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Abstract—Edge computing is one of the emerging technologies aiming to enable timely computation at the network edge. With

virtualization technologies, the role of the traditional edge providers is separated into two: edge infrastructure providers (EIPs), who

manage the physical edge infrastructure, and edge service providers (ESPs), who purchase slices of physical resources (e.g., CPU,

bandwidth, memory space, disk storage) from EIPs and then cache service entities to offer their own value-added services to end

users. When an ESP caches a service entity in an edge server, the ESP has to pay some fees (i.e, the cache cost) to the EIP that owns

the edge server. One of the fundamental problems in edge virtualization is the so-called service entity caching problem, i.e., where to

place service entities for an ESP to minimize the cache cost. In this paper, we study the service entity caching problem from the utility

perspective. We use ‘utility’ to denote the positive impact on a client from caching a service entity in an edge server, and the exact

meaning of utility can vary depending on specific scenarios. We formulate the Utility-based Service Entity Caching (UtilitySEC) problem,

which can be generalized to many existing problems by modifying the ‘utility’. We prove that the UtilitySEC problem is NP-complete and

design an approximation algorithm for it. Extensive simulations are conducted to evaluate the performance of the proposed framework.

Index Terms—Edge computing, service entity caching, set cover, utility.

✦

1 INTRODUCTION

THE volume of the data generated at the edge of the
Internet increases explosively in recent years. For ex-

ample, Boeing 787 aircraft creates half a terabyte of data
per flight [1]; a high-definition, traffic monitoring camera
can generate several terabytes of data in a day [35].

Traditional centralized data processing technologies
(e.g., cloud computing) are no longer able to handle such
large amount of data efficiently, due to the following two
reasons. On the one hand, linearly-increased computa-
tion capabilities in centralized compute clusters cannot
match the data generated in the network edge with an
exponential growth. On the other hand, transmitting
such large amount of data to centralized compute clus-
ters incurs a non-negligible latency.

Edge computing is one of the emerging technologies
aiming to enable timely computation at the network
edge [14, 20]. Many major cloud providers take edge
computing as a promising paradigm to overcome the
above issues. For example, over 500 edge servers are
deployed in China by Alibaba [2]; Google has deployed
more than 1,400 edge servers worldwide [4]. With geo-
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distributed edge servers, end users can have low-latency
edge service anytime and anywhere, which greatly mit-
igates the effect of large amounts of data on backbone
network and centralized data centers.

According to the Open Edge Computing initiative [3],
edge cloud resources tend to be virtualized and can be
allocated at a fine granularity by the aid of lightweight
virtualization techniques [17]. This enables edge virtu-
alization, a paradigm that decouples the functionalities
in an edge environment by separating the role of the
traditional edge providers into two: edge infrastructure
providers (EIPs), who manage the physical edge infras-
tructure, and edge service providers (ESPs), who pur-
chase slices of physical resources (e.g., CPU, bandwidth,
memory space, disk storage) from EIPs and then cache
service entities to offer their own value-added services to
end users (EUs). Taking the Distributed Interactive Ap-
plication (DIA) [36] atop edge computing for example.
A DIA allows a group of distributed users to interact
with each other synchronously via their mobile devices
or computers. It usually consists of two components:
service entity and client. A service entity maintains
application metadata (including user state and applica-
tion state), while a client (user) is only responsible for
sending user-initiated operations to the service entities
and receiving updates from the service entities.

When an ESP caches a service entity in an edge server,
the ESP has to pay some fees (i.e, the cache cost) to the
EIP that owns the edge server. One of the fundamental
problems in edge computing is the so-called service entity
caching problem, i.e., where to place service entities for
an edge service provider to minimize the total cache cost.
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TABLE 1: Some typical problems in edge computing-related scenarios and the analogues of service entity, user/client, and utility.

Problems Service Entity User / Client Utility♯

IoT Application
Provisioning [34]

an IoT
application

an IoT
data source

the bandwidth allocated to a data source along the
path between an application and a data source

Server Placement in
Probabilistic Networks [30]

a physical
server

a client
the probability that a client

successfully connects to a server

FemtoCaching [19] a video file
a user

terminal
the probability that a user

terminal can access a video file
♯the utility gained by a client from caching a single service entity in a server.

In this paper, we study the service entity caching prob-
lem from the utility perspective. We use ‘utility’ to
denote the positive impact on a client from caching an
entity in an edge server, and the exact meaning of utility
can vary depending on specific scenarios. For example:

• IoT application provisioning [34]: an IoT (Internet-
of-Things) application receives continuous data
from one or more data sources and performs analy-
sis on received data. In this case, an application can
be seen as a service entity; an IoT data source can
be seen as a client; and the utility gained by a data
source from an IoT application is the bandwidth
allocated to the source along the path between them.

• Server placement in probabilistic networks [30]:
when the connections between mobile clients and
edge servers are not reliable (i.e., wireless channels
are lossy and unreliable, making the success of a
transmission inherently probabilistic), the wireless
connection service provider may want to ensure that
the number of connected servers of a client is no less
than a threshold. In this case, the probability that a
client successfully connects to a server can be seen
as the utility gained by a client in UtiltySEC from
caching a single entity in a server in UtiltySEC .

We formulate the Utility-based Service Entity Caching
(UtilitySEC) problem: given the locations of edge servers
and the utility requirement of each user, an ESP must
select some servers to place its service entities, so as
to minimize the overall cache cost. We prove that the
UtilitySEC problem is NP-complete and design an ap-
proximation algorithm for it. Extensive simulations are
conducted to evaluate the performance of the proposed
framework. Our main contributions are three-fold:

• We propose the UtilitySEC problem, which can be
generalized to many existing problems by modify-
ing the ‘utility’.

• We design an efficient algorithm for UtilitySEC, and
provide theoretical analysis on the approximation
ratio.

• We evaluate the proposed algorithm using trace-
driven simulations.

The rest of the paper is organized as follows. We moti-
vate our study in Section 2. We introduce the UtilitySEC
problem in Section 3. The NP-completeness result is pre-
sented in Section 4. We then present an approximation
algorithm in Section 5. Evaluation is given in Section 6.
We survey related work in Section 7 and conclude the
paper in Section 8.

2 MOTIVATION

In this section, we motivate our study by showing many
existing problems can be solved under the UtilitySEC
optimization framework.

As we will shortly indicate in Section 3, the Utility-
SEC optimization framework consists of three elements:
service entity, user/client, and utility. Here, the ‘utility’
denotes the utility gained by a client from caching a
single service entity in a server. In the following, we
present several typical problems in edge computing-
related scenarios in prior studies [19, 30, 34], and in
each problem, we will explain what are the analogues of
service entity, user/client, and utility. Main comparison
results are summarized in Table 1.

IoT application provisioning [34]: an IoT application
receives continuous data from one or more data sources
and performs analysis on received data. In brief, the
problem of IoT application provisioning is to decide
where to place a set of IoT applications to satisfy the
bandwidth requirements of each data source. In this
problem, an IoT application can be seen as a service
entity; an IoT data source can be seen as a client; and
the bandwidth allocated to a data source along the path
between an application and the data source can be seen
as the utility gained by a client in UtiltySEC from caching
a single service entity in a server in UtiltySEC .

Server placement in probabilistic networks [30]:
when the connections between mobile clients and edge
servers are not reliable, the service provider may want to
ensure that the number of connected servers by a client
is no less than a threshold. In this problem, a physical
server can be seen as a service entity; and the probability
that a client successfully connects to a server can be seen
as the utility gained by a client in UtiltySEC from caching
a single service entity in a server in UtiltySEC .

FemtoCaching [19]: in FemotoCaching, helpers (i.e.,
video content servers) store video files for user terminals,
and the connectivity between users and helpers is a
bipartite graph. Different user terminals may request
different files with different probabilities. The problem of
FemtoCaching is to decide which set of video files each
helper should cache, so as to maximize the probability
that each user terminal requests one of the video files
that are accessible through its connected helpers. In this
problem, a video file can be seen as a service entity; a
user terminal can be seen as a client; and the probability
that a user terminal can access a video file can be seen
as the utility gained by a client from caching a single
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service entity in a server.
The comparison list is far from exhaustive. However,

we believe these examples illustrate a few representative
scenarios. Thus, solving the UtilitySEC problem in our
study will help us develop techniques that hold across
many similar scenarios.

3 THE UTILITYSEC PROBLEM

Edge servers are usually deployed on a business premise
such as in a doctor office or a coffee shop [18]. According
to the Open Edge Computing initiative [3], edge server
resources tend to be virtualized and can be allocated at a
fine granularity by the aid of lightweight virtualization
techniques. Therefore, in this paper, an edge service
provider can rent edge resources from edge infrastruc-
ture providers to cache its own value-added entities.

We consider a metropolitan-area edge computing sce-
nario which contains a set of N edge servers, denoted
by s1, s2, ..., and sN . These servers are dispersed within
a city, e.g., inside restaurants and in schools. Each edge
server si is associated with a cache cost wi, i.e., it costs
wi to cache a service entity in edge server si. There are
M users/clients, c1, c2, ..., cM , which are also dispersed
in the same city.

Naturally, when we cache a service entity, it may
have a nonnegative impact on each user/client. We use
u(si, cj) to denote the utility gained by cj if we cache
a service entity in edge server si. Note that, u(si, cj)
may not be a constant, and it can be explained in
many different ways depending on specific scenarios.
See Section 6 for more explanations.

The utilities gained by a client from multiple entities
are assumed to be additive. For example, in the problem
of IoT application provisioning [34], the bandwidths
allocated to a data source along the path between the
data source and multiple IoT applications are additive.

Each client has a utility requirement U . That is, the
sum of the utilities gained by each client from the cached
entities should be no less than U . It should be noted
that the proposed algorithm can be easily extended
to the case in which clients have heterogenous utility
requirements by rewriting Eq. (1b) for each client.

We use xi to indicate whether a service entity is
placed/cached in edge server si, i.e., xi = 1 if a service
entity is placed in si, otherwise, it is 0. Main notations
are summarized in Table 2.

The objective of the UtilitySEC problem is to minimize
the total cache cost, such that the utility requirement
of each client is satisfied. The UtilitySEC problem is
formally defined as follows:

min
N
∑

i=1

wixi [UtilitySEC] (1a)

s.t.
N
∑

i=1

u(si, cj)xi ≥ U, ∀j ∈ [1,M ] (1b)

xi ∈ {0, 1}, ∀i ∈ [1, N ] (1c)

TABLE 2: Main notations for quick reference.

Symbol Meaning

N the number of edge servers

si the i-th edge server
wi the cache cost in server si

M the number of users/clients

cj the j-th user/client

u(si, cj)
the utility gained by cj if we
cache a service entity in si

U the utility requirement

xi cache a service entity in si or not

gij
the start index of the utilities gained by cj
from caching a service entity in si

dij
the actual utility obtained by cj
from caching a service entity in si

Eq. (1b) ensures that the total utilities obtained by each
client is no less than the requirement; Eq. (1c) is the in-
tegral constraint. In the next two sections, we will show
the UtilitySEC problem is NP-complete and propose an
approximation algorithm for it, respectively.

4 NP-COMPLETENESS RESULT

By reducing the NP-complete Set Cover (SC) prob-
lem [24] to UtilitySEC, we can prove that the decision
version of UtilitySEC is NP-complete.

Theorem 1: The decision version of UtilitySEC is NP-
complete.

Proof: We provide the descriptions of the decision
version of SC and UtilitySEC as follows.

• Decision version of SC: Given a universe H =
{e1, e2, ..., em} of m elements and an integer q, a
collection of subsets of H, R1, R2, ..., and Rn, does
there exist a sub-collection of these subsets with size
no more than q that covers all elements of H?

• Decision version of UtilitySEC: Given a set of users
c1, c2, ..., cM , a set of edge servers s1, s2, ..., sN with
cache costs w1, w2, ..., wN , respectively, and the util-
ity requirement U . The utility obtained by cj from
caching a service entity in si is u(si, cj). Does there
exist a service entity caching solution that incurs a
cache cost no more than a threshold W ?

Without loss of generality, let

< m,n, q,R1,R2, ...,RN >

denote an instance of SC; let

< M,N,w1, ..., wN , U, u(s1, c1), ..., u(sN , cM ),W >

denote an instance of UtilitySEC.
In the following, we show that, any instance of SC can

be polynomially reduced to an instance of UtilitySEC.
The reduction maps an instance of SC into an instance
of UtilitySEC using the following rules:

[1], M ← m; [2], N ← n; [3], for each cache cost wi,
wi ← 1; [4], W ← q; [5], U ← 1; [6], for each utility
u(si, cj), u(si, cj)← 1 if and only if ej ∈ Ri in the instance
of SC.
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Rules [1] and [2] specify the number of clients and
edge servers, respectively. Rule [3] sets each cache cost
to 1. Rule [4] means the number of cached service entities
should not exceed q. Rule [5] sets the utility requirement
to 1. The last rule sets each u(si, cj) to either 1 or 0,
depending on whether subset Ri contains element ej . It
is easy to see that, the reduction from SC to UtilitySEC
can be finished in polynomial time.

To confirm the validity of this reduction, we have
to show that it works in the case of either outcome
depicted.

On the one hand, if the instance of SC has a yes
solution, i.e., there exist q subsets among R1, R2, ...,
and RN that can cover all m elements. According to
the reduction rules, in the corresponding UtiltiySEC
instance, we can cache W service entities in W servers
that make each client obtain no less than U = 1 utility.

On the other hand, if the instance of SC does not have
a yes solution, i.e., it needs at least (q + 1) subsets to
cover all m elements. According to the reduction rules,
in the corresponding UtiltiySEC instance, we also need
to cache at least (W + 1) service entities to satisfy the
utility requirement of each client.

Finally, it is easy to verify the decision version of
UtilitySEC is in NP, hence, the theorem is proven.

Simplifying UtilitySEC. Before presenting our algo-
rithm, we show that we can safely assume that all
u(si, cj)’s and U are integral.

Without loss of generality, all u(si, cj)’s and U are
rational numbers. Since they are rational numbers, we
can rewrite each of them as a fraction, i.e., u(si, cj) can
be rewritten as

aij

bij
and U can be rewritten as a

b
, where

aij , bij , a, and b are integrals. Then, the constraint (1b)
in the UtilitySEC problem becomes

N
∑

i=1

aij

bij
xi ≥

a

b
, (2)

which is equivalent to

N
∑

i=1

(aijb
∏

k 6=i

bkj)xi ≥ a

N
∏

k=1

bkj , (3)

where both (aijb
∏

k 6=i bkj) and (a
∏N

k=1 bkj) are integrals.
Therefore, we can safely assume that all u(si, cj)’s and
U are integral.

5 THE PROPOSED ALGORITHM AND APPROX-
IMATION RATIO ANALYSIS

We present a greedy algorithm for UtilitySEC and its
performance analysis in this section.

5.1 The Greedy Algorithm (GA) for UtilitySEC

The main idea of GA is as follows. GA consists of
multiple iterations. In each iteration, we compute the
cost-effectiveness of each edge server in which no service
entity is placed yet; we then select the edge server that

Algorithm 1: Greedy Algorithm (GA) for UtilitySEC

Input: wi for every i ∈ [1, N ], u(si, cj) for every pair
of i ∈ [1, N ] and j ∈ [1,M ], U

Output: xi for every i ∈ [1, N ]
1 ∀i ∈ [1, N ], xi ← 0;
2 C ← {c1, c2, ..., cM};
3 while C 6= ∅ do

4 ce m←
∑N

k=1 wk;
5 ce index← −1;
6 for i = 1; i ≤ N ; i++ do
7 if xi = 0 then
8 ce← wi

∑

cj∈C

min{u(si,cj),U−
N∑

k=1

u(sk,cj)xk}

;

9 if ce < ce m then
10 ce m← ce;
11 ce index← i;

12 xce index ← 1;
13 for each cj ∈ C do

14 if
N
∑

i=1

u(si, cj)xi ≥ U then

15 remove cj from C, i.e., C ← C \ {cj};

16 return x1, x2, ..., xN

has the smallest cost-effectiveness to cache a new entity.
Here, the ‘cost-effectiveness’ of an edge server is defined
as the ratio of its cache cost to the marginal utilities it
brings to all clients. The details are shown in Alg. 1.

Initially, no service entity is placed (line 1); we use
C to denote the set of clients that have not obtained
enough utilities (line 2). Remember that the utility re-
quirement of each client is U ; when the sum of utilities
obtained by some client cj from cached service entities,

which is
∑N

k=1 u(sk, cj)xk , exceeds the requirement, the

additional utilities (i.e.,
∑N

k=1 u(sk, cj)xk−U ) are useless.
In each iteration, for each edge server si, if we have

not cached a service entity in edge server si, we compute
its cost-effectiveness (line 8) as follows:

ce←
wi

∑

cj∈C

min{u(si, cj), U −
N
∑

k=1

u(sk, cj)xk}

. (4)

In Eq. (4), min{u(si, cj), U −
∑N

k=1 u(sk, cj)xk} denotes
the utilities obtained by cj if we cache a service entity in
edge server si. The readers may wonder why the second

term is (U −
∑N

k=1 u(sk, cj)xk). The reason is simple; the
set C maintains the clients that have not received enough
utilities and cj belongs to C, thus,

∑N
k=1 u(sk, cj)xk is

less than U but
∑N

k=1 u(sk, cj)xk+u(si, cj) may be larger
than U . Before proceeding to the next iteration, we cache
a service entity in the server that has the smallest cost-
effectiveness (line 12) and update the set C (lines 13-15).

Complexity. The time complexity of GA is dominated
by the while loop. Since there are N edge servers,
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the while loop contains at most N iterations. In each
iteration, GA has to compute the cost-effectiveness of
each edge server that has not cached any service entity
yet, which requires O(MN) time; updating the set C

also requires O(MN) time. Combining them together,
the time complexity of GA is O(N2M).

Example. We provide an example to better illustrate
the GA algorithm. There are 4 edge servers that have
heterogeneous cache costs and 5 clients. The utility re-
quirement U of each client is 3. Tab. 3 shows the details
of the utilities. We now check how GA works.

Initially, no service entity is placed. In the first iteration
of the while-loop (lines 3-15), GA computes the cost-
effectiveness of each server according to Eq. (4): ce1 = 8

5 ,
ce2 = 6

6 = 1, ce3 = 9
6 = 3

2 , and ce4 = 14
7 = 2. GA

chooses to place a service entity in server s2 since ce2
is the smallest. Since not all clients meet their utility
requirements, GA enters into the second iteration of the
while-loop, GA computes the cost-effectiveness of s1, s3,
and s4 as follows: ce1 = 8

5 ; ce3 = 3
2 ; for s4, although it

can bring 2 units of utilities to c1, the actual utility it
brings to c1 is min{2, U−2} = 1, therefore, ce4 = 14

6 = 7
3 .

GA chooses s3 to cache a service entity. Again, since c3
and c4 have not met their utility requirements, GA enters
into the third iteration. Due to the same reason, we have
ce1 = 8

3 and ce4 = 14
2 = 7. GA chooses s1 to place an

entity and all clients satisfy their utility requirements.

5.2 Analysis

In this subsection, we analyze the approximation ratio of
the proposed algorithm using the dual fitting technique.
We first provide the analysis overview, then we present
a few preliminaries that are key to analysis, and finally
we present the details of the analysis.

5.2.1 Overview of Analysis

Denote the optimum value of UtilitySEC by OPT . In
order to find the approximation ratio of GA, we have to
find the lowerbound of OPT .

The original UtilitySEC problem is a mixed integer
linear program (MILP). We relax the integral constraint
(i.e., Eq. (1c)) and have the following problem:

min

N
∑

i=1

wixi [pfUtilitySEC] (5a)

s.t.
N
∑

i=1

u(si, cj)xi ≥ U, ∀j ∈ [1,M ] (5b)

xi ≥ 0, ∀i ∈ [1, N ] (5c)

− xi ≥ −1, ∀i ∈ [1, N ] (5d)

Under the dual fitting technique, the above problem is
called the primal fractional problem, thus, we denote it
by pfUtilitySEC. Denote the optimum value of pfUtility-
SEC by OPTf . Due to the relaxation, we have

OPTf ≤ OPT. (6)

TABLE 3: An example that contains 4 edge servers and 5 clients. The
utility requirement U is 3.

Cache Cost
❳
❳
❳
❳
❳
❳
❳
❳

Server
Client

c1 c2 c3 c4 c5

8 s1 1 1 2 1 0
6 s2 2 2 0 1 1
9 s3 1 1 1 1 2
14 s4 2 1 1 1 2

Using the purely mechanical procedure for obtaining
the dual of a linear problem, we have the dual problem
of pfUtilitySEC:

max
M
∑

j=1

Uyj −
N
∑

i=1

zi [dfUtilitySEC] (7a)

s.t.
M
∑

j=1

u(si, cj)yj − zi ≤ wi, ∀i ∈ [1, N ] (7b)

yj ≥ 0, ∀j ∈ [1,M ] (7c)

zi ≥ 0, ∀i ∈ [1, N ] (7d)

This problem is denoted as dfUtilitySEC. According to
the weak duality theorem [24], any feasible solution to
dfUtilitySEC is no larger than any feasible solution to
pfUtilitySEC, that is, given any feasible solution (y, z) to
dfUtilitySEC and any feasible solution x to pfUtilitySEC,
we have

M
∑

j=1

Uyj −
N
∑

i=1

zi ≤
N
∑

i=1

wixi. (8)

Since the optimum solution to pfUtilitSEC is also a
feasible solution to pfUtilitySEC, we have

M
∑

j=1

Uyj −
N
∑

i=1

zi ≤ OPTf . (9)

Combining Eqs. (6) and (9) together, we know any fea-
sible solution to dfUtilitySEC is a lowerbound of OPT .

Our analysis can be briefly summarized in the follow-
ing three steps.

Step 1, find a dual solution (y′, z′) that fully pays the
primal solution x generated by GA, that is,

M
∑

j=1

Uy′j −
N
∑

i=1

z′i ≥
N
∑

i=1

wixi. (10)

It should be noted that (y′, z′) may not be dual feasible.
Step 2, scale down (y′, z′) by a factor of λ and get a

dual feasible solution (y′′, z′′), that is,

M
∑

j=1

u(si, cj)y
′′
j − z′′i ≤ wi, ∀i ∈ [1, N ]. (11)

Step 3, prove that λ is the approximation ratio.

5.2.2 Preliminaries

Before analyzing GA, a few necessary concepts and
lemmas are explained below.
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TABLE 4: The cost(cj , k)’s in the solution produced by running GA
on the example shown in Tab. 3.

c1 c2 c3 c4 c5

cost(cj , 1) 1 1 3

2
1 1

cost(cj , 2) 1 1 8

3

3

2

3

2

cost(cj , 3)
3

2

3

2

8

3

8

3

3

2

A client is said to be “alive” during the execution of
GA, if its utility requirement has not been satisfied yet.

When a server si is going to be selected by the GA
algorithm to cache a service entity, the cache cost wi

is distributed among the alive clients as follows. For
each alive client cj , the sum of utilities it obtains from

cached service entities (except si) is
∑N

k=1,k 6=i u(sk, cj)xk.
We denote this value by gij . Since cj is alive before si
caches a service entity, we have gij < U . Hence, the
utility gained by cj from caching a service entity in si is
min{u(si, cj), U − gij}. For simplicity of presentation, let

dij = min{u(si, cj), U − gij}, (12)

and dij is the actual utility obtained by cj from caching
a service entity in si. Taking Tab. 3 for example, in the
second iteration of the while-loop, when computing the
cost-effectiveness of caching an entity in s4, the sum of
utilities c1 obtains from the cached service entities is
2, i.e., g41 = 2; the actual utility obtained by c1 from
caching an entity in s4 is d41 = min{u(s4, c1), U − g41} =
min{2, 3− 2} = 1.

The cost-effectiveness defined in Eq. (4) can be seen
as the cost we need to pay for getting one unit of utility.
Define cost(cj , k) as the cost of cj getting its k-th unit of
utility, where k ∈ [1, U ]. Since client cj obtains its (gij+1)-
th, (gij + 2)-th, ..., and (gij + dij)-th utility from caching
a service entity in edge server si, we have

cost(cj , gij + 1) = cost-effectiveness of si, (13)

cost(cj , gij + 2) = cost-effectiveness of si, (14)

......

cost(cj , gij + dij) = cost-effectiveness of si. (15)

Taking Tab. 3 for example, client c4 obtained its 1st,
2nd, and 3rd utilities from caching entities in s2, s3,
and s1, respectively: cost(c4, 1) = 1, cost(c4, 2) =

3
2 , and

cost(c4, 3) =
8
3 . The cost(cj , k)’s in the solution produced

by running GA on the example shown in Tab. 3 are
provided in Tab. 4.

Based on the definition of cost(cj , k) and the greedy
heuristic of GA, we have the following lemmas.

Lemma 1: Assuming x1, x2, ..., and xN is a feasible
solution to the UtilitySEC problem, then

M
∑

j=1

U
∑

k=1

cost(cj , k) =
N
∑

i=1

wixi.

Proof: When a server si is selected to cache an entity,
it brings dij utilities to client cj if cj has not received
enough utilities at that time point, and the cache cost wi

is equally distributed among these utilities it brings.

Lemma 2: For each client cj , we have

cost(cj , 1) ≤ cost(cj , 2) ≤ ...... ≤ cost(cj , U).

Proof: Remember that GA is a greedy algorithm;
in each iteration, it selects the edge server that has
the smallest cost-effectiveness to cache a service entity.
Because of this greedy nature, for any client, the cost of
obtaining one unit of utility cannot decrease.

5.2.3 Details of Analysis

Step 1, finding a dual solution (y′, z′) that fully pays the
primal solution x generated by GA. We now construct
(y′, z′) as follows.

For each j ∈ [1,M ], let

y′j = cost(cj , U). (16)

For each i ∈ [1, N ], let

z′i =























M
∑

j=1

(dijcost(cj , U)−
gij+dij
∑

k=gij+1

cost(cj , k))

if si caches a service entity,

0 otherwise.
(17)

Remember that gij is the start index of the utilities gained
by cj from caching a service entity in si.

We have the following theorem.
Theorem 2: The solution x generated by GA is fully

paid by the dual solution (y′, z′) in Eqs. (16) and (17).
Proof: According to Lemma 1, the solution x gener-

ated by GA is

N
∑

i=1

wixi =

M
∑

j=1

U
∑

k=1

cost(cj , k).

The dual solution (y′, z′) in Eqs. (16) and (17) is

M
∑

j=1

Uy′j −
N
∑

i=1

z′i

=

M
∑

j=1

Ucost(cj , U)−
N
∑

i=1

M
∑

j=1

(dijcost(cj , U)−

gij+dij
∑

k=gij+1

cost(cj , k))

=(
M
∑

j=1

Ucost(cj , U)−
N
∑

i=1

M
∑

j=1

dijcost(cj , U))

+

N
∑

i=1

M
∑

j=1

gij+dij
∑

k=gij+1

cost(cj , k))

=(
M
∑

j=1

Ucost(cj , U)−
M
∑

j=1

(
N
∑

i=1

dij)cost(cj , U))

+
N
∑

i=1

M
∑

j=1

gij+dij
∑

k=gij+1

cost(cj , k))

=

N
∑

i=1

M
∑

j=1

gij+dij
∑

k=gij+1

cost(cj , k) =

M
∑

j=1

(

N
∑

i=1

gij+dij
∑

k=gij+1

)cost(cj , k)

=
M
∑

j=1

U
∑

k=1

cost(cj , k) ≥
N
∑

i=1

wixi.
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The theorem follows immediately.
Step 2, finding a dual feasible solution (y′′, z′′) by

scaling down (y′, z′). Let umax be maxi,j u(si, cj) and HM

be (1+ 1
2+ · · ·+

1
M
). We now construct (y′′, z′′) by scaling

down (y′, z′) by a factor of umaxHM .
For each j ∈ [1,M ], let

y′′j =
y′j

umaxHM

. (18)

For each i ∈ [1, N ], let

z′′i =
z′i

umaxHM

. (19)

Theorem 3: (y′′, z′′) defined Eqs. (18) and (19) is a
feasible solution to dfUtilitySEC.

Proof: It is sufficient to show that (y′′, z′′) satisfy the
three constraints in Eq. (7). Obviously, they are nonneg-
ative. Thus, in the following, we show they satisfy the
first constraint, i.e., constraint (7b).

Consider any edge server si, without loss of generality,
we assume caching a service entity in si brings a positive
utility to c1, c2, ..., and cMi

, where Mi is no larger than
M . That is, for each j ∈ [1,Mi], u(si, cj) ≥ 1; for each
j ∈ [Mi + 1,M ], u(si, cj) = 0.

Again, without loss of generality, we assume the GA
algorithm makes c1, c2, ..., cMi

stop being alive in the
order, breaking the ties arbitrarily.

Case 1: si caches no service entity at the end of the
execution of the GA algorithm, i.e., xi = 0.

When the GA algorithm is about to enable a client cj
(j ∈ [1,Mi]) to gain its last unit of utility, i.e., the utility
requirement of cj would be satisfied if it gains one more
unit of utility, si can make at least (Mi − j + 1) clients
obtain positive utilities if caching a service entity in si.
This is because the GA algorithm makes c1, c2, ..., cMi

stop being alive in the order. Since the GA algorithm is
greedy, we have

cost(ci, U) ≤
wi

∑Mi

k=j dik
≤

wi

Mi − j + 1
. (20)

The second inequality holds because dik ≥ 1.
According to Eq. (17), z′′i = 0. We have

M
∑

j=1

u(si, cj)y
′′
j − z′′i

=

Mi
∑

j=1

u(si, cj)
cost(cj , U)

umaxHM

+
M
∑

j=Mi+1

0
cost(cj, U)

umaxHM

− 0

≤
1

HM

Mi
∑

j=1

u(si, cj)

umax

wi

Mi − j + 1

=
wi

HM

Mi
∑

j=1

1

Mi − j + 1
=

wi

HM

Mi
∑

j=1

1

j
= wi.

Case 2: si caches a service entity at the end of the
algorithm, i.e., xi = 1.

Before the GA algorithm decides to cache a service
entity in si, suppose that M ′ clients have already gained
U units of utilities (0 ≤M ′ ≤Mi − 1). Then, we have

M
∑

j=1

u(si, cj)y
′′
j − z′′i

=
1

umaxHM

(

Mi
∑

j=1

u(si, cj)cost(cj , U)

−
Mi
∑

j=M ′+1

(dijcost(cj , U)−

gij+dij
∑

k=gij+1

cost(cj , k)))

=
1

umaxHM

(

M ′

∑

j=1

u(si, cj)cost(cj , U)

+ (

Mi
∑

j=M ′+1

u(si, cj)cost(cj , U)−
Mi
∑

j=M ′+1

dijcost(cj , U))

+

Mi
∑

j=M ′+1

gij+dij
∑

k=gij+1

cost(cj , k))

≤
1

umaxHM

(

M ′

∑

j=1

u(si, cj)cost(cj , U)

+

Mi
∑

j=M ′+1

gij+dij
∑

k=gij+1

cost(cj , k))

=
1

HM

(

M ′

∑

j=1

u(si, cj)

umax

wi

Mi − j + 1
+

1

umax

wi)

≤
wi

HM

(
1

Mi

+
1

Mi − 1
+ · · ·+

1

Mi −M ′ + 1
+

1

umax

)

≤
wi

HM

(
1

Mi

+
1

Mi − 1
+ · · ·+

1

Mi −M ′ + 1
+ 1) ≤ wi.

Hence, (y′′, z′′) is a feasible solution to dfUtilitySEC.

Step 3, finding the approximation ratio. We now
show the scaling factor (HM · umax) in Step 2 is exactly
the approximation ratio of the proposed algorithm.

Theorem 4: GA is an (HM ·umax) factor approximation
algorithm for UtilitySEC.

Proof:

N
∑

i=1

xiwi =

M
∑

j=1

U
∑

k=1

cost(cj , k) /*due to Lemma 1*/

≤
M
∑

j=1

Uy′j −
N
∑

i=1

z′i /*due to Theorem 2*/

=HMumax

M
∑

j=1

Uy′′j −
N
∑

i=1

z′′i /*due to scaling*/

≤HMumax · OPTf /*due to Theorem 3*/

≤HMumax · OPT. /*due to relaxation*/
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6 PERFORMANCE EVALUATION

In this section, we evaluate the proposed algorithm using
trace-driven simulations.

6.1 Dataset and Setup

We consider a metropolitan area that contains edge
servers and users. Similar to a previous study [26],
we used Starbucks’ locations as the locations of edge
servers, because the distribution of them in a city usually
achieves a decent coverage of users, making them very
suitable for placing edge servers. Therefore, we collected
the locations of Starbucks within the 4th ring road of
Beijing, China, and the Manhattan island of New York,
US, as shown in Fig. 1. For each city, we calculated
the minimum bounding rectangle of the Starbucks with
two sides parallel to a meridian. Then, we extended this
rectangle by adding 5km to each side, so as to form the
area of interest. For locations of clients, we randomly
generate them inside the area.

Since the number of edge servers was fixed, i.e., 92
in the Beijing trace and 201 in the New York trace, we
cannot evaluate the proposed algorithm with more edge
servers. We also conducted another set of simulations
where the locations of both edge servers and users were
randomly generated within an area.

Similar to [26], the delay between an edge server and a
client is proportional to the Euclidean distance between
them in all settings (Beijing, New York, or Synthetical). In
our simulations, we assume 1km incurs 1ms. Therefore,
when the locations of clients are known, we can calculate
the delay between every pair of servers and clients. The
average of these delays is denoted by AvgDelay. Similar
to previous works [26, 30], the utility requirement of
each client is generated randomly following a uniform
distribution with the mean of 8; the average cost of
caching a service entity in an edge server is also gen-
erated randomly following a uniform distribution with
the mean of 3.

We consider two settings of utilities in our simulations.
Bandwdith-as-utility. In this (simple) setting, the util-

ity u(si, cj) obtained by a client cj from caching a service
entity in edge server si is the bandwidth allocated along
the connection path between si and cj .

Delay-function-as-utility. In this (complex) setting,
the utility u(si, cj) obtained by a client cj from caching
a service entity in edge server si is a non-negative, non-
increasing function of the delay between si and cj . In our
simulations, we take u(si, cj) =

AvgDelay

(delay between si and cj)skew ,

where skew reflects the sensitiveness to delay. The im-
pact of skew is also evaluated in our simulations.

We compare GA with the following three algorithms:
Incrementally Cache Algorithm (ICA), Randomly Cache
Algorithm (RCA), and OPT.

ICA considers the utility requirement of each client
one by one. ICA tries to satisfy the utility requirement
of the first client by caching some service entities with

(a) Beijing, China (b) New York, US

Fig. 1: Locations of 92 and 201 Starbucks in Beijing and New York,
respectively.

minimum cache cost; then, ICA tries to satisfy the util-
ity requirement of the second client by incrementally
caching more service entities, and so on. RCA randomly
chooses an edge server to cache a service entity, until
the utility requirement of each client is satisfied. OPT
is a brute-force algorithm that searches the best from a
total of 2N different solutions. The time complexity of
OPT is extremely large, making it possible to run it on
small settings where both of the number of edge servers
and the number of clients are not large.

6.2 Results

In this subsection, we show the simulation results on
the Beijing, New York, and Synthetical traces with two
different utility settings. All the results are obtained by
averaging 10 independent runs.

6.2.1 Impact of Utility Requirement, Average Cache
Cost, and Utility Settings

Figs. 2 and 3 show the simulation results on the Beijing
trace with the bandwidth-as-utility and delay-function-
as-utility settings, respectively. Figs. 4 and 5 show the
simulation results on the New York trace with the
bandwidth-as-utility and delay-function-as-utility set-
tings, respectively.

In general, GA achieved the smallest cache cost among
GA, ICA, and RCA in these figures. GA caches service
entities one by one, and whenever GA selects an edge
server to place a service entity, GA takes all the clients
into consideration. In contrast, ICA considers service
entity caching from the perspective of the clients; ICA
satisfies the utility requirement of each client one by one.
When ICA selects an edge server to place a service entity,
it takes only a part of the clients into account, which
makes it perform worse than GA.

In Figs. 2(a), 3(a), 4(a), and 5(a), when the utility
requirement increases, we find all of GA, ICA, and
RCA have to use more cache cost to satisfy the utility
requirement of every client. This is reasonable, since a
larger utility requirement of a client cannot be satisfied
by caching fewer service entities.

It should be noted that the gap between GA and ICA
in the delay-function-as-utility setting (e.g., Figs. 3(a)
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Fig. 2: Evaluation results under the bandwdith-as-utility setting using Beijing trace.
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Fig. 3: Evaluation results under the delay-function-as-utility setting using Beijing trace.
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Fig. 4: Evaluation results under the bandwdith-as-utility setting using New York trace.

and 5(a)) is larger than that in the bandwidth-as-utility
setting (e.g., Figs. 2(a) and 4(a)). For example, the cache
cost of GA is 64.0% of that of ICA on average in Fig. 3(a);
the cache cost of GA is 87.1% of that of ICA on average in
Fig. 2(a). The main reason is that the distribution of the
utilities u(s, c)’s in the delay-function-as-utility setting
is not a uniform distribution, making GA have more
opportunities to optimize the cache cost.

In Figs. 2(b), 3(b), 4(b), and 5(b), when the average
cache cost increases, we find all of GA, ICA, and RCA
have to use more cache cost to satisfy the utility require-
ment of every client. In Figs. 2(c), and 4(c), when aver-
age u(s, c) increases, the cache cost of every algorithm
decreases. In Figs. 3(c), and 5(c), when the skewness
in the delay-function-as-utility setting increases, then
u(s, c) becomes smaller on average, which in turn makes
each algorithm pay more cache cost to satisfy the utility
requirement of every client.

6.2.2 Impact of Number of Servers and Number of

Clients

Fig. 6 shows the comparison results under the synthetical
trace in which the default number of edge servers is 400
and the default number of clients is 5,000. We see that,
even in this large scale, GA achieves a much smaller
cache cost than ICA and RCA. Most of the findings from
the previous figures still hold here.

We would like to highlight here that when the number
of edge severs increases, the gap between GA and ICA
increases. For example, GA achieves a cache cost which
is 72.5%, 71.4%, 66.8%, 63.9%, and 63.0% of that achieved
by ICA when the number of edge servers is 200, 300,
400, 500, and 600, respectively. This is because more edge
servers bring more opportunities to GA for minimizing
the cache cost. This phenomenon is also observed when
comparing Fig. 6(c) with Figs. 3(c) and 5(c), in which the
advantage of GA over ICA increases when the scale of
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Fig. 5: Evaluation results under the delay-function-as-utility setting using New York trace.
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Fig. 6: Evaluation results under the delay-function-as-utility setting using Synthetical trace.
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Fig. 7: Comparison results of GA versus OPT using Synthetical trace.

the simulation increases (i.e., both of the number of edge
servers and clients increases).

6.2.3 Approximation Ratio

As we mentioned in Section 5.2, due to the relaxation,
the total cache cost of the optimal solution OPTf to
pfUtilitySEC is no more than that of the optimal solution
OPT to UtilitySEC. OPTf can be easily obtained by
solving a linear programming problem pfUtilitySEC.
Therefore, Fig. 6 also shows the performance of OPTf .
Throughout this set of simulations, the total cache cost
achieved by GA is at most 149.0% (113.8% on average)
as large as that achieved by OPTf . These results suggest
that, even compared with the optimal solution to the
primal fractional problem, GA still achieves a near-
optimal performance on average.

We are also interested in comparing GA with OPT.
Since it is impractical to run the brute-force OPT in
general, we evaluate the performance of GA, ICA, RCA,

and OPT under a smaller setting, in which the default
number of edge servers is 10 and the default number
of clients is 100. Fig. 7 shows the comparison results
under two types of utility settings. In general, the gap
between GA and OPT is smaller in the bandwidth-as-
utility setting than that in the delay-function-as-utility
setting. Specifically, throughout this set of simulations,
the total cache cost achieved by GA is at most 120.6%
(111.4% on average) as large as that achieved by OPT,
while the total cache cost achieved by ICA and RCA is at
most 145.4% and 203% (129.7% and 155.7% on average),
respectively, as large as that achieved by OPT. These
results also imply that the approximation ratio in the
theoretical analysis is not tight, and finding the tight
ratio is left as part of future work.

7 RELATED WORK

Application offloading is a relatively common topic. To
improve energy efficiency of mobile devices, some works
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proposed offloading mobile workloads to nearby edges
or remote clouds [6, 8, 9, 13, 15, 33]. For example,
Cuervo et al. [6] proposed MAUI that enables automated
method-level code offloading; Kosta et al. [13] improved
method-level migration by parallelizing method exe-
cution using multiple VM images; Gordon et al. [8]
designed thread-level migration techniques based on
distributed shared memory; dynamic offloading with
completion deadline constraint to reduce energy con-
sumption was studied in [9], etc.

Some other works [5, 7, 25, 26, 29, 31, 37] focused on
minimizing the completion time of mobile workloads.
For example, Wang et al. [25] considered minimizing
job latency from the perspective of edge cloud resource
provisioning; Xu et al. [29] jointly considered caching
and offloading decisions; Wang et al. [26] studied a sim-
ilar service entity placement problem that resembles the
uncapacitated facility location problem [24]; Gao et al. [7]
considered both edge workload and access network
congestion when placing service entities. Simultaneously
optimizing offloading for multiple users was studied
in [5, 31]. The virtual network functions placement for
service-customized 5G networks was studied in [37].
Dispatching crowdsensing tasks was studied in [27, 28].

Dispatching multiple jobs to multiple edges was con-
sidered in [11, 21–23]. Tong et al. [23] proposed the
hierarchical edge architecture. Tan et al. [22] proposed
to greedily dispatch and schedule jobs using the Highest
Residual Density First rule. Sundar and Liang [21] inves-
tigated the problem of dispatching dependent tasks to
multiple edges with deadline constraints, so as to mini-
mize application execution cost. Jia et al. [11] studied the
load balancing between multiple edge clouds. Grouping
jobs with complementary demands to optimize resource
utilization was studied in [32].

Optimizing edge for mobile augmented reality (MAR)
applications receives intensive research interests recently.
Liu et al. [16] focused on edge server assignment and
frame resolution selection to minimize MAR service
latency. VideoStorm [35] leveraged the resource-quality
tradeoff and latency-tolerance of partial video analysis
requests to accelerate video analysis. Chameleon [12]
utilized temporal persistence of top-k configurations and
spatial similarities to minimize the resource consump-
tion for video analysis. Focus [10] used top-k index and
object clustering to achieve low-latency and low-cost
video analysis. These studies explore domain-specific
knowledge to optimize edge video analysis.

In brief, none of existing studies investigate the utility-
based service entity placement problem, in which we can
generalize the proposed problem and algorithm to many
existing problems by modifying the ‘utility’. We provide
a non-trivial NP-complete result and design an efficient
approximation algorithm.

8 CONCLUSION

For edge service providers, service entity provisioning
is an important problem. In this paper, we study this

problem from the utility perspective. We leverage ‘util-
ity’ to generalize the proposed UtilitySEC problem to
many existing problems by modifying the ‘utility’. We
theoretically show that the decision version of Utility-
SEC is NP-complete. We present GA, an approximation
algorithm that greedily caches a service entity in an
edge server that has the smallest cost-effectiveness. We
evaluate GA with both real-world data traces and large-
scale simulations, and observe that GA performs close
to the optimal algorithm and generally outperforms the
other baseline algorithms.
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