40th IEEE International Conference on Data Engineering 囲

Joint Mobile Edge Caching and Pricing: A Mean-Field Game Approach

¹University of Science and Technology of China **²**Temple University **³**Soochow University **⁴**Nanjing University

► Background & Motivation

Ø**Related Work & Problem Formulation**

Ø**Basic Idea & Solution**

Ø**Evaluation & Conclusion**

Background

\blacksquare Explosive growth of mobile data traffic

- Fast deployment of edge devices
- $10x$ increase from 2016 to 2023
- Significant stress on back-haul links

- Content caching and trading in the edge
	- By 2032, the market size of edge data centers is expected to exceed \$50 billion
	- Enhance Quality of Experience (QoE)

Global Edge Data Center Market Size, By Data Center, 2021-2032, (USD Billion)

General architecture of Mobile Edge Caching systems ⁴

Motivation

Ø**Background & Motivation**

Example 2 & Came Formulation

Ø**Basic Idea & Solution**

Ø**Evaluation & Conclusion**

Goal: edge caching optimization while considering pricing and content sharing

Mean-Field Game

[5] D. Narasimha, et al., "Agedependent distributed MAC for ultra-dense wireless networks," IEEE INFOCOM2021 [6] H. Feng, et al, "Mean-field game theory based optimal caching control in mobile edge computing," IEEE TMC2022.

Edge caching and pricing

[4] J. Zou, et al, " Joint pricing and cache placement for video caching: A game theoretic approach," IEEE JSAC2019.

Mobile Edge Caching

[1] H. Sun, et al, " A proactive ondemand content placement strategy in edge intelligent gateways," TPDS2023. [2] T. Zong, et al, " Cocktail edge caching: Ride dynamic trends of content popularity with ensemble learning ," IEEE/ACM ToN2023.

Content Trading

[3] Y. Huang, et al, "Profit sharing for data producer and intermediate parties in data trading over pervasive edge computing environments," IEEE TMC2023.

System Model

System Model

- **Edge Data Providers (EDPs) {1,…, i,...,M}:** cache certain contents in advance and are allowed to share the cached contents with each other.
- **Content requesters {1,…,j,...,J}:** buy desired contents from EDPs and pay a suitable trading price.
- **Contents** $\{1, \ldots, K, \ldots, K\}$: the data size of content k is denoted by Q_k .
- **Caching strategy vector of EDP :** $x_i(t) = [x_{i,1}(t), \dots, x_{i,K}(t)] \rightarrow$ the instantaneous caching rate of contents
- **Remaining Storage capacity of :** $q_i(t) = [q_{i,1}(t), \cdots, q_{i,K}(t)]$

 \triangleright **Network Model:** the evolution of $h_{i,j}(t) \rightarrow$ the channel fading coefficient between EDP *i* and requester *j*

 $dh_{i,j}(t) =$ 1 $\frac{1}{2} \zeta_h (v_h - h_{i,j}(t)) dt + \varrho_h dW_{i,j}(t).$ ς_h : changing rate $\mathcal{W}_{i,j}(t)$: a standard Brownian motion $\frac{1}{2}v_h \& \rho_h$: the long-term mean and standard deviation

 \triangleright **Edge Caching Model**: Content Popularity + Timeliness \rightarrow The dynamics of the caching state

 $dq_{i,k}(t) = Q_k[-w_1x_{i,k}(t) - w_2\Pi_{i,k}(t) + w_3\xi^{L_{i,k}(t)}]dt + \varrho_q dW_i(t)$

Content popularity: the frequency at $\frac{1}{2}$ which the content k is requested

Content timeliness: the level of urgency with which requesters acquire content k

The fewer the requests for content , the faster it is removed from the caching storage. The more urgent the requests for content , the faster it is added into the caching storage.

 \triangleright **Trading Model**: $p_{i,k}(t) \rightarrow$ the unit price customized by EDP *i* for selling content *k* Sharing price $\bar{p}_k \rightarrow a$ uniform unit price for obtaining content k from other peer EDPs

Ø **Trading income:** the dynamic price * the number of requesters

$$
\Phi_{i,k}^1(t) = I_{i,k}(t)p_{i,k}\mathbb{P}^1\left(Q_k - q_{i,k}(t)\right) + I_{i,k}(t)p_{i,k}\mathbb{P}^2\left(Q_k - q_{-i,k}(t)\right) + I_{i,k}(t)p_{i,k}\mathbb{P}^3Q_k
$$
\n
$$
\vdots
$$
\nThe set of requests who\n
$$
\vdots
$$
\n
$$
\downarrow
$$
\n
$$
\text{The principle}
$$
\n
$$
\text{as } \text{for content } k \text{ at time } t \downarrow 0
$$
\n
$$
\vdots
$$
\n
$$
p_{i,k}(t) = \begin{cases}\n\hat{p}, & M = 1 \\
\hat{p} - \frac{\eta_1 \sum_{i'=1, i' \neq i}^M Q_k \cdot x_{i',k}(t)}{M-1}, & M \ge 2\n\end{cases}
$$
\nThe principle\n
$$
\text{The principle}
$$

Sharing benefit: the monetary benefit formed when EDP *i* shares its contents with other EDPs $\mathcal{M}_{i,k}(t)$

$$
\Phi_{i,k}^2(t) = \sum_{i' \in \mathcal{M}_{i,k}(t)} \overline{p}_k \left(q_{i',k}(t) - q_{i,k}(t) \right)
$$

 \triangleright **Content placement cost** $C_{i,k}^1(t) = w_4 x_{i,k}(t) + w_5 x_{i,k}^2(t)$ Placing and storing cached contents

Staleness cost: a penalty function of the total request service delay

$$
C_{i,k}^2(t) = \eta_2 \left\{ \frac{ \varrho_k x_{i,k}(t) }{ H_c } + \sum\nolimits_{j \in I_{i,k}(t)} \left[\mathbb{P}^1 \frac{ \varrho_k - q_{i,k}(t) }{ H_{i,j}(t) } + \mathbb{P}^2 \frac{ \varrho_k - q_{-i,k}(t) }{ H_{i,j}(t) } + \mathbb{P}^3 \left(\frac{ q_{i,k}(t) }{ H_c } + \frac{ \varrho_k }{ H_{i,j}(t) } \right) \right] \right\}
$$

Sharing cost $C_{i,k}^3$

$$
B_{i,k}(t) = \mathbb{P}^2 \overline{p}_k \left(q_{i,k}(t) - q_{-i,k}(t) \right)
$$
 [By content *k* from an adjacent EDP]

$$
\text{Game} \quad \overbrace{\text{Game} \quad \text{max}_{x_{i,k}(t),t:0\to T} u_{i,k}(x_{i,k},S_{i,k},S_{-i,k})}_{\text{min}} = \Phi_{i,k}^{1}(t) + \Phi_{i,k}^{2}(t) - C_{i,k}^{1}(t) - C_{i,k}^{2}(t) - C_{i,k}^{3}(t)
$$
\n
$$
\text{sum} \quad \text{s.t.,} \quad \mathbf{d}h_{i,j}(t) = \frac{1}{2} s_h(v_h - h_{i,j}(t)) \mathbf{d}t + \varrho_h \mathbf{d}W_{i,j}(t)
$$
\n
$$
\mathbf{d}q_{i,k}(t) = Q_k[-w_1x_{i,k}(t) - w_2\Pi_{i,k}(t) + w_3\xi^{L_{i,k}(t)}] \mathbf{d}t + \varrho_q \mathbf{d}W_i(t)
$$

Ø**Background & Motivation**

Ø**Related Work & Problem Formulation**

Basic Idea & Solution

Ø**Evaluation & Conclusion**

 \triangleright Solving a series of Hamilton-Jacobi-Bellman (HJB) equations

 $max_{x_{i,k}(t)} \big[\mathcal{OV}_{i,k}(t) + \mathbf{U}_{i,k}(t) \big] + \partial_t \mathcal{V}_{i,k}(t) = 0$

Partial differential operator

$$
\begin{aligned}\n & \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} (x_i - x_i) \\
 & \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} (x_i - x_i) \\
 & \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - x_i) \\
 & \sum_{i=1}^{n} \sum_{i=1}^{n} (x_i - x_i) \\
 & \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - x_i) \\
 & \sum_{i=1}^{n} \sum_{i=1}^{n} (x_i - x_i) \\
 & \sum_{i=1}^{n} \sum_{j=1}^{n} (x_i - x_i) \\
 & \sum_{i=1}^{
$$

There exists a complicated coupling of the M equations; Unknown mutual influence: a dynamic pricing policy and a peer-to-peer sharing policy.

Approximate the **collective impact** of large-scale EDPs on caching, trading, and sharing, and then iteratively solve multiple coupled equations to determine **the optimal caching strategy** for each EDP.

The original stochastic The original stochastic differential game \rightarrow A Mean-Field Game A Mean-Field Game with a generic-player representation

A mean-field estimator \rightarrow Estimate the unknown **Estimate** incomes & costs of EDPs Solve A generic player \rightarrow Adjust its caching strategy

An iterative best response learning algorithm to solve the coupled equations in a distributed way

- \checkmark The number of partial differential equations in the MFG-CP is reduced from M \times K to 2 \times K \rightarrow The computing time required to derive the optimal strategies will not incur excessive complexity.
- ü The optimal caching strategy can be determined during the time horizon using **only local information and a mean-field distribution**.

Determining the Optimal Caching Strategy

 λ

 χ

Mean-field Estimator

- Construct the Fokker-Planck-Kolmogorov (FPK) equation to estimate the statistical distribution of states $\lambda(S_k(t))$: $\partial_t \lambda(S_k(t)) + \frac{1}{2} \varsigma_h(v_h - h(t)) \partial_h \lambda(S_k(t))$ $+Q_k[-w_1x_k(t) - w_2\Pi_k(t) + w_3\xi^{L_k(t)}]\partial_q\lambda(S_k(t))$ $-\frac{1}{2}\varrho_h^2\partial_{hh}^2\lambda(S_k(t))-\frac{1}{2}\varrho_q^2\partial_{qq}^2\lambda(S_k(t))=0.$
- Estimate the dynamic price:

 $p_k(t) \approx \hat{p} - \eta_1 Q_k$ \boldsymbol{h} \vert $\int_q \lambda(S_k(t)) x_k^*\big(S_k(t)\big)$ dhdq

- Estimate the average caching state: $\bar{q}_{-,k}(t) \approx \int_b \int_a q_k(t) \lambda(S_k(t)) dh dq_k$
- Estimate the average sharing benefit:

$$
\overline{\Phi}_k^2(t) = \overline{p}_k \overline{\Delta q}(t) \left(\frac{M - M'_k(t)}{M_k(t)} - 1 \right)
$$

Generic player

- Solve the optimization problem: $\max_{x_k(0\to T)} \mathcal{U}_k(x_k, S_k, \lambda)$
- Employ the mean-field estimator to quickly obtain the trading income, sharing benefit, staleness cost, and sharing cost.
- Reconstruct HJB equation to determine the

value function $V_{i,k}(t)$:
 $\max_{x_k(t)} \left[\frac{1}{2} \varsigma_h (v_h - h(t)) \partial_h V_k(t) + \frac{1}{2} \varrho_h^2 \partial_{hh}^2 V_k(t) \right]$ $+Q_k[-w_1x_k(t)-w_2\Pi_k(t)+w_3\xi^{L_k(t)}]\partial_a\mathcal{V}_k(t)$ $\left. +\frac{1}{2}\varrho_q^2\partial_{qq}^2\mathcal{V}_k(t)+\mathbf{U}_k(t,x_k,S_k,\lambda)\right]+\partial_t\mathcal{V}_k(t)=0.$

The optimal caching strategy:

$$
x_{k}^{*}(t) = \left[-\left(\frac{w_{4}}{2w_{5}} + \frac{\eta Q_{k}}{2H_{c}w_{5}} + \frac{Q_{k}w_{1}\partial_{q}V_{k}(t)}{2w_{5}}\right) \right]^{+}
$$

Iterative Learning

Algorithm 2: Iterative Best Response Learning Scheme **input**: The iterative number ψ ; iterative threshold ψ_{th} ; output: The optimal caching strategy; 1 Initialize: $\psi = 0$; $x_k^{\psi}(0)$; $\mathcal{V}_k^{\psi}((\sigma+1)T)$; λ ; 2 while $\psi < \psi_{th}$ do $\psi = \psi + 1;$ 3 Solve the HJB equation using $x_k^{\psi-1}(t)$ and λ ; 4 Update the strategy vector $x_k^{\psi}(t)$ based on Eq. (21); 5 **if** $|x_k^{\psi}(t) - x_k^{\psi-1}(t)| < a$ preset threshold **then** 6 Break the iterative learning process; 7 Solve the FPK equation using $x_k^{\psi}(t)$ to update λ ; 8 Update the mean-field estimator: $p_k(t), \bar{q}_{-,k}(t), \overline{\Delta q}(t)$; 9 Update the utility function according to Eq. (10); 10 11 **return** $x_k^{\psi}(t)$ for $t \in [\sigma T, (\sigma+1)T)$.

Core: **iteratively solve the coupled HJB equation and FPK equation**: the backward HJB models the induction process of the optimization of each individual, while the forward FPK models the evolution of the mean-field as a whole.

The solution of the HJB equation has a great impact on the FPK equation to update the mean field.

 \star . The solution of the FPK equation is also required by the HJB equation to estimate the generic player's utility and update strategies.

$\left\langle \cdot \right\rangle$ **Framework Description**

Lemma

 \checkmark In the MFG-CP framework, there exists the **unique value function** $\mathcal{V}_k(t)$ of the HJB equation. Proof: (i) The caching strategy space is a compact subset of R; (ii) The drift term of the state dynamics $\&$ the utility function: bounded+Lipschitz continuous.

 \checkmark There exists the **unique mean-field distribution** $\lambda(S_k(t))$ of the FPK equation. Proof: A parabolic partial differential equation $\rightarrow \partial_t \lambda(S_k(t)) + \Theta = d$

 $\Theta = -\sum_{i,j=1}^k a_{i,j} \lambda(S_i S_j) + \sum_{i,j=1}^k b_i \lambda(S_i) + c\lambda \rightarrow a_{i,j} = a_{j,i}$

Theorem

 \checkmark In the MFG-CP framework, there exists a **unique Nash equilibrium**. Proof:

Given this contraction mapping, there exists a unique fixed-point based on the fixed-point theorem

Ø**Background & Motivation**

Ø**Related Work & Problem Formulation**

Ø**Basic Idea & Solution**

Evaluation & Conclusion

Evaluation

 $\begin{array}{c} \hline \mathbb{R} \mathbb{R} \\ \hline \mathbb{I} \end{array}$

 \blacklozenge YouTube \rightarrow The number of requests for each category \rightarrow content id, tags, views, comment count, description.

Real Dataset Parameter settings

- $M=300$ EDPs, $K=20$ contents
- The conversion parameter η change from $[0.1, 0.4]$

 \blacklozenge $\lambda(0) \sim \mathcal{N}(0.7, 0.1^2)$

Experimental Settings

◆ Random Replacement (RR) Most Popular Caching (MPC) MFG: do not consider sharing ◆ Ultra-Dense Caching Strategy

(UDCS): consider content overlap

Mean-Field Equilibrium

- Caching state $&$ Utility
- \blacklozenge Computation time

Compared Algorithms Evaluation Metrics

\Box Evolution of the mean-field distribution at the equilibrium:

When we fix the time slot, the size of the remaining caching space will increase first and then decrease.

As the time evolves, the remaining caching space with {60MB, 70MB} will vanish due to the improvement of space utilization.

Evaluation

\Box A heat map description of the mean-field distribution under different Q_k :

The caching space will gradually reach saturation with the increase of Q_k . When decreasing the variance values, the heat map displays more concentrated results.

\Box Comparisons under different conversion parameters:

- Improving the value of the conversion parameter leads to a reduction in total utility;
- The staleness cost of MFG obviously exceeds that of MFG-CP;
- The behavior of content sharing is beneficial for improving the utility of each EDP;
- n MFG-CP enables each EDP to possess a higher utility than these compared algorithms.

\Box Comparisons on utility, trading income, and time:

The proposed framework MFG-CP offers significant advantages in maximizing the utilities of EDPs

COMPARISONS ON COMPUTATION TIME (SECOND)

The computational complexity of MFG-CP does not increase with the number of EDPs

- \checkmark We study the competitive content placement issue in large-scale dynamic MEC systems.
- \checkmark To facilitate decentralized content sharing. decision-making, we propose the MFG-CP framework for joint content caching and pricing. $\overline{}$ We develop an iterative best
- world traces validate its great performance.

- \checkmark We model the problem as a noncooperative stochastic differential game, which considers the heterogeneous content demands, real-time trading prices, and paid
- response learning scheme to \checkmark Extensive simulations on real-
 \checkmark Extensive simulations on real-
 \checkmark Extensive simulations on real-
 \checkmark

40th IEEE International Conference on Data Engineering

Thank you for your attention!

Question?

Yin Xu xuyin218@mail.ustc.edu.cn

