
1

Deploying Virtual Network Functions with
Non-uniform Models in Tree-structured Networks

Yang Chen, Student Member, IEEE, Jie Wu, Fellow, IEEE, and Bo Ji, Member, IEEE

Abstract—Network Function Virtualization (NFV) has pro-
moted the implementation of network functions from expensive
hardwares to software middleboxes. These software middleboxes,
also called Virtual Network Functions (VNFs), are executed on
switch-connected servers. Efficiently deploying such VNFs on
servers is challenging because the traffic rate of flows must
be fully processed by their requested VNFs when they reach
destinations, and the deployed positions of VNFs are restricted
by the server capacity. In addition, each network function offers
non-uniform VNF models (types) with different configurations of
processing volumes and costs. This paper focuses on minimizing
the total cost of deploying VNFs for providing a specific network
function to all flows in tree-structured networks. First, we prove
the NP-hardness of non-uniform VNF deployment in a tree
topology and propose a dynamic programming based solution
with a pseudo-polynomial time complexity. Then we narrow it
down to three simplified cases by focusing on either uniform
VNFs or the linear line topology. Specifically, three algorithms are
introduced: an improved dynamic programming based algorithm
for deploying uniform VNFs in a tree topology, a performance-
guaranteed algorithm for deploying non-uniform VNFs in a
linear line topology, and an optimal greedy algorithm for de-
ploying uniform VNFs in a linear line topology. Additionally, we
generalize our approach to a case of deploying a service chain,
which consists of multiple network functions applied to flows in
a specific order. We propose two solutions: one is optimal but
time-consuming while another is heuristic but efficient. Extensive
simulations are conducted to evaluate our algorithms.

Index Terms—Deployment, NFV, tree-structured networks,
VNFs.

I. INTRODUCTION

Network Function Virtualization (NFV) addresses the prob-
lems of traditional expensive hardwares [1] by leveraging
virtualization technology to implement network functions in
software modules [2]. These software modules, also called
Virtual Network Functions (VNFs) [3], are most commonly
provisioned in modern networks to demonstrate their increas-
ing importance [4], such as firewalls, network address transla-
tors, proxies, and deep packet inspection. With the emergence
of Software Defined Networking (SDN), there is a tendency to
incorporate SDN and NFV in concerted ecosystems [5]. SDN
allows VNFs to pick service locations from multiple available
servers and maneuver traffic through appropriate VNFs; on
the other hand, traditional purpose-built hardware appliances
leave no choice for allocation [6]. The technical combination
of SDN and NFV results in a more flexible architecture and has
the potential to reduce capital and operating expenses, shorten
product release cycles, and improve service agility [7].

Y. Chen, J. Wu, and J. Bo are with Center for Networked Computing in
Temple University, USA. Email: {yang.chen, jiewu, boji}@temple.edu.

In this paper, we study the VNF deployment problem [8]
with a given set of flows in tree-structured networks, whose
switch-connected servers have limited capacities (the maxi-
mum number of deployed VNFs). Tree-structured topologies
are quite common in streaming services and Content Delivery
Networks (CDNs) [9]. Additionally, it is proven NP-hard to
minimize the total number of VNFs to deploy even one single
kind of network function with uniform VNFs (each VNF has
the same processing volume and setup cost) in a general
topology [10]. Thus, we narrow it down to tree-structured
networks and provide stronger algorithmic results in this paper.
We assume that all flows are upstream (i.e., the destination
is closer to the tree root than source) and require to be
processed by identical network functions (later extended to an
identical service chain, consisting of multiple kinds of network
functions serving in a specific order [11]). We initially include
non-uniform VNF types for a single kind of network function,
which has different configurations of processing volumes and
setup costs [12]. The processing volume of a VNF instance
(simplified as VNF in the rest of paper) can be shared by
multiple flows. A flow can also be fractionally processed by
several VNFs before its destination [13]. Our objective is to
minimize the total setup cost of deploying VNFs subject to
that all flows can be fully processed with their traffic rates
when they reach their destinations.

To the best of our knowledge, most existing work on VNF
deployment frequently formulate complex IP problems with
no efficiency-guaranteed solvers or are limited to design with
heuristic solutions. Few proposed solutions can provide prov-
able performance guarantees. Additionally, none of existing
work considers the non-uniform VNF types for one function.
Here we use an example in Fig. 1 to show the VNF deployment
problem that considers non-uniform VNFs and limited vertex
capacities. The topology of the toy example is a binary tree
with six vertices {v1, v2, v3, v4, v5, v6}. We are given four
flows, f1, f2, f3, and f4, whose traffic rates are 3, 3, 4, and
2, respectively. Their paths are given in Figs. 1 (a-c) as the
shortest ones, which are {v4, v2, v1}, {v5, v2}, {v2, v1}, and
{v6, v3, v1}, and are arbitrary in Fig. 1 (d). All flows request
to be processed with a network function m. There are two
types of VNFs for m: a small square VNF with processing
volume of 4 and setup cost of 2, and a large square VNF
with processing volume of 8 and setup cost of 3. We aim at
minimizing the total cost of deploying VNFs subject to that
all flows can be fully processed when reaching destinations.

In Fig. 1(a), we are given only one type (uniform) of VNF,
the small square one (volume 4 and cost 2). With unlimited
vertex capacities, one optimal deployment shown in Fig. 1(a)

2

f1 f2

f3
f4

v1

v2 v3

v4 v5

f4
f4v6

(a) Unlimited vertex capacity and
uniform VNFs.

f4v6

f1 f2

f3
f4

v1

v2 v3

v4 v5

f4

(b) Limited vertex capacity and
uniform VNFs.

f4v6

f1 f2

f3
f4

v1

v2 v3

v4 v5

f4

(c) Limited vertex capacity and
non-uniform VNFs.

f4v6

f1 f2

f3
f4

v1

v2 v3

v4

f4
v5

(d) Arbitray routing path with limited
vertex capacity and uniform VNFs.

Fig. 1: A motivating example with four flows f1 (rate 3), f2(rate 3), f3(rate 4), f4(rate 2), small
square VNF with volume 4 and cost 2, and large square VNF with volume 8 and cost 3.

can be achieved by applying the algorithm in [10]. All traffic
of f1 and 1 unit of traffic of f2 are processed by the deployed
VNF on v2, while the rest of the traffic is processed by the two
VNFs deployed on v1. The total setup cost is 6 because three
VNFs are deployed. As for the limited vertex capacity case,
if each server can place at most one VNF (vertex capacity is
one), one optimal deployment with a minimum cost of 8 is
shown in Fig. 1(b). Compared to Fig. 1(a), one more VNF
is deployed since v1 can deploy only one VNF. In order to
fully process all flows when they reach their destinations, both
VNFs on v1 and v4 waste 1 processing volume while the one
deployed on v3 wastes 2. This waste is unavoidable in order
to satisfy all flows’ service requirements of function m; at the
same time, it does not violate the vertex capacity constraint
as well. In Fig. 1(c), if the vertex capacity is also one, we
are given non-uniform types of function m: small (volume 4
and cost 2) and large (volume 8 and cost 3) square VNFs.
One optimal deployment shown in Fig. 1(c) has a total cost of
5, which is less than that in Fig. 1(b). The existence of non-
uniform VNFs adds more choices for the deployment, which
further complicates our problem. When the paths of flows are
not given in Fig. 1(d) with the same setting in Fig. 1(b), we can
avoid to waste the processing volume of deployed instances
by detouring f2 first to v4 (through v2) and then back to its
destination v2. This results in a deployment with a total cost
of 6, which is less than that of Fig. 1(b).

The main challenges of our deployment problem lie in the
selection of VNF types and locations, as well as the processing
volume allocation of each deployed VNF. The limited vertex
capacity constraint further complicates the deployment. Flows
have to be fully processed before reaching their destinations.
Intuitively, if VNFs are deployed too close to the tree root,
the processing volume is more likely to be used up; however,
flows with destinations far from the root may not be processed
because no VNFs are deployed along their paths. If VNFs
are deployed too far from the root, the opportunity to share
the processing volume of one VNF is scarce, and thus, some
volume will be wasted and more VNFs are needed, resulting
in a higher total setup cost. Additionally, non-uniform VNFs
for a single kind of network function offer more deployment
options and make our problem more complex.

In this paper, we initially focus on the deployment of a
single kind of network function and include several interest-
ing solutions with provable performance by narrowing down
our focus to some special settings. We first solve the non-
uniform VNF deployment problem in a tree topology with
a dynamic programming based method. Because of the NP-

hardness of the problem, the solution is pseudo-polynomial
and its time complexity is not tractable. We then study a
special case of uniform VNF deployment and improve the
dynamic programming solution to have an acceptable time
complexity. Additionally, the non-uniform VNF deployment
problem in a linear line topology can be transformed to the
classic submodular set cover problem so that we introduce
a performance-guaranteed greedy strategy. An optimal greedy
algorithm is designed for a simple case: uniform VNF deploy-
ment in a linear line topology. We then extend our problem
more generally to deploy a service chain with limited vertex
capacities in a tree-structured network.

Our main contributions are summarized as follows:
• We prove our non-uniform VNF deployment problem is

NP-hard in tree-structured networks even when there is
only one kind of network function. We also demonstrate
that if the routing paths are not determined, our VNF
deployment problem can be reduced to the classic Un-
bounded Knapsack problem, which has been studied with
numerous solutions.

• When there is only one kind of network functions, we
propose four pseudo-polynomial algorithms in different
topology settings and VNF configurations, as shown in
Tab. I along with their properties and time complex-
ities1 (|V |: total number of vertices). Since |M | (to-
tal number of VNF types of configurations) and cmax

(largest vertex capacity) are small and integer-valued,
while wmax (largest single VNF setup cost) is in arbitrary
precision and order of magnitude, the first algorithm is
computationally hard, and the complexities of other three
algorithms are dramatically improved.

• We formulate the service chain deployment problem in
a tree-structured network with non-uniform VNFs and
propose two solutions: one is optimal but time-consuming
and another is heuristic but efficient.

• We conduct extensive simulations to evaluate the effi-
ciency of our proposed algorithms.

The remainder of this paper is organized as follows. Section
II surveys related work. Section III describes the model,
formulates the problem, and shows the hardness of the VNF
deployment problem. Section IV introduces our deployment
algorithms in tree-structured topologies. In Section V, we han-
dle cases in line topologies. Section VI discusses the service

1An algorithm has a pseudo-polynomial time if its running time is a
polynomial in the numeric value of the input (the largest integer present in the
input) (e.g., cmax in Tab. I), instead of the length of the input (the number
of bits required to represent it) (e.g., V in Tab. I), which is the case for
polynomial time algorithms.

3

TABLE I: Our proposed solutions and time complexities.
HHHHTopo

Type Non-uniform Uniform

Tree DP Optimal DP Optimal
O(|V |4×(cmax×wmax)3) O(|V |4×(cmax)3)

Line Greedy Approximate Greedy Optimal
O(|V |2×|M |×cmax) O(|V |×cmax)

chain deployment. Section VII includes the experiments, and
Section VIII concludes the paper.

II. RELATED WORK

NFV frameworks have drawn a lot of attention, especially
in the area of VNF deployment problems [14, 15]. Various
objectives with different backgrounds [16, 17] have been
conducted in recent years. In this section, we give a brief
review of the state-of-the-art studies.

Casado et al. [18] propose a model for deploying a single
type of VNF and present a heuristic algorithm to solve the de-
ployment problem. Seyed et al. [19] tried to solve the resource
management problem to determine the number and location of
VNFs. However, they only focus on the DDoS attack defense,
and the node capacity is only one for each virtual machine.
[10] studies the joint deployment and allocation of a single
type of VNF, in which flows can be split and fractionally
served by several VNFs. They propose several performance-
guaranteed algorithms to minimize the number of VNFs.
However, they treat all servers with unlimited capacities such
that they are able to hold an arbitrary number of VNFs, which
is not practical. [20] is the first to study the VNF deployment
problems while considering the effects of changing traffic
volume. It also studies the multiple VNF deployments of
different dependency relationships. It targets load balancing
through VNF deployment and flow-routing path selection.
However, this work only processes a single flow and does not
take consideration of the limited VNF processing volume. This
results in exclusive VNFs for each flow, which is wasteful of
server resources. Sallam et al. in [21] aim to maximize the total
amount of flows while satisfying not only the node capacity
constraint but also the resource budget constraint. However,
all the above papers only focus on a single kind of VNF and
do not take non-uniform VNFs into consideration.

There are other types of service coverage for each flow,
such as a service chain where each flow has to be covered
by a sequence of services with or without a particular order,
instead of a single service coverage used in our model. In [22],
Mehraghdam et al. propose a context-free language to formal-
ize the chaining of middleboxes and describe the middlebox
resource allocation problem as a mixed integer quadratically
constrained program. In [23], Rami et al. locate middleboxes
in a way that minimizes both new middlebox setup costs and
the distance cost between middleboxes and flows’ paths. They
provide near optimal approximation algorithms to guarantee a
placement with theoretically proven performance. Flowtag [5]
architecture uses packet tags that hold the middle-box context.
The SDN controller configures switches and middle boxes to
use these tags in order to enforce network-wide policies. Both
[24] and [25] aim to maximize the number of requests for each

service chain. in [24], Kuo et al. propose a systematic way to
tune the proper link consumption and the middlebox setup
costs in the joint problem of middlebox placement and path
selection. [26] aims to minimize the total cost of weighted
VNF deployment and flow completion time when flows get
processed by a VNF instance in a non-preemptive manner.
Allybokus et al. in [27] study the service chain deployment
problem with a consideration of the partial order among VNFs
and anti-affinity rules. In [28], Richard et al. focus on the
latency violation issue on the deployment and migration of
VNF instances in a dynamic network situation. [29] models
a virtual switching cpu-cost function when a server needs
to handles multiple deployed sub-sequences from different
service chains and aims at minimizing the total cpu-cost of
deployment and switching. However, all these papers do not
provide performance-guaranteed solutions and do not take the
non-uniform model of a single VNF into consideration, where
our main contributions reside. In this paper, being focused
on tree-structured networks, we propose optimal DP-based
solutions for VNF deployment when there is only one service
with non-uniform VNF models. For deploying a service chain
with non-uniform VNFs, we also propose two solutions: one
is optimal but time-consuming while the other is heuristic but
efficient.

III. MODEL AND FORMULATION

A. Network Model

We first present our model of the directed tree-structured
network, T = (V,E), where V = {v} is a set of vertices (i.e.,
switches), and E = {e} is a set of directed edges (i.e., links).
We use v to denote a single vertex and vertices are labelled as
1, 2, ..., |V | by the Breadth-First-Search (BFS). We use | · | to
denote the cardinality of a set. Each vertex vi is connected to
a capacity-limited server. The vertex capacity, denoted as ci,
represents the maximum number of VNFs that can be deployed
on vi. For each location on vi, we can deploy one VNF with
any type of configuration. We use two definitions of tree data
structure to simplify our discussion.

Definition 1 (height, subtree): The height of a vertex is 1
plus the difference between the depth of the tree and the depth
of the vertex. A subtree Ti of a vertex vi in a tree T is a tree
consisting of vi and all its descendants in T .

Take the tree in Fig. 1(a) as an example. The height of v1

is 3 and the heights of v3 and v4 are 2 and 1, respectively.
The subtree T2 consists of v2, v4, and v5.

We are given a set of flows F = {f}, all of which request
to be processed by an identical network function (Section 6
extends it to an identical service chain consisting of multiple
kinds of network functions applied to flows in a specific order).
All flows are upstream flows, i.e. the source of a flow is a
descendant of its destination. We make this assumption for
ease of presentation only. Our results can be immediately
generalized to cases where the flows are either upstream or
downstream. We use f to denote a flow with a source of
srcf , a destination of dstf , and an initial traffic rate of rf .
We say that a flow is satisfied when its initial traffic rate is
fully processed before reaching its destination.

4

TABLE II: Symbols and Definitions.
Symbols Definitions

V,E, F,M set of vertices, edges, flows, and VNF types
v, f,Ω a vertex, a flow, and a deployment plan
Ωv , cv the deployment plan and vertex capacity of v
srcf , dstf , rf source, destination, initial traffic rate of f
m(v, j) the jth VNF placed on v
α(v, j), w(v, j) processing volume and setup cost of jth VNF on v
λf
m(v,j)

traffic rate of f processed by m(v, j)

We define M = {m} as the set of VNF types with different
configurations for the requested kind of network function.
Each VNF type m has a processing volume αm, which is
the maximum total traffic rate that one m VNF can process.
There is also a setup cost wm for setting up one VNF of type
m. Different VNF types of configurations for a single kind of
network function provide the same network service, but have
various processing volumes and setup costs. We simplify the
types of different configurations as different types as follows.

Definition 2: [non-uniform, uniform] VNFs are called non-
uniform if the number of VNF types (for a single kind of
network function) is more than one; otherwise, they are called
uniform.

We assume each flow can be fractionally processed by
several VNFs of any type deployed at vertices along its path.
We introduce the definitions of the deployment plan and its
feasibility as follows.

Definition 3 (deployment plan, feasibility): A deployment
plan of v, denoted as Ωv , is a set of VNFs with different
types that are deployed on v. These VNFs are labeled by
1, 2, ..., |Ωv|. A deployment plan of the tree T , denoted as
Ω, is the union set of Ωv, ∀v ∈ V , i.e. Ω = {Ωv|v ∈ V }. We
call a deployment plan feasible if all flows are fully processed
when reaching their destinations.

Note that we can check the existence of a feasible deploy-
ment plan by deploying all the VNFs with the maximum
processing volume in all available locations of servers. If
this deployment plan is still not feasible, then no feasible
deployment exists.

We use m(v, j)∈ Ωv to record the jth VNF placed on v
after the labelling. The processing volume and setup cost of
m(v, j) are expressed as α(v, j), and w(v, j), respectively. Let
λfm(v,j) denote the amount of f ’s traffic rate processed by the
jth VNF deployed on v. Here each packet of flows should
only be processed by VNFs once, because being processed
by any VNF will add an extra transmission delay, which
should be avoided. In the following, we use the superscript
max to denote the maximum value in a set such as wmax =
maxm∈M wm and cmax = maxv∈V cv . For ease of reference,
we summarize the notations in Tab. II.

B. Problem Formulation

In this paper, we study the VNF deployment problem: given
a set of flows F in a tree-structured network T , we deploy
non-uniform VNFs with the minimum total cost to satisfy all
requests of flows.

Definition 4 (total cost): The total cost of a deploy-
ment plan Ω is the summed-up cost of setting up all

VNFs, denoted by cost(Ω), which satisfies cost(Ω) =∑
v∈V

∑
m(v,j)∈Ωv

w(v, j).
Our problem can be formulated as:

minΩ cost(Ω) (1)
s.t. |Ωv| ≤ cv ∀v ∈ V (2)∑

v∈V
∑

j λ
f
m(v,j) ≥ rf ∀f ∈ F (3)∑

f∈F λ
f
m(v,j) ≤ α(v, j) ∀m(v, j) ∈ Ωv, v ∈ V(4)

Our objective is to minimize the total cost of deployed
VNFs in Eq. (1). The decision variables are Ωv, ∀v ∈ V ,
which form the deployment plan Ω. Eq. (2) states that the
total number of deployed VNFs of each vertex is within its
capacity. Eq. (3) guarantees that each flow is fully processed
with its initial traffic rate. Eq. (4) requires that the sum of all
processed traffic rates of each VNF on each vertex is no more
than its processing volume.

C. Problem Hardness Analysis

In a general topology with uniform VNFs, [10] proves that it
is NP-hard to minimize the total deployed VNF number, which
is equivalent to minimizing the total cost of the deployment.
Here we study the hardness of deploying the non-uniform
VNFs and we have:

Theorem 1: The non-uniform VNF deployment with the
minimum cost is NP-hard even to deploy a single kind of
network function in a line topology.

Proof: Here we prove our theorem 1. First, we check the
feasibility of a deployment plan is in a polynomial time, since
we can check in O(|F |) time to make sure that all flows are
fully processed when reaching their destinations.

Second, we show that Unbounded Subset Sum [30] can
be reduced to the non-uniform VNF deployment. Consider
a case of Unbounded Subset Sum with n numbers W =
{w1, w2, ..., wn} and a target w. To construct a case equiv-
alent to the non-uniform VNF deployment, we simplify the
deployment problem by having a line topology with unlimited-
capacity vertices. We are given a set of flows F , all of whose
source and destination are the leftmost and rightmost nodes in
the line. Each flow has an initial traffic rate rf and requests
the same network function. We assume the total traffic rate∑

f∈F rf is equal to the target w of the Unbounded Subset
Sum, i.e.

∑
f∈F rf = w. We are given a set of VNF types

M with n types for the requested network function. The setup
costs of the VNF types are w1, w2, ..., wn, and their processing
volumes are the same as the setup costs, meaning αi = wi. The
sum of the processing volumes of the deployed VNFs should
be no less than w since all flows needs to be fully processed.
When there is no processing volume wasted in a deployment
plan, the sum of the processing volumes is exactly w. The
total cost of the deployment is

∑
αj =

∑
wj = w, which is

also the minimum. If we can find such a deployment of VNFs
with the costs of w′1, w

′
2, ..., w

′
k adding up to the total cost

w, then the corresponding numbers in the Unbounded Subset
Sum VNF can also add up to exactly w.

Conversely, if there are numbers w′1, w
′
2, ..., w

′
k ∈W adding

up to exactly w in the Unbounded Subset Sum, then we can de-
ploy the corresponding VNFs with setup costs w′1, w

′
2, ..., w

′
k;

5

this is a feasible deployment plan with the minimal total cost
w. Consequently, since the Unbounded Subset Sum is an NP-
complete problem, our non-uniform VNF deployment is NP-
hard. The theorem holds. �

It is worth mentioning that we can apply the PTAS solutions
in [31] if all flows have the same path, i.e., the topology
is a line. However, whether there exists PTAS solutions for
the case with general topologies remains an open question. In
the following parts, we first focus on deploying a single kind
of network function to all flows under different conditions in
Sections 4 and 5. In Section 6, we extend to the more general
case of deploying a service chain.

Additionally, if the paths of each flow are not given as a
priori, we need to route flows beyond finding a deployment
plan Ω with the minimum total cost. As the link bandwidth has
no constraint in this paper, we tend to use up the processing
volumes of deployed VNF instances subject to minimizing the
total cost. We can formulate the problem as:

minΩ cost(Ω) =
∑

v∈V
∑j

m(v,j)∈Ωv
w(v, j) (5)

s.t.
∑

v∈V
∑j

m(v,j)∈Ωv
α(v, j) ≥

∑
f∈F rf (6)

Eq.(4) (7)
Since there is no flow path limitation, flows can be routed

to VNF instances with remaining processing volume. As long
as the deployment Ω is feasible, the vertex capacity constraint
in Eq. (4) has no influence and can be omitted. The above
formulation can be reduced to Unbounded Knapsack problem
[32]: We multiple both sides of the inequalities 5 and 6 by −1
and do corresponding changes to symbols as:

maxΩ −cost(Ω) =
∑j

m(j)∈Ω−w(j) (8)

s.t.
∑j

m(j)∈Ω−α(j) ≤
∑

f∈F −rf (9)
−w(j) and −α(j) are the value and the weight of one item.

There are several solutions for the classic problem such as
dynamic programming and PTAS [32]. After we have found
the deployment plan Ω, we can deploy all instances randomly
on vertices as long as the total number of deployed instances at
any vertex is no more than its capacity. Then we route flows to
get processed by deployed instances no matter their paths are
longer or have cycles. The insight of the above solution for the
case with unknown flow paths is that the influence of network
topology is vanished. This is because the routing path of each
flow does not affect our objective. However, in practical, a
longer routing path will incur a larger transmission delay,
which directly influence the network performance. In this
paper with a tree topology, we assume all flows are upstream
with the shortest path, which complicates the deployment of
VNF instances.

IV. VNF DEPLOYMENT IN A TREE TOPOLOGY

A. Non-uniform VNF deployment in a tree topology

First we handle the most general case. We propose a
dynamic programming based solution for the non-uniform
VNF deployment problem in a tree topology, called the Non-
uniform Dynamic Programming algorithm (HeteDP).

Before the recurrence, we define some notations. Let
OPT (i, w) denote the minimum total unprocessed rate going
out of node vi by deploying VNFs with a total cost w in the

subtree of vi. If we are unable to fully process flows having
dstf ∈ Ti by a total cost w, we have OPT (i, w) = ∞.
This is because the destination is the last chance for a flow
to be processed. We prioritize processing flows with smaller-
height destinations since their chance of being processed is
lower. We use l(i) and r(i) to denote the roots of vi’s left
and right subtrees, and w(l) and w(r) to denote the allocated
costs of vi’s left and right subtrees, respectively. Deploy(i, w)
denotes the maximum total processing volume by deploying
VNFs with a total cost w on vi. The relation of the minimum
total unprocessed traffic rates out of vi and its children can be
formulated as:
OPT (i, w) = max{0, min

w(l)+w(r)≤w
w(l),w(r)≥0

{
∑

srcf=vi

rf +OPT (l(i), w(l))+

OPT (r(i), w(r))−Deploy(i, w − w(l)− w(r))}} (10)
Eq. (10) states that OPT (i, w) equals 0 if there is a

deployment plan able to process all unprocessed rates by
deploying VNFs with a total cost w in the subtree of vi;
otherwise, it equals the minimum total unprocessed traffic rate
out of node vi. We combine all possible allocations of the total
cost w among vi’s children and itself by changing w(l) and
w(r).

To prove its optimality, let’s consider one of the optimal
deployments as Ω∗ when given a VNF deployment problem.
Here are some observations of Ω∗: (i) If Ω∗ deploys VNFs
with a fixed total cost w in the subtree of a vertex v, it should
process as much traffic rate as possible. In other words, the
total unprocessed traffic rate going out of v (upwards to its
parent) should be minimized with the allocated cost w. This is
because the higher the unprocessed traffic rate is when coming
out of v, the larger cost the deployment of v’s ancestors is
likely to have. (ii) The unprocessed traffic rate passing through
v comes from two kinds of flows: flows with srcf = v (flows
that start at v) and flows with some unprocessed traffic rates
and srcf ∈ Tv\v (not-fully-processed flows coming up from its
subtrees). (iii) The total deployment costs of all subtrees of v’s
children must be no more than w. Suppose each child vertex vi
deploys VNFs with a total cost wi in the optimal deployment
Ω∗, then VNFs with a total cost w −

∑
vi∈Tv

wi ≥ 0 will
be deployed on vertex v. (iv) With a fixed value of wi for
the subtree of vi, its deployment plan should also have the
minimum total unprocessed traffic rate going upward out of
vi in order to lower the potential cost of deployed VNFs of
vi’s ancestors. (v) As the optimal deployment should have the
minimized unprocessed traffic rate going out of v, the deployed
VNFs on v with a total cost w −

∑
vi∈Tv

wi should have the
maximum total processing volume.

With the insights above, the objective of our deployment
problem is equivalent to finding the minimum cost of making
the unprocessed traffic rate out of v1 as low as 0. Moreover,
the optimal deployment of a tree T with the root v1 is able to
be separated into a polynomial number of subproblems in its
children. The optimal solutions of its children with different
allocated cost combinations yield an optimal deployment to
v1, and we can build up solutions to these subproblems using
a recurrence. It is worth mentioning that there are exponential
combinations of the costs that are allocated to the vertex itself

6

Algorithm 1 Non-uniform DP (HeteDP)

In: Sets of vertices V , edges E, flows F , VNFs M ;
Out: The minimum total cost of deployed VNFs and the

deployment plan Ω;

1: Initiate the array of OPT ;
2: Generate the array of Deploy;
3: for each node vi from bottom-up do
4: for w ∈ [0,

∑
v∈Ti

cv × wmax] do
5: Use the recurrence Eq. (10) to compute OPT (i, w);
6: if OPT (i, w) = 0 then break;
7: Find Ω with the minimum w making OPT (1, w) = 0;
8: return The deployment plan Ω.

and all subtrees of its children when the total cost is fixed. In
order to generate the optimal deployment plan, we need to list
all such combinations, which is exponential of the number
of v’s children and w. In this paper, we only discuss the
binary tree topology to reduce the number of combinations
to polynomials of w. As a result, we can generate an optimal
solution with an acceptable time complexity.

As for the item Deploy(i, w−w(l)−w(r)) in Eq. (10), we
should maximize it in order to minimize the total unprocessed
traffic rate out of vi. This means that the maximum total traffic
rate is processed by deploying VNFs on vi with a cost of
(w − w(l)− w(r)), which can be formulated as following:

maxΩ

∑
m(i,j)∈Ωi

α(i, j) (11)

s.t.
∑

m(i,j)∈Ωi
wi(j) ≤ w − w(l)− w(r) (12)

|Ωi| ≤ ci (13)
The formulation is the same as the classic knapsack problem

[33] except for the second constraint. In the knapsack problem,
we are given a set of items, each of which has a non-negative
weight and a distinct benefit. We need to find a subset with the
maximum total benefit subject to the constraints such that the
total weight of the subset does not exceed specific values. The
processing volume αm and the setup cost wm correspond to
the benefit and weight in the knapsack problem, respectively.
We slightly modify the dynamic programming solution of the
knapsack problem proposed in [34]. We use vol(w) to denote
the maximum total processing volume that can be attained
with a total deployment cost no more than w. The value of
vol(w−w(l)−w(r)) is the solution to our problem. Suppose
vol(0) = 0, then the recurrence can be justified as vol(w) =
maxm∈M{αm +vol(w−wm)}. When the number of selected
items reaches cv , the total processing volume vol(w) remains
unchanged by not adding more items even when the weight w
is not used up. This is because we need to control not only the
total cost to be less than w−w(l)−w(r), but also ensure that
the number of selected items is less than the vertex capacity.
Thus, we list all possible deployment combinations on vi and
find the feasible one with the largest processing volume as Ωv .

Lemma 1: The worst time complexity for generating the
Deploy array is O((cmax)2 × wmax).

Proof: The modified knapsack problem can be solved in
O(cv × (w−w(l)−w(r))) time complexity. We find that the
solution to our modified knapsack problem is independent of

the deployment plan. In order to lower the time complexity
of HeteDP, we can calculate the Deploy array in advance and
refer to its values when applying the HeteDP algorithm. The
worst time complexity of the modified knapsack problem is
O(cmax × (cmax × wmax)) = O((cmax)2 × wmax). This is
because the maximum deployment on a vertex is to deploy
the most expensive VNF on all available locations. �

We propose the HeteDP algorithm in Alg. 1. We initiate
all values of OPT (i, w) as 0 in line 1. We calculate the
recurrence in Eq. (10) for each vertex from bottom-up in lines
3-5. Whenever OPT (i, w) = 0, we break the current loop and
continue to do the next loop in line 6. We find the minimum w
making OPT (1, w) = 0 in line 7 and return the corresponding
deployment plan Ω by tracing back in line 8. We analyze the
time complexity of our algorithm as follows.

Theorem 2: The worst time complexity of HeteDP algo-
rithm is O(|V |4 × (cmax × wmax)3).

Proof: HeteDP algorithm is a pseudo-polynomial time al-
gorithm using a dynamic programming method. First, all |V |
vertices need to be traversed so that the algorithm has |V |
iterations. Second, in each iteration of a vertex from bottom-
up, we try all possibilities of the cost value w. The maximum
cost value is O(

∑
v∈V cv ×wmax) = O(|V | × cmax ×wmax).

Next, for a fixed cost value w for the subtree of a vertex v, we
need to list all combinations of allocating the cost w to itself
and its two children while ensuring w(l) + w(r) ≤ w. There
are at most O((|V | × cmax × wmax)2) combinations. Then
for each combination, we need a constant time to calculate
the value of

∑
srcf=vi

rf + OPT (l(i), w(l)) + OPT (r(i) +

1, w(r))−Deploy(i, w−w(l)−w(r)) by referring to the OPT
array as well as the Deploy array. As discussed in Lemma
1, the generation of all values in the Deploy array takes at
most O((cmax)2 ×wmax) time and we only need to calculate
it once. We determine the minimum value by traversing the
values of all combinations in a O((|V |×cmax×wmax)2) time
and calculate the value of OPT (i, w). Finally, the worst time
complexity is the number of iterations, times the maximum
number of cost value, times the maximum number of combi-
nations of a fixed cost value, which is O(|V | × (|V | × cmax×
wmax)×(|V |×cmax×wmax)2) = O(|V |4×(cmax×wmax)3).
In real systems, the largest server capacity cmax is integer-
valued and relatively not too large. The tough case is to handle
the cost factor (wmax)2 with arbitrary precision and order of
magnitudes, which is likely not tractable. �

Note that in order to improve the efficiency of our algorithm,
we can lower its time complexity by stopping increasing w of
OPT (i, w) in two cases: the first case is when the smallest w
for the vertex vi appears, meaning OPT (i, w) = 0; the second
case is when w reaches

∑
v∈Ti

cv × wmax. This is because
OPT (i, w) = 0 when there is no unprocessed traffic rate out
of vi, meaning that VNFs with cost w can process all flows
in the subtree of vi. A larger w is unable to process any more
flows, since no unprocessed flow exists. In addition, finding
the minimum value of w to make OPT (1, w) = 0 is our
objective. The second case states the natural upper bound of
w that all available locations in the subtree of Ti are deployed
by the most expensive VNF.

Theorem 3: HeteDP is optimal for non-uniform VNF

7

deployment in a tree topology.
The detailed proof is omitted due to the optimal property

of the dynamic programming method.

B. Uniform VNF deployment in a tree topology

In this subsection, we discuss the uniform VNF, which has
the same processing volume and setup cost. First we present
a lemma to transform our objective into a simpler equivalent
form when there is only one type of VNFs.

Theorem 4: Minimizing the total cost of deployed VNFs
with uniform VNFs is equivalent to deploying the minimum
number of VNFs.

Proof: As there is only a single type of VNF m, our cost
function can be converted to cost(Ω) =

∑
v∈V |Ωv| × wm =

|Ω|×wm. Since wm is a constant, it is the same as minimizing
|Ω|, which is the total number of deployed VNFs. �

Our objective is transformed to minimizing the total number
of deployed VNFs when there is only a single type of VNF m.
Inspired by HeteDP, we also propose a dynamic programming
based algorithm, called HomoDP, which is simpler and more
tractable than HeteDP. We replace the total cost w by the total
number of deployed VNFs n in each subtree of vertices. We
use OPT (i, n) to denote the minimum total unprocessed traf-
fic rate going out of node vi by deploying n VNFs altogether
in the subtree of node vi. Our target is to find the minimum n,
making OPT (1, n) = 0. If flows with destinations within the
subtree of vi are unable to be fully processed by deploying n
VNFs, we have OPT (i, n) =∞. We also prioritize processing
flows with smaller-height destinations. We use l(i) and r(i)
to denote the roots of vi’s left and right subtrees, and n(l)
and n(r) to denote the deployed VNFs in vi’s left and right
subtrees, respectively. There are n− n(l)− n(r) VNFs to be
deployed on vi. We replace the Deploy(i, w − w(l) − w(r))
by (n − n(l) − n(r)) × αm. Then we justify the recurrence
formula of HomoDP in Eq. (14).

Lemma 2: The relation of the minimum total unprocessed
traffic rates out of vi and its children can be formulated as:
OPT (i, n) = max{0,min

n(l)+n(r)≤n
n(l),n(r)≥0

{
∑

srcf=vi

rf +OPT (l(i), n(l))+

OPT (r(i), n(r))− (n− n(l)− n(r))× αm}} (14)
Proof: Eq. (14) states that OPT (i, n) equals 0 if there is a

deployment plan able to process all traffic rates by deploying
n VNFs altogether in the subtree of vi; otherwise, it equals
the minimum total unprocessed traffic rate out of node vi. We
combine all possible allocations of the n VNFs among vi and
its children by changing values of n(l) and n(r). �

The detailed HomoDP algorithm is proposed in Alg. 2. We
initiate all values of OPT (i, n) as 0 in line 1. We calculate
the recurrence in Eq. 14 for each vertex from bottom-up in
lines 3-5. Whenever OPT (i, n) = 0, we break the current
loop and continue to do the next loop in line 5. We find the
smallest n that makes OPT (1, n) = 0 in line 6 and return the
corresponding deployment plan Ω by tracing back in line 7.

To better understand Alg. 2, we use the topology in Fig.
1(b) with the same settings as an example to show the
deployment procedure. The tree has six nodes with capacities
cv = 1,∀v ∈ V . There are four flows f1, f2, f3, and f4 with

Algorithm 2 Uniform DP (HomoDP)

In: Middlebox m and sets of vertices V , edges E, flows F ;
Out: The minimum number of deployed middleboxes and the

deployment plan Ω;

1: Initiate the array of OPT ;
2: for each node vi from bottom-up do
3: for n = 0, 1, ...,

∑
v∈Ti

cv do
4: Use the recurrence Eq. 14 to compute OPT (i, n);
5: if OPT (i, n) = 0 then break;
6: Find Ω with the minimum n that OPT (1, n) = 0;
7: return The deployment plan Ω.

initial traffic rates r1 = 3, r2 = 3, r3 = 4, and r4 = 2.
There is only one type of VNF m with αm = 4. We
aim to find the smallest n such that OPT (1, n) = 0. For
ease of reference, we list the values of OPT (i, j) in Table
III. We traverse vertices from bottom-up by first calculating
OPT (5, 0) = r2−0 = 4. We have OPT (5, 1) = max{0, r2−
1×αm} = max{0, 3−4} = 0. As c5 = 1, more than one VNF
is unable to be deployed resulting in OPT (5, n) = 0, ∀n≥2.
Similarly, we can calculate OPT (3, n) and OPT (4, n), ∀0≤
n≤ 4. Since f2 with dst2 = v2 is not processed by not
deploying any VNF in the subtree of v2 (n = 0), we
have OPT (2, 0) = ∞, indicating the infeasibility of the
deployment. The detailed calculation of OPT (2, 1) is that
OPT (2, 1) = max{0,min{r3+OPT (4, 1)+OPT (5, 0)−0×
αm, r3 +OPT (4, 0)+OPT (5, 1)−0×αm, r3 +OPT (4, 0)+
OPT (5, 0)− 1×αm}} = max{0,min{4 + 3 + 0− 0, 4 + 3 +
0−0, 4+3+3−4} = 6. Similarly, we calculate other values of
OPT array in Tab. III. The smallest n making OPT (1, n) = 0
is 4. By tracing back the table, the optimal deployment Ω is
as shown in Fig. 1(b).

Note that we can also lower the time complexity of Alg.
HomoDP by stopping increasing n in two cases: the first one
is when the smallest n (which is 4) for node vi appears making
OPT (i, n) = 0; the second one is when n ≥

∑
v∈Ti

cv . The
reasons are similar to the explanation for Alg. HeteDP.

Theorem 5: The worst time complexity of the HomoDP
algorithm is O(|V |4 × (cmax)3).

Proof: Here we analyze the time complexity of the worst
case. All the |V | nodes need to be traversed so that the
algorithm has |V | iterations. In each iteration of a node vi
from bottom-up, we try all possibilities of the value n. The
largest n is

∑
v∈V cv = O(|V | × cmax). For a fixed value

n, we need to list all combinations of allocating n VNFs to
vi and all subtrees of its children by changing the values of
n(l) and n(r). When n(l) = 0, n(r) can be 0, 1, ..., n; and
when n(l) = n, n(r) could only be 0. We have (n + 1) +
n+ ...+ 1 = (n+ 1)(n+ 2)/2 = O(n2) combinations, which
is at most O((|V | × cmax)2). For each combination, we only
need a constant time to calculate the value of

∑
srcf=vi

rf +

OPT (2i, n(l))+OPT (2i+1, n(r))−(n−n(l)−n(r))×αm in
the recurrence of Eq. 14 by referring to the OPT array. Next
we determine the minimum value in at most O(|V | × cmax)
time by traversing values of all combinations and calculating
the value of OPT (i, n). Thus, the worst time complexity is the

8

TABLE III: The values of OPT (i, n) of Fig. 1(b).
PPPPPPi

n 0 1 2 3 4

1 ∞ ∞ ∞ ∞ 0
2 ∞ 6 2 0 0
3 2 0 0 0 0
4 3 0 0 0 0
5 3 0 0 0 0
6 2 0 0 0 0

number of iterations, times the maximum number of n, times
the maximum number of combinations of a fixed n, which is
O(|V | × (|V | × cmax)× (|V | × cmax)2) = O(|V |4× (cmax)3),
which is a polynomial of |V |. Because of the term cmax, it is
qualified as a pseudo-polynomial time algorithm. Since n is
integer-valued, and

∑
v∈V cv is not too large in a real system,

the time complexity of HomoDP algorithm is acceptable. �
Theorem 6: HomoDP is optimal for uniform VNF deploy-

ment in a tree topology.
The detailed proof is also omitted due to the optimal

property of the dynamic programming method.

V. VNF DEPLOYMENT IN A LINE TOPOLOGY

In this section, we simplify the tree-structured topologies
into lines in order to generate more efficient algorithms.

A. Non-uniform VNF deployment in a line topology

In this subsection, we simplify the tree topology into a line
and propose a performance-guaranteed algorithm of deploying
non-uniform VNFs. We are given a line topology L = (V,E)
with |V | nodes (vertices), which are labelled 1, 2, ..., |V | by a
line coordinate axis. For simplicity, we say that one vertex
is smaller (or larger) than another vertex if its coordinate
is smaller (or larger) and vice versa. Assume the source of
each flow is smaller than its destination no matter where its
source and destination reside in the line. This means that flows
transfer from left to right. When deploying one new VNF of
type m on v, we omit the sequence number of the jth VNF
m(v, j) by denoting the VNF as m(v). The new deployment
plan is expressed as Ω∪m(v). Before proposing our solution,
we introduce two definitions.

Definition 5 (benefit function): The benefit func-
tion, denoted as b(Ω), indicates the total processed traf-
fic rate of a deployment plan Ω, which satisfies b(Ω) =∑

v∈V
∑

m(v,j)∈Ωv

∑
f∈F λ

f
m(v,j).

Definition 6 (marginal benefit): The marginal benefit,
denoted as bΩ(m(v)) = b(Ω ∪ m(v)) − b(Ω), indicates the
marginal contribution of processing flows by deploying a new
VNF of type m on v beyond the current deployment Ω.

We analyze the property of the benefit function b(Ω). A
function f is submodular if and only if ∀S ⊆ T ⊆ N, ∀e ∈
N \ T , fT (e) ≤ fS(e). Then we prove that ∀m(v) /∈ Ω′, if
Ω ⊆ Ω′, the submodular property holds, i.e., b(Ω ∪m(v)) −
b(Ω) ≥ b(Ω′ ∪m(v))− b(Ω′).

Theorem 7: b(Ω) is a submodular function.
Proof: b(Ω) is a non-decreasing function, which is mono-

tone. Suppose we have two deployments Ω and Ω′ with
Ω ⊆ Ω′. It is intuitive that the more VNFs are selected,
the fewer unprocessed traffic rates remain, since the newly

Algorithm 3 Non-uniform VNF deployment in Line

In: Sets of vertices V , edges E, flows F and VNFs M ;
Out: The deployment plan Ω;

1: Ω = ∅;
2: while not all flows are fully processed do
3: Select m(v) with minm∈M

v∈V
cost(m(v))/bΩ(m(v)) to

handle superior flows;
4: Ω = Ω +m(v);
5: return The deployment plan Ω.

added m can only process the unprocessed rate. The maximum
marginal benefit of a VNF m is αm because of its processing
volume limitation. If the newly added VNF processes no
traffic rate in both Ω and Ω′, then b(Ω ∪ m(v)) − b(Ω) =
b(Ω′ ∪ m(v)) − b(Ω′) = 0. As long as m processes some
flows in Ω′, it will process no less traffic rate in Ω. We have
b(Ω∪m(v))− b(Ω) ≥ b(Ω′ ∪m(v))− b(Ω′). Thus, b(Ω) is a
submodular function. �

Here we explain that our problem formulation in Section
III(B) can be transformed to the classic submodular set cover
problem [35]. Our objective cost(Ω) in Eq. (1) is a non-
decreasing function. The two constraints in Eqs. (2) and (4) are
included in the definition of our b(Ω) function. Specifically,
the ground set of the benefit function b(Ω) limits the available
deploying locations within each vertex’s capacity, and the
marginal benefit limits the largest contribution of one VNF no
more than its processing volume. b(Ω) is the non-decreasing,
submodular set function proved in Theorem 7. The constraint
in Eq. (3) corresponds to the covering requirement of the set
cover problem that each flow needs to be fully processed. Then
our problem can be transformed as:

minΩ cost(Ω) (15)
s.t. b(Ω) ≥

∑
f∈F rf (16)

Before introducing the solution, we sort flows in alphabet-
ical order of a tuple < dstf , srcf > (the ascending order of
destination and the descending order of source). We include
two new definitions.

Definition 7: (prior, superior) A flow f is prior to a flow
f ′ if: (1) dstf < dstf ′ ; (2) dstf = dstf ′ and srcf > srcf ′ .
A flow f is superior if no flow is prior to f .

The priority of flows indicates their order of achieving the
processing volume of one VNF, and superior flows should be
processed first because of their small destinations or shorter
path lengths. We propose a greedy algorithm in Alg. 3, called
Non-uniform VNF deployment in Line algorithm (HVPL) to
solve the deployment problem. We initiate the deployment plan
as an empty set in line 1. In lines 2-3, we iteratively select
m(v) with the minimum value of wm/bΩ(m(v)) to handle
superior flows. Then we add the deployment of the new VNF
to the current plan Ω until all flows are fully served. The
deployment plan Ω returns in line 4.

Theorem 8: The worst time complexity of HVPL algorithm
is O(|V |2 × |M | × cmax).

Proof: In each round, we have at most |V | vertices and
|M | types of VNFs. The maximum number of rounds is to

9

TABLE IV: The values of cost(m)/bΩ(m(v)) of Fig. 2.
HHHHΩ

m(v)
m(1) m(2) m(3) m(4) m(5) m(6) m′(1) m′(2) m′(3) m′(4) m′(5) m′(6) m′′(1) m′′(2) m′′(3) m′′(4) m′′(5) m′′(6)

∅ \ 2 2 2 2 2 3 1.5 1.5 1.5 1.5 3 4 1 1 1 2 2
{m′′(2)} 2 ∞ 2 2 2 2 3 ∞ 1.5 1.5 1.5 1.5 4 ∞ 1 1 2 2

{m′′(2),m′′(3)} ∞ ∞ ∞ 2 2 2 ∞ ∞ ∞ 3 3 3 ∞ ∞ ∞ 4 4 4

v6

m

v1 v2 v3 v4 v5
f2

f1 f3
f4

m'' m''

Fig. 2: Illustration of the HVPL algorithm, where
r1 = 1, r2 = 4, r3 = 2, r4 = 2, α = 1, α′ = 2,

α′′ = 4, and w = 2, w′ = 3, w′′ = 4.

place VNFs in every available location in servers, which is∑
v∈V cv = O(cmax × |V |). Thus, the worst time complexity

of HVPL is the maximum number of rounds times the choices
in each round, which is O(|V |×|M |×(cmax×|V |) = O(|V |2×
|M | × cmax). �

To better understand Alg. 3, we use an example shown in
Fig. 2 to illustrate the deployment procedure. In this example,
the line topology has six vertices with cv = 1,∀v ∈ V . We
are given a set of non-uniform VNFs, M = {m,m′,m′′}.
Their processing capacities are α = 1, α′ = 2, and α′′ = 4,
and setup costs are w = 2, w′ = 3, and w′′ = 4, respectively.
There are four flows f1, f2, f3, and f4, whose paths are shown
in Fig. 2 and initial traffic rates are r1 = 1, r2 = 4, r3 = 2,
and r4 = 2, respectively. The alphabetical order of flows
is f2 > f3 > f1 > f4. For each round, we calculate
wm/bΩ(m(v)), ∀v ∈ V,m ∈ M . The algorithm is then
conducted as follows: (1) we list all possible deployments
over the current empty deployment plan Ω = ∅ in the second
row of Tab. IV. The smallest one is w′′/b(m′′(2)) = 1.
As a result, we deploy an m′′ VNF on v2. We prioritize
processing the superior flowf2. (2) referring to the third row
of Tab. IV, the smallest one is w′′/b{m′′(2)}(m

′′(3)) = 1.
As a result, we deploy an m′ VNF on v3 to process f1 and
f4. (3) referring to the fourth row of Tab. IV, the smallest is
w/b{m′′(2),m′′(3)}(m(6)) = 2. Thus, we deploy an m VNF
on v6 and so all flows are satisfied. We return the feasible
deployment plan Ω = {m′′(2),m′′(3),m(6)}.

Theorem 9: The proposed Alg. 3, HVPL, can achieve a
deployment with at most H(maxm(v) b∅(m(v))) times of the
minimum cost, where H(d) =

∑d
i=1

1
i .

Proof: Our VNF deployment problem has the same for-
mulation as the submodular set cover [35] and the chosen
deployment plan Ω exactly corresponds to its greedy algorithm
in Section 2 in [35]. Hence, the approximation ratio follows
from Theorem 1 in [35]. maxm(v) b∅(m(v)) is the maximum
benefit of only deploying a specific VNF m. (∅: empty set) �

B. Uniform VNF deployment in a line topology

In this subsection, we discuss the uniform VNF deployment
in a line topology. First we present a lemma to transform our
objective into a simpler equivalent form based on Theorem 4.

Theorem 10: Minimizing the total cost of deployed VNFs
with uniform VNFs is also equivalent to minimizing the total
amount of wasted processing volume.

Algorithm 4 Greedy VNF Placement (GVP)

In: VNF m and sets of vertices V , edges E, flows F ;
Out: the deployment plan Ω;

1: Sort flows in the alphabetical order;
2: for each vertex v from 1 to |V | do
3: while the sum of unprocessed traffic rate of superior

flows passing v is no less than αm and cv > 0 do
4: Allocate one new VNF on v;
5: if the superior flow f with dstf ≤ v have some

unprocessed traffic rate then
6: if cv′ ≤ 0, ∀srcf ≤ v′ ≤ v then
7: return Non-existence of a feasible plan;
8: else
9: Allocate one VNF on max v′,∀cv′ > 0, v′ < v;

10: Reallocate the processing volumes of all deployed
VNFs from left to right for flows in alphabetical order;

11: return The deployment plan Ω.

Proof: From Theorem 4, |Ω| is minimized. Because∑
f∈F rf is a fixed value and αm is also a constant, |Ω| ×

αm −
∑

f∈F rf , which is the total wasted processing volume
of deployed VNFs, is also minimized. �

Here we further simplify the settings by deploying a uniform
VNF in a line topology. We propose a greedy algorithm
called Greedy VNF Plan (GVP), and prove its optimality
for minimizing the deployment cost. The algorithm is shown
in Alg. 4. The insight of GVP is to minimize the total
processing volume waste based on Theorem 10 when all flows
are satisfied. Superior flows are the first to be processed, and
GVP only deploys VNFs when no processing volume is wasted
or the superior flow reaches its destination. In GVP, we sort
flows in an alphabetical order in line 1. In lines 2-10, we
traverse vertices from left to right. When the vertex v has
remaining capacities and the total unprocessed traffic rate of
superior flows passing v can use up a new VNF’s processing
volume αm in line 3, we deploy one new VNF on v in line 4.
In lines 5-9, we handle the case where superior flows cannot
use up the processing volume of a new VNF. We reallocate
the processing volumes of deployed VNFs in line 10 while
the deployment plan Ω is returned in line 11.

Theorem 11: The worst time complexity of GVP algorithm
is O(|V | × cmax).

Proof: We deploy VNFs at |V | vertices, and for each vertex
v, we place at most cv VNFs. In each loop we place at least
one VNF in a constant time. The maximum number of loops is∑

v∈V cv = O(|V | × cmax). Thus, the worst time complexity
of Alg. 4 is the maximum number of loops O(|V |× cmax). �

For a better understanding, we use an example shown in
Fig. 3 to illustrate the deployment procedure. Each vertex has
a capacity of 1, i.e. cv = 1, ∀v ∈ V . There are four flows

10

v6

m

v1 v2 v3 v4 v5
f2

f1 f3
f4

m m m m

Fig. 3: Illustration of the GVP algorithm, where
r1 = 1, r2 = 4, r3 = 2, r4 = 2, and αm = 2.

f1, f2, f3, and f4 whose initial traffic rates are r1 = 1, r2 =
4, r3 = 1, and r4 = 1, respectively. There is only one type of
VNF m with a processing volume αm = 2. The alphabetical
order of flows is f2 > f3 > f1 > f4. First, we deploy one
VNF on v2 because f2 is the superior flow and its unprocessed
traffic rate is larger than αm. The same happens to v3 so we
also deploy one new VNF to process the remaining traffic
rate of f2. Then f2 is satisfied and f3 becomes the superior
flow. We place one new VNF on v4 because f3’s unprocessed
traffic rate is larger than αm. After that, f1 is the superior flow.
Since v2, v3, and v4 have no remaining capacities and v1 is
the largest vertex with c1 > 0 along the path of f1, one VNF
has to be deployed on v1 even when 1 processing volume is
wasted; otherwise, f1 cannot be fully processed when reaching
its destination v4. Afterwards, f4 becomes the superior flow
and we deploy one VNF on v6. All flows are satisfied and the
final deployment plan is {v1, v2, v3, v4, v6} shown in Fig. 3.

Lemma 3: By applying Alg. 4, a VNF at v has remaining
volume only when: suppose f has the lowest priority among
all satisfied flows, then no flow f ′ with srcf ′ ≤ v and dstf ′ ≥
dstf has any unprocessed traffic rate. All flows prior to f ′

certainly use up the capacity from next vertex of v to dstf .
Proof: Alg. 4 deploys a new VNF on a vertex v only when:

(1) the unprocessed traffic rate of superior flows passing v is
larger than the processing volume of a VNF; (2) one flow f has
some unprocessed rate and there is no capacity left from the
next vertex of v to dstf . The first situation has no processing
volume waste. In the second situation, the last VNF with the
remaining processing volume has to be deployed; otherwise,
the flow f cannot be satisfied before reaching its destination
since no vertex capacity is available from v to dstf . �

Theorem 12: Alg. 4 is optimal for deploying the uniform
VNF in a line topology.

Proof: We prove the optimality of Alg. 4 by induction. In
Theorem 10, we demonstrate that the objective is equivalent
to minimizing the total waste of deployed VNFs. We list all
situations where VNFs have remaining processing volumes.
Suppose v1 is the smallest vertex with such one VNF, then all
the other VNFs deployed on and before v1 have no remaining
volume. From Lemma 3, the VNF has to be deployed and no
more unprocessed traffic rate goes right from the vertex v1.
Thus, there is no deployment that has the waste less than Ω.
Assume it is true for all vertices less than vk, which indicates
that no more superior unprocessed traffic rate can go right from
the vertex vk. Then the situation of the next vertex, having one
VNF with some remaining volume, is the same as the situation
of the first vertex v. This is because there is no unprocessed
traffic rate of a flow f with srcf ≤ vk, and so we are able to
treat the next vertex of vk as the new origin. Repeatedly, we
find the smallest v > vk with one VNF having the remaining
capacity. Additionally, we have proven that it is true for the

smallest v. So it is also true for the vk+1 with one VNF having
the remaining capacity. To sum up, Alg. 4 has the least amount
of wasted volume, which is equivalent to deploying the least
number of VNFs. �

VI. SERVICE CHAIN DEPLOYMENT IN A TREE TOPOLOGY

In this section, we extend our model to study a more general
case: the service chain deployment in a tree topology. First,
we mathematically formulate the service chain deployment
problem based on Section 3.2. Next, we propose one optimal
but time-consuming solution and one heuristic but efficient
solution, indicating the tradeoff between the performance and
the time efficiency.

Before proposing our solutions, we need to introduce some
notations. We are given a service chain M = {Mi} with
multiple network functions, each of which consists of several
VNF types, i.e., Mi = {m}. We use the subscript i to indicate
the ith required function in the chain, meaning that the chain
has a serving order of M1 → M2 → ... → M|M|. Each
flow needs to be processed by the same service chain M. We
define t(v, j) as the type of the jth placed VNF on node v.
Our problem can be formulated as:

minΩ cost(Ω) (17)
s.t. |Ωv| ≤ cv ∀v ∈ V (18)∑

f∈F λ
f
m(v,j) ≤ α(v, j) ∀m(v, j) ∈ Ωv, v ∈ V (19)∑

v′∈Tv

t(v′,j)=Mp

λfm(v′,j) ≥
∑

v′∈Tv

t(v′,j)=Mq

λfm(v′,j) if p < q, ∀v ∈ V (20)∑
v∈V

∑
j:t(v,j)=M|M|

λfm(v,j) ≥ rf ∀f ∈ F (21)
Our objective in Eq. (17) is the same as in Eq. (1):

minimizing the total cost of deployed VNFs. The decision
variables are also Ωv, ∀v ∈ V , which form the deployment
plan Ω. Eq. (18) states that the total number of deployed VNFs
of each vertex is within its capacity. Eq. (19) requires that the
sum of processed traffic rate by each VNF is no more than
its processing volume on all vertices. Eq. (20) ensures the
serving order constraint for the service chain. It indicates that
if function Mp must be served before Mq in the service chain
(p < q ≤ |M|), then for a flow f along its path from its
source srcf to the current node v, all processed traffic rates
of f by Mp should be no less than all its already-processed
traffic rates by Mq . Note that any node v′ along the path of
an upstream flow f from its source srcf to the current node
v resides in the subtree of v, and thus, we use the expression
of v′ ∈ Tv . Eq. (21) guarantees that each flow f ∈ F is fully
processed with its initial traffic rate rf by the last function of
its required service chain.

The formulation is an integer program problem. Its optimal
solution can be found by using the brute force method to list
all deployment plans. We solve the problem by applying the
Integer Programming Solver Cplex [21]. For simplicity, we
call this result OPT. However, we find that when the network
scale is large, the execution time is too long, which shows that
it is time consuming. This is not acceptable in real systems
even though it can find the optimal solution. As a result,
we also propose an efficient heuristic algorithm called Sevice
Chain Deployment in Tree (SCDT), as shown in Alg. 5.

11

Algorithm 5 Service Chain Deployment in Tree (SCDT)

In: Sets of vertices V , edges E, flows F and VNFs M ;
Out: The deployment plan Ω;

1: Ω = ∅;
2: for each function Mi ∈M in the serving order do
3: while not all flows are fully processed do
4: Select m(v) with minm∈Mi

cost(m(v))/bΩ(m(v))
to handle superior flows (feasibility check);

5: If multiple m(v) have the same minimum value, v
closer to leaf nodes is preferred;

6: Ω = Ω +m(v);
7: return The deployment plan Ω.

Alg. SCDT is based on Alg. HVPL, proposed in Section
5.1. Line 1 initiates the deployment plan as an empty set
since none of the VNFs are deployed. In lines 2-6, we select
each network function Mi ∈ M in the service chain one by
one, strictly following their serving order. For each network
function Mi, Alg. SCDT extends from Alg. HVPL to deploy
non-uniform types of VNFs. We select the type of VNF and
its deployed position (vertex) with the minimum value of
wm/bΩ(m(v)) to handle superior flows. Note that we need to
do the feasibility check because the traffic must be processed
by the previous VNFs in the chain so that the current VNF can
process it. In order to reduce the infeasible situation, we prefer
the vertex closer to leaf vertices when several m(v) have the
same smallest value. Line 7 returns the deployment plan Ω.

VII. EVALUATION

A. Settings

Topology: We test the impact of the topology scale with
a fixed flow number of 1000 and basic settings as follows,
and the results are shown in Fig. 4. All their total costs
have little variance with the vertex number increment. Thus,
we only conduct our simulations in a line topology and a
random-generated tree topology, both of which empirically
have fixed 20 vertices. Each switch vertex is connected to a
server with an identical capacity of 10, i.e. cv = 10, ∀v ∈ V .
Additionally, traditional data center networks and WAN design
over-provision the network with 30−40% of the average
network utilization in order to handle traffic demand changes
and failures [36]. As a result, we assume each link has enough
bandwidth to hold all flows. This assumption eliminates link
congestion and ensures that the transmission of all flows is
successful, since routing failure is not the concern in this paper.

VNFs: We conduct the simulations with two sets of VNFs,
M and M ′. The first set M only includes one type of VNF m,
i.e. M = {m}. Its required server resource is 2, i.e. wm = 2.
The processing volume of one m VNF is 8, i.e., αm = 8.
The second set M ′ includes three types of VNFs, i.e. M =
{m,m′,m′′}. Their processing volumes are α = 6, α′ = 8,
and α′′ = 10, and costs are w = 1, w′ = 2 and w′′ = 3.

Traffic: All flows’ paths are fixed and their traffic rates are
also known a priori. Under the tree topology, the source of
each flow is a descendant of its destination. We adopt the flow

10 20 30 40 50 60
Vertex number

60

80

100

120

140

160

To
ta

l c
os

t

HeteDP
HomoDP
HVPL
GVP

Fig. 4: The impact of topology scale.

size distribution of Facebook data centers, which is collected
in 10-minute packet traces of three different node types: a
Web-server rack, a single cache follower, and a Hadoop node
[37]. More than 88% flows are less than 7 Mbps. As a result,
the traffic rate ranges from 0.1 to 6 Mbps with a granularity
of 0.1 Mbps and is generated randomly in this paper.

B. Comparison algorithm and performance metrics

We include two benchmark schemes in our simulations:
• Sang et al. [10] propose the algorithm GFT for deploying

only one type of VNF without the constraint of vertex
capacity. VNFs are not deployed until the destinations of
some flows need to be served.

• Random-fit randomly deploys non-uniform VNFs on ran-
dom nodes on the paths until all flows are fully served.

GFT is only designed for deploying the uniform VNFs.
When we need to deploy non-uniform VNFs, we randomly
select a single type of VNF each time and apply GFT to
deploy it. Additionally, if the vertex capacity is not enough,
we simply deploy the VNFs in its nearest descendants with
enough remaining capacities until all flows are fully served.

We use three performance metrics: the total number of
deployed VNFs, the total cost (non-uniform VNFs), and
the average server utilization (uniform VNF) for benchmark
comparisons. The total number of deployed VNFs is the sum
of deployed VNFs of each type. We also evaluate the total cost
corresponding to our objective function as shown in Eq. (1).
Since all vertex capacity settings are identical, the average
required server volume is equivalent to the total consumed
server volume divided by the total number of servers.

C. Results of the VNF deployment in a tree topology

Fig. 5 shows the results of the non-uniform VNF deploy-
ment in a tree topology. We have tested the algorithms with
350 to 2010 flows. All their sources and destinations are
randomly generated. As for the total number of VNFs, HeteDP
deploys the fewest VNFs and significantly outperforms the
other two as shown in Fig. 5(a). The numbers of deployed
VNFs by the three methods are approximately 3 times the
numbers when we only need to deploy a single type of VNF.
In Fig. 5(b), HeteDP has the smallest average server utilization
ratio. When there are 2100 flows, HeteDP uses 19.8% less
of the total cost than Random-fit and 17.8% less than GFT.
This is because HeteDP checks all possible deployment cases
and selects the optimal one with the minimum cost. Note that
the execution time of HeteDP is ten times that of GFT and
Random-fit because of DP’s optimality.

12

500 1000 1500 2000
Number of flows

50

100

150

200

of
 p

la
ce

d
VN

Fs
GFT
Radom-fit
HeteDP

(a) Total number of deployed VNFs.

500 1000 1500 2000
Number of flows

60

80

100

120

140

160

180

To
ta

l c
os

t

GFT
Radom-fit
HeteDP

(b) Total cost.

Fig. 5: Non-uniform VNF deployment in a tree topology.

500 1000 1500 2000
Number of flows

10

20

30

40

50

60

of

 p
la

ce
d

VN
Fs

GFT
Radom-fit
HomoDP

(a) Total number of deployed VNFs.

500 1000 1500 2000
Number of flows

4

6

8

10
Av

er
ag

e
se

rv
er

 re
qu

ire
d

vo
lu

m
e

GFT
Radom-fit
HomoDP

(b) Avg. server required volume.

Fig. 6: Uniform VNF deployment in a tree topology.

Fig. 6 is the result of uniform VNF deployment in a tree
topology. We use the same flow set as the one in Fig. 5. The
results are shown in Fig. 6(a) and Fig. 6(b). The number of
deployed VNFs by HomoDP ranges from 11 to 53, which is
always much smaller than the other two. When there are 2100
flows, HomoDP deploys 18.5% less VNFs than Random-fit
and 16.7% less than GFT. The gap among these three methods
becomes larger as more flows involved in the network. We
also notice that GFT has a much more similar performance to
Random-fit in the general topology. This is because that GFT
is designed for the tree topology and requires no constraint
on vertex capacity. In terms of the average server utilization,
HomoDP is at least 17.1% less than the other two no matter
how many flows are generated because HomoDP considers the
allocation of the vertex capacity resources.

D. Results of the VNF deployment in a line topolgy

Fig. 7 shows the results of the non-uniform VNF deploy-
ment in a line topology. Alg. HVPL also performs better than
GFT and Random-fit. We have tested the algorithms with
350 to 2100 flows. The advantage of our algorithm becomes
sharper when there are more flows in the network. This is
because it is less likely to waste the spare processing volumes
in the deployed VNFs. With more flows, the traffic load is so
heavy that the total cost increases significantly. This illustrates
that the capacities in all servers are almost used up and more
processing volumes of deployed VNFs are wasted. When there
are 2100 flows, the total cost of our HVPL algorithm is 32.0%
less than Random-fit.

Results of the uniform VNF deployment in a line topology
are shown in Fig. 8(a) and Fig. 8(b). In Fig. 8(a), the numbers
of deployed VNFs by the three methods are approximately
one third of the numbers when we only need to deploy non-
uniform VNFs. As the capacity in the server is relatively
sufficient, the increasing tendencies of the results are gentle.

500 1000 1500 2000
Number of flows

50

100

150

200

of

 p
la

ce
d

VN
Fs

GFT
Radom-fit
HVPL

(a) Total number of deployed VNFs.

500 1000 1500 2000
Number of flows

50

100

150

200

To
ta

l c
os

t

GFT
Radom-fit
HVPL

(b) Total cost.

Fig. 7: Non-uniform VNF deployment in a line topology.

500 1000 1500 2000
Number of flows

0

20

40

60

80

of

 p
la

ce
d

VN
Fs

GFT
Radom-fit
GVP

(a) Total number of deployed VNFs.

500 1000 1500 2000
Number of flows

4

6

8

10

Av
er

ag
e

se
rv

er
 re

qu
ire

d
vo

lu
m

e

GFT
Radom-fit
GVP

(b) Avg. server required volume.

Fig. 8: Uniform VNF deployment in a line topology.
Our GVP method has the best performance both in the number
of deployed VNFs and the average server utilization. The
difference is more obvious when the number of flows is larger.
This is because GVP is optimal for deploying a single type of
VNFs with the constraint of vertex capacity while the other
two are not. When there are 2100 flows, GVP deploys 21.6%
fewer VNFs than Random-fit and 14.4% fewer than GFT. In
terms of server utilization, GVP always has the lowest ratio.

E. Results with a larger vertex capacity

To evaluate the impacts of vertex capacity, we enlarge each
vertex’s capacity from 10 to 20, i.e., cv = 20,∀v ∈ V , and
other settings remain unchanged. Due to space limitation, we
only list the results of the total cost in all four cases of topolo-
gies and VNF types of configurations. The basic tendencies of
all curves are similar to the results with cv = 10,∀v ∈ V . Our
algorithms and GFT improve their performances with a smaller
total cost. It’s worth mentioning that the difference between
GFT and each of our algorithms is reduced. This is because
a larger vertex capacity is closer to the case without the
vertex capacity constraint, where GFT is the optimal solution.
However, we find that Random-fit performs even a little worse
because there are more available locations.

F. Results of the service chain deployment

Fig. 10 shows the results of the service chain deployment
in a tree topology. We apply the same topology setting. The
service chain has a length of 6 and each network service has
3 types of VNFs. We enlarge the server capacity to 20, i.e.
cv = 20, ∀v ∈ V . Additionally, we evaluate an extra metric:
the execution time of algorithms.

Fig. 10(a) evaluates the execution times of the four algo-
rithms. Alg. OPT runs for the longest time while it always has
the best performances on other metrics in Figs. 10(b)-(d). It is
worth mentioning that our Alg. SCDT has a longer execution
time than the other two. This is because it has the selection

13

500 1000 1500 2000
Number of flows

50

100

150

200
To

ta
l c

os
t

GFT
Radom-fit
HeteDP

(a) Non-uniform VNFs in a tree.

500 1000 1500 2000
Number of flows

0

20

40

60

80

100

120

To
ta

l c
os

t

GFT
Radom-fit
HomoDP

(b) Uniform VNFs in a tree.

500 1000 1500 2000
Number of flows

50

100

150

200

To
ta

l c
os

t

GFT
Radom-fit
HVPL

(c) Non-uniform VNFs in a line.

500 1000 1500 2000
Number of flows

0

50

100

150
To

ta
l c

os
t

GFT
Radom-fit
GVP

(d) Uniform VNFs in a line.

Fig. 9: Total cost.

procedure among all nodes, which requires us to calculate
all values. In Fig. 10(b), Alg. OPT has the lowest number
of deployed VNFs and Alg. SCDT has the second lowest.
It indicates the high performance of our proposed algorithms.
Fig. 10(c) shows the results of comparing the objectives of our
paper. On average, the total cost of Alg. SCDT is only 14.6%
more than that of Alg. OPT while the other two have at least
29.5% higher cost than Alg. OPT. The result of the average
server required volume is shown in Fig. 10(d). The difference
between Alg. SCDT and Alg. GFT is not obvious since both of
them are based on selecting local minimum values to deploy
VNFs. Alg. Random-fit always requires the highest volume
because the random selection wastes a lot of the processing
volumes of deployed VNFs, which in turn requests more VNFs
to be deployed in order to meet all flows’ requirements.

In summary, the simulations verify the correctness and
efficiency of our proposed algorithms in the tree and line
topologies. They also show that only considering a single type
of VNF deployment is too one-sided, because all types of
VNFs need to share the limited server resources. It is worth
mentioning that our HVPL and GVP can be used as efficient,
greedy algorithms with significant insights in all kinds of tree
topologies and traffic distributions. Additionally, the general
topologies can also be transformed to the combination of sev-
eral trees by grouping flows and then applying our algorithms.
The results also verify the necessity of the vertex constraint.

VIII. CONCLUSION

We study the joint VNF deployment and flow allocation
problem. We aim to minimize the total cost of deploying VNFs
when all flows are fully processed. Initially, we assume that all
flows request one same network function. We study the non-
uniform VNF deployment in tree topologies. First, we prove
the NP-hardness of the deployment and propose a DP solution.
Then we introduce an improved DP solution for uniform VNFs
in a tree topology. We reformulate the deployment of non-
uniform VNFs in a line and propose a performance-guaranteed

500 1000 1500 2000
Number of flows

0

100

200

300

400

Ex
ec

ut
io

n
tim

e

Random-fit
GFT
SCDT
OPT

(a) Execution time.

500 1000 1500 2000
Number of flows

90

100

110

120

130

140

150

of

 d
ep

lo
ye

d
VN

Fs

Random-fit
GFT
SCDT
OPT

(b) Total number of deployed VNFs.

500 1000 1500 2000
Number of flows

300

400

500

600

700

800

900

To
ta

l c
os

t

Random-fit
GFT
SCDT
OPT

(c) Total cost.

500 1000 1500 2000
Number of flows

10

20

30

40

Av
er

ag
e

se
rv

er
 re

qu
ire

d
vo

lu
m

e

Random-fit
GFT
SCDT
OPT

(d) Average server required volume.

Fig. 10: Service chain deployment.

strategy. An optimal greedy solution is designed for uniform
VNF deployment in a line. Then, we study a more general
model in which all flows request a service chain, consisting
of multiple network functions serving in a specific order.
Extended trace-driven simulations prove the correctness and
efficiency of our algorithms.

It is worth mentioning that the vertex capacity constraint
in terms of the maximum number of VNFs can be extended
to a constraint on the total resource capacity. Setting up each
type of VNF needs different amounts of the vertex resource
besides different setup costs. Hence, our DP solution, HeteDP,
needs to include one more dimension of the available resource
in the current vertex. In this case, the Deploy item in the DP
formulation becomes a 2-D knapsack problem. Although the
extension can still be addressed in a DP formulation, we leave
detailed treatment to our future work.

IX. ACKNOWLEDGMENT

This research was supported in part by NSF grants CNS
1824440, CNS 1828363, CNS 1757533, CNS 1629746, CNS-
1651947, and CNS 1564128.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in SIGCOMM 2012.

[2] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ramakr-
ishnan, T. Wood, M. Arumaithurai, and X. Fu, “NFVnice: Dynamic
backpressure and scheduling for NFV service chains,” in SIGCOMM
2017.

[3] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” in SIGCOMM 2014.

[4] J. Sherry, S. Ratnasamy, and J. S. At, “A survey of enterprise middlebox
deployments,” in Semantic Scholar, 2012.

[5] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags,” in NSDI 2014.

[6] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network
function parallelism in nfv,” in SIGCOMM 2017.

14

[7] Y. Li and M. Chen, “Software-defined network function virtualization:
A survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[8] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 3, pp. 2429–2453, 2018.

[9] S. Seyyedi and B. Akbari, “Hybrid cdn-p2p architectures for live video
streaming: Comparative study of connected and unconnected meshes,”
in CNDS 2011.

[10] Y. Sang, B. Ji, G. R. Gupta, X. Du, and L. Ye, “Provably efficient algo-
rithms for joint placement and allocation of virtual network functions,”
in INFOCOM 2017.

[11] Y. Chen and J. Wu, “Nfv middlebox placement with balanced set-up
cost and bandwidth consumption,” in ICPP 2018.

[12] P. Duan, Q. Li, Y. Jiang, and S. T. Xia, “Toward latency-aware dynamic
middlebox scheduling,” in ICCCN 2015.

[13] D. Li, P. Hong, K. Xue, and j. Pei, “Virtual network function placement
considering resource optimization and sfc requests in cloud datacenter,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 7,
pp. 1664–1677, 2018.

[14] L. Qu, C. Assi, and K. Shaban, “Delay-aware scheduling and resource
optimization with network function virtualization,” IEEE Transactions
on Communications, vol. 64, no. 9, pp. 3746–3758, 2016.

[15] J. Liu, H. Xu, G. Zhao, C. Qian, X. Fan, and L. Huang, “Incremental
server deployment for scalable nfv-enabled networks,” in INFOCOM
2020.

[16] A. Laghrissi and T. Taleb, “A survey on the placement of virtual
resources and virtual network functions,” IEEE Communications Surveys
& Tutorials 2018.

[17] G. Mirjalily and L. Zhiquan, “Optimal network function virtualization
and service function chaining: A survey,” Chinese Journal of Electronics,
vol. 27, no. 4, pp. 704–717, 2018.

[18] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing
the network forwarding plane,” in PRESTO 2010.

[19] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible
and elastic ddos defense,” in {USENIX} Security 2015.

[20] W. Ma, O. Sandoval, J. Beltran, D. Pan, and N. Pissinou, “Traffic aware
placement of interdependent nfv middleboxes,” in INFOCOM 2017.

[21] G. Sallam and B. Ji, “Joint placement and allocation of virtual net-
work functions with budget and capacity constraints,” arXiv preprint
arXiv:1901.03931, 2019.

[22] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in CloudNet 2014.

[23] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in INFOCOM 2015.

[24] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” in INFOCOM 2016.

[25] Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in INFOCOM 2016.

[26] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
S. Davy, “Design and evaluation of algorithms for mapping and schedul-
ing of virtual network functions,” in NetSoft 2015.

[27] Z. Allybokus, N. Perrot, J. Leguay, L. Maggi, and E. Gourdin, “Virtual
function placement for service chaining with partial orders and anti-
affinity rules,” Networks, vol. 71, no. 2, pp. 97–106, 2018.

[28] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-
optimal vnf placement at the network edge,” in INFOCOM 2018.

[29] M. C. Luizelli, D. Raz, and Y. Sa’ar, “Optimizing NFV chain deployment
through minimizing the cost of virtual switching,” in INFOCOM 2018.

[30] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1990.

[31] S. Martello, “Knapsack problems: algorithms and computer implemen-
tations,” Wiley-Interscience series in discrete mathematics and optimiza-
tion, 1990.

[32] K. Jansen and S. E. Kraft, “A faster fptas for the unbounded knapsack
problem,” European Journal of Combinatorics, vol. 68, pp. 148–174,
2018.

[33] G. B. Mathews, “On the partition of numbers,” Proceedings of the
London Mathematical Society, vol. s1-28, no. 1, pp. 486–490, 1896.

[34] J. Kleinberg and E. Tardos, Algorithm Design. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2005.

[35] L. A. Wolsey, “An analysis of the greedy algorithm for the submodular
set covering problem,” Combinatorica, vol. 2, no. 4, pp. 385–393, Dec
1982.

[36] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” in SIGCOMM 2013.

[37] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in SIGCOMM 2015.

Yang Chen received her B.Eng. degree in Electronic
Engineering and Information Science from Univer-
sity of Science and Technology of China in 2015.
She is currently a Ph.D. candidate in the Department
of Computer and Information Sciences, Temple Uni-
versity, Philadelphia, Pennsylvania, USA. Her cur-
rent research focuses on Software Defined Networks,
especially resource allocation, flow scheduling and
network updates.

Powered by TCPDF (www.tcpdf.org)

Jie Wu is the Director of the Center for Net-
worked Computing and Laura H. Carnell professor
at Temple University. He also serves as the Director
of International Affairs at College of Science and
Technology. He served as Chair of Department of
Computer and Information Sciences from the sum-
mer of 2009 to the summer of 2016 and Associate
Vice Provost for International Affairs from the fall of
2015 to the summer of 2017. Prior to joining Temple
University, he was a program director at the Na-
tional Science Foundation and was a distinguished

professor at Florida Atlantic University. His current research interests include
mobile computing and wireless networks, routing protocols, cloud and green
computing, network trust and security, and social network applications. Dr.
Wu regularly publishes in scholarly journals, conference proceedings, and
books. He serves on several editorial boards, including IEEE Transactions
on Mobile Computing, IEEE Transactions on Service Computing, Journal
of Parallel and Distributed Computing, and Journal of Computer Science
and Technology. Dr. Wu was general co-chair for IEEE MASS 2006, IEEE
IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc 2014, ICPP 2016, and
IEEE CNS 2016, as well as program co-chair for IEEE INFOCOM 2011 and
CCF CNCC 2013. He was an IEEE Computer Society Distinguished Visitor,
ACM Distinguished Speaker, and chair for the IEEE Technical Committee on
Distributed Processing (TCDP). Dr. Wu is a Fellow of the AAAS and a Fellow
of the IEEE. He is the recipient of the 2011 China Computer Federation (CCF)
Overseas Outstanding Achievement Award.

Bo Ji (S’11-M’12-SM’18) received his B.E. and
M.E. degrees in Information Science and Electronic
Engineering from Zhejiang University, Hangzhou,
China, in 2004 and 2006, respectively, and his Ph.D.
degree in Electrical and Computer Engineering from
The Ohio State University, Columbus, OH, USA,
in 2012. Dr. Ji joined Department of Computer and
Information Sciences (CIS) at Temple University in
July 2014, where he is currently an assistant profes-
sor. He is also a faculty member of the Center for
Networked Computing (CNC) at Temple University.

Prior to joining Temple University, he was a Senior Member of the Technical
Staff with AT&T Labs, San Ramon, CA, from January 2013 to June 2014.
His research interests are in the modeling, analysis, control, optimization,
and learning of computer and networking systems, such as communication
networks, information-update systems, cloud/datacenter networks, and cyber-
physical systems. Dr. Ji is a senior member of the IEEE and a member of the
ACM. He is a National Science Foundation (NSF) CAREER awardee (2017)
and an NSF CISE Research Initiation Initiative (CRII) awardee (2017).

