithms for inter-coflow and intra-coflow routing
and scheduling, respectively, and prove that our strategy has
a reasonably good competitive ratio. Extensive experiments
show that our algorithms outperform comparison schemes.

VIII. ACKNOWLEDGMENT

This research was supported in part by NSF grants CNS
1629746, CNS 1564128, CNS 1449860, CNS 1461932, CNS
1460971, CNS 1439672, CNS 1301774, and ECCS 1231461.

REFERENCES

[1] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra,”
in SIGCOMM ’11.

[2] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav,
and G. Varghese, “Conga: Distributed congestion-aware load
balancing for datacenters,” in SIGCOMM ’14.

[3] Y. Chen and J. Wu, “High network utilization load balancing
scheme for datacenters,” in GLOBECOM ’16.

[4] Y. Zhao, K. Chen, W. Bai, M. Yu, C. Tian, Y. Geng, Y. Zhang,
D. Li, and S. Wang, “Rapier: Integrating routing and scheduling
for coflow-aware data center networks,” in INFOCOM ’15.

[5] N. Wang and J. Wu, “Minimizing the subscription aggregation
cost in the content-based pub/sub system,” in ICCCN ’16.

[6] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow
scheduling with varys,” in SIGCOMM ’14.

[7] M. Chowdhury and I. Stoica, “Efficient coflow scheduling
without prior knowledge,” in SIGCOMM ’15.

[8] Y. Li, S. H.-C. Jiang, H. Tan, C. Zhang, G. Chen, J. Zhou, and
F. C. M. Lau, “Efficient online coflow routing and scheduling,”
in MobiHoc ’16.

[9] M. Chowdhury and I. Stoica, “Coflow: A networking abstraction
for cluster applications,” in HotNets-XI.

[10] S. Even, A. Itai, and A. Shamir, “On the complexity of
timetable and multicommodity flow problems,” SIAM Journal
on Computing, vol. 5, no. 4, pp. 691–703, 1976.

[11] M. Chowdhury, “Coflow-benchmark.” [Online]. Available:
https://goo.gl/szsBQE

[12] C. E. Hopps, “Analysis of an equal-cost multi-path algorithm,”
in RFC 2992, 2000.

[13] L. Chen, B. Li, and B. Li, “Barrier-aware max-min fair band-
width sharing and path selection in datacenter networks,” in
IC2E ’16.

