
Towards Location-aware Joint Job and Data
Assignment in Cloud Data Centers with NVM

Xin Li∗†‡, Jie Wu§, Zhuzhong Qian†‡, Shaojie Tang¶, and Sanglu Lu†‡
∗College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics

†State Key Laboratory for Novel Software Technology, Nanjing University
‡Collaborative Innovation Center of Novel Software Technology and Industrialization

§Center for Networked Computing, Temple University
¶Naveen Jindal School of Management, The University of Texas at Dallas

Email: lics@nuaa.edu.cn, jiewu@temple.edu, {qzz, sanglu}@nju.edu.cn, shaojie.tang@utdallas.edu

Abstract—In this paper, we investigate the joint job and data
assignment problem in cloud data centers with non-volatile
memory (NVM) for makespan minimization. Through extensive
analysis, we find that there is an indicator variable that charac-
terizes the hardness of the problem. Depending on the value of the
indicator variable, we classify our problem into three cases: inf-
case, opt-case, and nph-case. We first show that there is no feasible
assignment under the inf-case. For the opt-case, we present an
optimal algorithm. We show that a mixed data assignment with
diversified popularity achieves high memory utilization. For the
nph-case, we first prove the problem’s NP-hardness and then
propose a heuristic algorithm and a 2-approximation algorithm
to tackle it. We conduct extensive simulations, and we find that
the performance of the heuristic algorithm is better than the 2-
approximation algorithm and that it is nearly the same as the
theoretical optimal solution.

Index Terms—cloud data center, data replication, job assign-
ment, makespan, resource allocation.

I. INTRODUCTION

Timely data analysis is important because it can support
better predictions while help companies to make better de-
cisions. This motivates more firms to harness the power of
cloud computing to reduce data-processing time. As data-
intensive cloud computing systems like MapReduce [1] and
Dryad [2] have gained popularity, a strong need has developed
to share resources and run batched jobs over a common
data set in the same cloud data center. Job scheduling is the
primary issue in data analysis, and data placement is becoming
more important [3] [4] as data-intensive applications develop.
Hence, makespan optimization is the core objective of the joint
job and data assignment problem [5], and researchers believe
data locality is an efficient method of reducing makespan [1]
[6].

Recent literature proposes many approaches to optimize job
scheduling [7] [8] [9], but speeding up data analysis is difficult
due to the limited capacity of typical DRAM. Though DRAM
is widely used for main memory, researchers think DRAM is
approaching scalability limits [10]. In contrast to DRAM, non-
volatile memory (NVM) technology will achieve storage-class
memory capacity and is expected to be equipped in future data
centers [11]. With the increased capacity of NVM, “memory

is the new disk” [12] and data can be directly deployed in
memory. This motivates us to improve data analysis so it
can keep up with faster data access. However, the traditional
data replica placement and job scheduling strategy is no
longer pratical. It is necessary to reconsider the job and data
scheduling issue for the new memory system.

In this paper, we investigate the joint job and data assign-
ment problem for makespan minimization in cloud data centers
with the new memory system. We focus on how many data
replicas will be applicable to batched jobs and how to assign
the jobs and data replicas. For data-intensive jobs, it is intuitive
to schedule the job to the server that contains its input data
in memory. Hence, the joint job and data assignment strategy
must guarantee full data locality to take advantage of memory.
We formalize the assignment problem for the new scenario,
and we prove that the general case of the problem is NP-
hard. We also find that there is an indicator variable that
can characterize the hardness of the problem quantitatively.
This indicator is determined by the relationship between the
memory capacity and the expected data load for each server;
it has no relationship with the number of jobs. According to
the value of the indicator variable, we classify our problem
into three cases: inf-case, opt-case, and nph-case. For the
inf-case, there is no feasible assignment for given inputs. For
the opt-case, we propose an optimal algorithm and prove its
feasibility. For the nph-case, we prove the problem’s NP-
hardness and propose both a heuristic algorithm and a 2-
approximation algorithm.

We first use a tuple to model the association of the jobs and
their input data blocks. For each data block, we define degree
to represent the popularity of the data block as input. Then,
our algorithms are developed based on the modeled tuples and
the degrees. Our contributions are summarized as follows.

• We formalize the new problem and demonstrate that its
hardness is decided by an indicator variable. This variable
is related to the number of available memory slots, the
number of servers, and the number of data blocks. But it
does not depend on the number of jobs.

• For the opt-case, we develop an optimal algorithm, cre-
ating a mixed assignment of data blocks with diversified
degrees for servers in a load-balanced manner.978-1-5090-6468-7/17/$31.00 ©2017 IEEE



• For the nph-case, we develop a 2-approximation algo-
rithm and a heuristic algorithm. We first sort the data
blocks according to their degrees. In the 2-approximation
algorithm, the data block with the least degree will be
assigned first; in the heuristic algorithm, the data block
with the greatest degree will be assigned first.

• We conduct extensive simulations, and the simulation
results show that the heuristic algorithm performs better
than the 2-approximation algorithm, and has nearly the
same performance as the theoretical optimal solution.

The remainder of this paper is organized as follows. We
give the problem statement in Section II. In Section III,
we present our algorithms under various cases and analyze
their performance theoretically. We evaluate our algorithms in
Section IV, and we give conclusions in Section VI.

II. PROBLEM STATEMENT

A. Scenario and Notations

For a data center that consists of uniform servers, jobs share
both a data set and resources. We assume that each server
hosts one job per time slot [13], but it is easy to extend our
work to a case with multiple jobs per time slot. We further
assume that each job has the same execution time when data
locality is guaranteed since the map tasks or reduce tasks of a
job in MapReduce have similar execution times [14]. Let N
be the number of uniform servers and M be the number of
memory slots in each server used for storing data blocks. For
the common data set, we use K to represent the number of data
blocks. We should note that K is just the number of different
data blocks, not the total number of data block replicas. There
could be multiple replicas for a data block to preserve data
locality. Therefore, the total number of data block replicas is
larger than or equal to K.

We use a two-tuple to represent a job profile. For example,
⟨J0,D0⟩ represents job J0 and its input data block D0. We
use f to represent the input data of jobs, i.e., given a job
profile ⟨Ji,Dj⟩, we have fi = Dj . Hence, the job profile can
also be described as ⟨Ji, fi⟩. Any assignment decision can be
represented by the following two indicators:

π(Ji,Sj) =
{

1, Job Ji is assigned to server Sj ;
0, otherwise.

π(Di,Sj) =
{

0, there is no replica of Di on Sj ;
1, otherwise.

Sj(1 ≤ j ≤ N ) refers to the jth server.

B. Problem Formulation

Joint Job and Data Assignment Problem. Given a data
center consisting N uniform servers with a memory capacity
of M slots and a set of jobs {⟨Ji, fi⟩|∃k,Dk = fi, 1 ≤ i ≤

L, 1 ≤ k ≤ K}, the joint job and data assignment problem
can be formulated as follows:

min. max
1≤j≤N

{ L∑
i=1

π(Ji,Sj)

}

s.t. (1)
K∑
i=1

π(Di,Sj) ≤M, 1 ≤ j ≤ N

(2) π(Ji,Sj) ≤ π(fi,Sj), 1 ≤ i ≤ L, 1 ≤ j ≤ N
The first constraint indicates that the number of data blocks

placed on each server should not exceed the memory capacity
M. The second constraint enforces data locality; there should
be one replica of the input data for each job on its host server.
To achieve a smaller makespan, it is critical to balance the load
among all of servers. However, this method may easily violate
the data locality constraint. To this end, we develop several
locality-aware job assignment strategies that nearly achieve
the minimum makespan.

C. Hardness

Our problem is similar to the subset-sum problem. To
facilitate our study, we first introduce the equal-size subset-
sum problem. The equal-size subset-sum problem has one
more constraint than the classic subset-sum problem: the size
of each subset must be identical. We prove that the equal-size
subset-sum problem is also NP-hard.

Lemma 1: The equal-size subset-sum problem is NP-hard.
Proof: The classic subset-sum problem can be formulated

as follows: given a multiset of integers B = {F1, · · · , Fn},
determine whether there exists a subset Bc of numbers from
B such that

∑
Fi∈Bc Fi =

∑
Fi∈B Fi/2. Then, we con-

struct an equal-size subset-sum problem as by constructing
a new set of integers A = {I1, · · · , In, · · · , I2n} where
∀i ∈ [1, n], Ii = Fi + 1, and ∀i ∈ (n, 2n], Ii = 1. The
problem is to determine whether there exists a subset Ac such
that

∑
Ii∈Ac Ii =

∑
Ii∈A Ii/2, and |Ac| = n.

If there exists a subset Bc of numbers from B such that∑
Fi∈Bc Fi =

∑
Fi∈B Fi/2, we let |Bc| = m, and we have

m ≤ n. Then, we can construct subset Ac as follows: Ac =
Ac

1 ∪ A1 where Ac
1 = {Ii|∀Fi ∈ Bc, Ii = Fi + 1} and

A1 = {Ij |Ij = 1, n < j ≤ 2n−m}. Hence, we have |Ac| = n
and

∑
Ii∈Ac Ii =

∑
Fi∈Bc Fi + n. Because

∑
Fi∈Bc Fi =∑

Fi∈B Fi/2, we have
∑

Ii∈Ac Ii =
∑

Ii∈A Ii/2.
On the other hand, if subset Ac does exist for set A, we

can pick the items whose value is larger than 1 and construct
subset Bc as Bc = {Fi|∀Ii ∈ Ac, Fi = Ii − 1, Fi ̸= 0}.
It is easy to prove that

∑
Fi∈Bc Fi =

∑
Fi∈B Fi/2 using the

deduction above. Therefore, we conclude that the equal-size
subset-sum problem is NP-hard.

Now we can prove that our assignment problem is NP-hard
by reducing it from the equal-size subset-sum problem.

Theorem 1: The joint job and data assignment problem is
NP-hard.

Proof: We prove this theorem by showing that a special
case of the problem is NP-hard. We assume that N = 2,
K = 2 · M. Consequently, there is only one replica for each



data block, which indicates that the jobs with the same input
data block will be assigned to the server that contains their
input data block. And, there areM data blocks on each server.
For data block Di, we define its degree di as the number of
jobs that take it as their input data. Then, we show that the
special case can be reduced from the equal-size subset-sum
problem.

Based on Lemma 1, given a multiset of integers A =
{I1, · · · , In} (n is even) for the equal-size subset-sum prob-
lem, we construct an assignment problem. In the constructed
case, we have K (K = n) data blocks, and let di = Ii (1 ≤ i ≤
n). Hence, the minimized makespan should be

∑
Ii∈A Ii/2.

If there exists a subset Ac of numbers from A such that∑
Ii∈Ac Ii =

∑
Ii∈A Ii/2, then the data blocks, whose degree

equals some number from Ac i.e. ∃i, Ii ∈ Ac, di = Ii, and
their associated jobs are selected to place on the first server.
The remaining data blocks and jobs will be placed on the
second server. This assignment ensures that the two servers
have exactly the same load. On the other hand, if there exists
an assignment with the minimum makespan, we can extract
degree the di of the data blocks from the same server. The
union of the exacted degrees must be a feasible subset Ac for
the equal-size subset-sum problem. According to Lemma 1,
we conclude that our assignment problem is NP-hard.

III. ALGORITHMS AND PERFORMANCE ANALYSIS

A. Overview

In general, the assignment problem is similar to the mini-
mum makespan scheduling problem, but the memory capacity
constraint distinguishes it. The hardness of the assignment
problem also varies with the difference in memory capacity
M. Specifically, if the total number of memory slots is too
limited to host one replica for each data block (i.e.M·N < K
orM <

⌈ K
N
⌉

sinceM is an integer), then there is no feasible
solution to assign all jobs. This is the inf-case in this paper.
On the other hand, if the memory capacity is large enough to
host all of the data blocks (i.e. M≥ K), then data locality is
trivially preserved by creating one replica for all data blocks
on each server. The assignment problem is equivalent to the
minimum makespan scheduling problem, yet, it can be solved
optimally. (Round-Robin is a well-known optimal method for
solving the scheduling problem when every job has the same
execution time.) Therefore, in the rest of this paper, we focus
on the case where

⌈ K
N
⌉
≤M < K.

B. opt-case when
⌈K+N−1

N
⌉
≤M < K

In this section, we first investigate opt-case when⌈K+N−1
N

⌉
≤ M < K. Note that under opt-case, the number

of available data replicas is constrained by memory capacity.
Simply creating data replicas in a greedy manner easily
violates the data locality constraint. Therefore, we decide to
group the jobs according to their input data, i.e., all jobs
that have the same input data block are classified into the
same group. Later, we focus on deciding the assignment of
data blocks and the number of replicas needed for each data

block. To optimize the memory slot utilization, we conduct
the following preprocess.

Grouping. We group the jobs according to their input data.
The jobs that have the same input data block are classified into
the same group. We then have K groups. For each group, we
denote the number of items (jobs) in the group as its degree.
A group is represented as gi = ⟨Di, di⟩ (1 ≤ i ≤ K) where
di indicates the degree of group gi.

Sorting. We sort the groups in ascending degree order. In
the uniform case, each job has the same execution time. We
only consider the degree for each group, and the jobs contained
in the group are not treated separately.

Selecting. We select groups for each server according
to certain principle (the principle will be specified later).
The selection will be carried out step by step. During the
selection procedure, some group is partitioned into two or
more sub-groups to distribute the workload (jobs) and decrease
makespan. We concretely discuss the selection principle and
group partitioning issues later in this section.

Inserting. When a group is divided into multiple parts,
the unselected parts are inserted into the unselected group
sequence while preserving the ascending degree order.

It is easy to realize grouping, sorting, and inserting; we
mainly discuss how to select the groups and which groups
should be divided. Since the best assignment achieves absolute
load balancing, we then obtain a lower bound of the optimal
solution, i.e. the minimum makespan, represented by opt.

opt ≥ ϖ =

⌈
1

N

K∑
i=1

di

⌉
(1)

where ϖ is the makespan when jobs are assigned in an
absolutely load-balanced manner.

To achieve the optimal assignment, there are two constraints
that should be satisfied for each server: the memory constraint
and the workload constraint. The workload constraint requires
that the degree sum of the groups assigned to a server do not
exceed ϖ. This motivates us to develop an algorithm that can
fully utilize memory slots and ensure that the workload for
each server equals ϖ.

Since the degree sum of the selected groups does not always
equal ϖ, when the degree sum exceeds ϖ, we introduce the
partition operation to cut the amount over ϖ. The basic idea
of partitioning is to divide one group into two sub-groups with
the same input data but with smaller degrees. The two sub-
groups will be treated separately. For example, group ⟨D1, 25⟩
can be partitioned into ⟨D1, 17⟩ and ⟨D1, 8⟩.

Following this principle, we list three conditions that serve
as the basis of our approach. In the following equations, p and
q are indices indicating the first and last items of the unselected
group sequence. At the beginning, we have p = 1 and q = K.

Condition 0:
q∑

i=p

di ≤ ϖ, q − p+ 1 ≤M

Condition 1: Ω1(n)
p+n−1∑
i=p

di−ϖ = s∗ ≥ 0,
p+n−2∑
i=p

di−ϖ < 0, and n ≤M



Algorithm 1 Condition-based Selection Algorithm: csa
Input: G: sorted group sequence

1: p← 1, q ← K;
2: selected← ∅, Ou ← NULL, Os ← NULL;
3: for r = 1→ N do
4: if ∃n,Ω1(n) then
5: Ou ← ⟨Dn, s

∗⟩, Os ← ⟨Dn, dn − s∗⟩;

6: selected←
n−1∪
i=1

gi +Os, G ← G −
n∪

i=1

gi;

7: else if ∃m,n,Ω2(m,n) then
8: Ou ← ⟨Dq, s

∗⟩, Os ← ⟨Dq, dq − s∗⟩;

9: selected←
m∪
i=1

gi +
q−1∪

j=q−n+1

gj +Os;

10: G ← G −
m∪
i=1

gi −
q∪

j=q−n+1

gj ;

11: else
12: selected← G, G ← ∅;
13: end if
14: insert Ou into G, q ← |G|;
15: end for

Condition 2: Ω2(m,n)
p+m−1∑

i=p

di +
q∑

j=q−n+1

dj −ϖ = s∗ ≥ 0,

p+m∑
i=p

di +
q∑

j=q−n+2

dj −ϖ < 0, and m+ n =M

Based on these conditions, we present the condition-based
selection algorithm whose framework is shown in Algorithm
1. We interpret the algorithm and the conditions jointly. We
start with the basic condition; Condition 0 indicates that the
unselected group sequence has no more than M items, and
the sum of the degrees of these items is no more than ϖ.
This case only appears at the last round of the selection
procedure. Before that, Condition 1 or Condition 2 always
holds. Condition 1 implies that the sum of the degrees of
the least M items is greater than ϖ. We select the first n
items, where n is the smallest number, which ensures that the
degree sum of the first n items is greater than ϖ. When the
first M items cannot meet Condition 1, we perform a swap
operation to increase the degree sum until the sum is equal
to or greater than ϖ. In detail, when performing the swap
operation, we take the item with the largest degree from the
unselected groups to replace the item with the largest degree
in the selected groups. For example, in the first round of swap,
we use gq to replace gM. We repeat the swap operation until
the degree sum is equal to or greater than ϖ, and Condition 2
holds true at this time. We will prove that before each round
of selection, there must exist some condition that is true.

Once the correct condition is known, the selection procedure
is determined and the degree sum of the selected groups may
be greater than ϖ; this does not result in the optimal makespan.
To achieve the minimum makespan, we partition the item with
the greatest degree into two parts, Ou and Os, as shown in
Algorithm 1. For Condition 1, the divided item is gn. Ou and
Os have the same input data Dn. s∗ is the amount that needs

6 (14=8+6)

S1

S2

S3

Lower Bound

makespan = 26

6 6

6

Condition 2 is true.

6

7

10 123 (8=5+3)

S4

Condition 2 is true.

Condition 1 is true.

Condition 0 is true.

G={2, 6, 6, 6, 6, 6, 7, 8, 10, 12, 14, 20}, unselected items.

G={6, 6, 6 , 7, 8, 8, 10, 12, 14,}, unselected items.

G={3,10,12}, unselected items.

G={6, 7, 8, 8, 10, 12, 14}, unselected items.

Round 1

Round 2

Round 3

Round 4

2 12 (20=12+8)

6 8 (14=8+6)

8 (20=12+8) 5 (8=5+3)

Fig. 1. An example with optimal assignment

to be cut. So, the newly created group Ou is assigned with a
degree equals to s∗, while the degree of Os is dn− s∗. In the
final decision, Os is selected, and Ou is not. Consequently,
the degree sum of the selected items is exactly equal to ϖ.
A similar explanation applies to Condition 2 when gq is cut
by s∗. Finally, the selected groups are assigned to one server.
Ou is inserted into the unselected group sequence and the
procedure repeats until all groups are assigned to a server.

The input of the algorithm is the sorted group sequence.
We will illustrate the selection procedure via an exam-
ple. Given sorted group sequence G= {⟨D1, 2⟩, ⟨D2, 6⟩,
⟨D3, 6⟩, ⟨D4, 6⟩, ⟨D5, 6⟩, ⟨D6, 6⟩, ⟨D7, 7⟩, ⟨D8, 8⟩, ⟨D9, 10⟩,
⟨D10, 12⟩, ⟨D11, 14⟩, ⟨D12, 20⟩}, and N = 4, we then have
K = 12, ϖ = 26, and letM = 4. According to our algorithm,
we make the following selection:

• Round 1. Condition 2 is true; m = 3 and n = 1.
⟨D12, 20⟩ is partitioned into ⟨D12, 12⟩ and ⟨D12, 8⟩.
{⟨D1, 2⟩, ⟨D2, 6⟩, ⟨D3, 6⟩, ⟨D12, 12⟩} is selected.

• Round 2. Condition 2 is true; m = 3 and n =
1. ⟨D11, 14⟩ is partitioned into ⟨D11, 8⟩ and ⟨D11, 6⟩.
{⟨D4, 6⟩, ⟨D5, 6⟩, ⟨D6, 6⟩, ⟨D11, 8⟩} is selected.

• Round 3. Condition 1 is true; n = 4.
⟨D8, 8⟩ is partitioned into ⟨D8, 5⟩ and ⟨D8, 3⟩.
{⟨D11, 6⟩, ⟨D7, 7⟩, ⟨D12, 8⟩, ⟨D8, 5⟩} is selected.

• Round 4. Condition 0 is true.
{⟨D8, 3⟩, ⟨D9, 10⟩, ⟨D10, 12⟩} is selected.

The assignment is also shown in Fig. 1, where each slot
refers to one group (or sub-group). The number under each slot
represents the degree of this group. According to the memory
constraint, the number of slots should not exceed memory
capacity M = 4.

This example motivates us to select a “diversified” group
set with both large and small degrees that is more likely to
meet both memory and workload constraints. This also shows
the tradeoff. In fact, the group degree implies the hotness
or popularity of the data block; we should make a mixed
assignment with diversified popularity.



According to Algorithm 1, there is at most one partition
operation in each round. The partition operation will create
one replica for some data block. Therefore, the total number
of data block replicas may exceed K, but the total number of
replicas is at most K +N − 1. The total memory capacity is
M · N . If K + N − 1 >M · N , the algorithm cannot give
the optimal solution. Hence, we adopt K +N − 1 ≤ M · N
as the necessary condition to use Algorithm 1 to achieve the
minimum makespan. Because M is an integer, the condition
is equivalent to

⌈K+N−1
N

⌉
≤ M < K, which refers to

the opt-case. Then, we are ready to prove the optimality of
Algorithm 1 under opt-case.

Theorem 2: For the opt-case, i.e.
⌈K+N−1

N
⌉
≤ M < K,

Algorithm 1 gives the optimal assignment.
Proof: It is easy to show that if this theorem is true when

M =
⌈K+N−1

N
⌉
, and it also holds when M >

⌈K+N−1
N

⌉
because the same assignment decision can be adopted. Hence,
we only need to prove that Algorithm 1 is optimal whenM =⌈K+N−1

N
⌉
.

First, we assume that the sum of all degrees can be divided

into N parts with exactly equal loads, i.e.
K∑
i=1

di = N · ϖ.

In fact, we can always achieve this by increasing the largest

degree: dK = dK+(N ·ϖ−
K∑
i=1

di). Through this transforma-

tion, the optimal makespan is still ϖ. Thus, this assumption
holds.

We then give the proof by contradiction. Without loss of
generality, we assume that the jth round selection does not
meet any of the three conditions. This means that

qj∑
i=qj−M+1

di < ϖ, qj −M+ 1 > 1

where qj is the index of the last item of the unselected group
sequence of the jth round selection. pj indicates the first item,
as mentioned in Algorithm 1. We add a subscript for p and q
to distinguish different rounds.

Condition 1 occurs under two cases, n =M and n ≤M−
1; we use CM

1 and Cn
1 to represent the two cases respectively.

Depending on condition Cn
1 , we analyze our algorithm under

two cases.
1. Cn

1 never occurs in the previous j−1 rounds. The number
of unselected groups can be described as qj − pj + 1 = K −
M · (j − 1) + (j − 1).

Because M≥
⌈K+N−1

N
⌉
, we have

M ·N ≥ K +N − 1⇒ K ≤M · N −N + 1

Hence, we have

qj − pj + 1 = K −M · (j − 1) + (j − 1)

≤M · N −N + 1−M · (j − 1) + (j − 1)

≤M · (N − j + 1)

It is easy to show that the average value of the largest M
degrees is greater than the average value of the unselected
group degrees, i.e.,

1

M
·

qj∑
i=qj−M+1

di ≥
1

qj − pj + 1
·

qj∑
i=pj

di

According to the above assumption, we have

qj∑
i=pj

di ≤
qj − pj + 1

M
·

qj∑
i=qj−M+1

di <
qj − pj + 1

M
·ϖ

≤ qj − pj + 1

M
· 1

N − j + 1
·

qj∑
i=pj

di ≤
qj∑

i=pj

di

We then have
qj∑

i=pj

di <
qj∑

i=pj

di, which is a contradiction. This

case also implies that one of the three conditions must be true
at the first round of selection.

2. Cn
1 occurs in the previous j − 1 rounds. We assume the

first appearance of Cn
1 is in the ith(i < j) round. So we have

pi+n−1∑
l=pi

dl ≥ ϖ, n ≤M− 1

We use s∗i to indicate the degree of the newly created
group, as also mentioned in Algorithm 1 (Ou). We use dimax

to indicate the maximum degree among the selected groups.
When the selection of round i is finished, the degree of
the unselected groups is greater than dimax except s∗i , i.e.
∀a ∈ [pi+1 + 1, qi+1], da ≥ dimax, and dpi+1 = s∗i .

Then, we prove our conclusion by induction. For round
r(i < r ≤ j), we have φr = dpr +

qr∑
i=qr−M+2

di ≥ ϖ

∀a ∈ (pr+1, qr+1], da ≥ dimax

Base Case: r = i+ 1.

φr = dpr +

qr∑
l=qr−M+2

dl = s∗i +

qi+1∑
l=qi+1−M+2

dl

≥ s∗i + (M− 1) · dimax ≥ s∗i +

pi+n−1∑
l=pi

dl ≥ ϖ

We use s∗i+1 to indicate the degree of the newly created
group. The degrees of the other unselected groups, which are
inherited from the last round (round i), are still no less than
dimax. Thus, regardless of whether s∗i+1 is greater than dimax

or not, we always have ∀a ∈ (pi+2, qi+2], da ≥ dimax.
By the induction hypothesis, we let r = i+ k. φr = dpr +

qr∑
i=qr−M+2

di ≥ ϖ

∀a ∈ (pi+k+1, qi+k+1], da ≥ dimax



r = i+ k + 1.

φr = dpr +

qi+k+1∑
l=qi+k+1−M+2

dl

≥ dpr + (M− 1) · dimax (by I.H.)

≥ dpr +

pi+n−1∑
l=pi

dl ≥ ϖ

In a similar way, whether s∗i+k+1 is greater than dimax or
not, the degree of the other unselected groups is no smaller
than dimax. Therefore, we have

∀a ∈ (pi+k+2, qi+k+2], da ≥ dimax

Based on the above proof, we have
qj∑

i=qj−M+1

di ≥ dpj +

qj∑
i=qj−M+2

di = φj ≥ ϖ

which is contradictory to the assumption.
Therefore, we conclude that one of the conditions is true

for each round selection, which means the selection procedure
is feasible. According to the conditions, we know that the
workload on each server is ϖ and we have opt ≥ ϖ. Hence,
Algorithm 1 gives the optimal assignment under opt-case.

C. nph-case when M =
⌈ K
N
⌉

In the previous two subsections, we have discussed the inf-
case and the opt-case. In this subsection, we study the nph-
case whenM =

⌈ K
N
⌉
. Note that nph-case belongs to opt-case

when
⌈K+N−1

N
⌉
=

⌈ K
N
⌉
. Therefore we focus on the case when⌈K+N−1

N
⌉
̸=

⌈ K
N
⌉

or
⌈K+N−1

N
⌉
=

⌈ K
N
⌉
− 1 (so as to avoid

trivial cases).
Theorem 3: The joint job and data assignment problem

under the nph-case is NP-hard.
Proof: According to Theorem 1, the general joint job and

data assignment problem is NP-hard. We have proved that opt-
case allows for a polynomial-time optimal algorithm and that
there is no feasible solution under the inf-case. Hence, the joint
job and data assignment problem under nph-case is NP-hard.

We propose a 2-approximation algorithm, as detailed in
Algorithm 2, to tackle this problem under the nph-case. To
assure that all groups can be assigned to the servers, the
memory capacity must be large enough to host at least one
replica for each data block, which implies that M =

⌈ K
N
⌉
.

In Algorithm 2, the function assign(g1,Sj) refers to as-
signing the first group (g1) of G to the jth server of the sorted
server set S. Function sorting(S) refers to sorting the servers
in descending workload order, i.e., the sum of the degrees of
the groups assigned to this server.

The condition-based selection algorithm (Algorithm 1) s-
elects a group set for one server at each selection round.
Different from Algorithm 1, the approximation algorithm
selects one group for each server in one round. There are M
assignment rounds and only one replica for each data block.
The assignment procedure can be viewed as assigning the first

Algorithm 2 Approximate Algorithm: app
Input: G: sorted group sequence

1: for i = 1→M do
2: S ← sorting(S);
3: for j = 1→ N do
4: assign(g1,Sj), G ← G − g1;
5: if G = ∅ then
6: break;
7: end if
8: end for
9: end for

6 6 6

6 6 6

2

2

6 6
7

8

6 66

6 6
7

2

8

10 12
14

20

G={2, 6, 6, 6, 6, 6, 7, 8, 10, 12, 14, 20}

Round 1

S1 S2 S3 S4

makespan=30

Round 2

S1S2 S3 S4

S1S2 S3S4

Round 3

G={ 6, 6, 7, 8, 10, 12, 14, 20}

G={10, 12, 14, 20}

Fig. 2. An example of approximation algorithm

N groups of sorted G to theN servers, which have been sorted
in descending order.

To gain a better understanding of the approximation algo-
rithm, we take the input of Fig. 1 as an example. In this case,
M =

⌈ K
N
⌉
= 3. There are 3 selection rounds, and one item

is selected for each server at each round. Fig. 2 shows the
selection procedure.

There may still exist some unused memory slots after the
assignment; partition operations can be adopted to move some
jobs from the server with the highest workload to one that
has an available memory slot. We can get a better solution
via some partition and movement, but we cannot guarantee
an optimal makespan because the number of unused memory
slots is strictly less than N . The remainder of this section is
devoted to proving that the approximation ratio of Algorithm
2 is 2.

We first introduce a notation W j
u to indicate the workload

of server Su after j assignment rounds. W j
u can be defined

recursively:
W j

u = W j−1
u + dju

where dju indicates the degree of the group assigned to server
Su at the jth assignment round. Let W 0

u = 0. We first give
the following lemma.

Lemma 2: ∀u, v, u ̸= v, we have W j+1
u ≥ W j

v , where 1 ≤
u, v ≤ N , and1 ≤ j <M.



Proof: First, we give a basic fact: ∀u, v, dj+1
u ≥ djv.

Because the groups are sorted in ascending order and they are
assigned from smallest to largest, the degrees of the groups
selected in the (j + 1)

th round must be greater than the items
in the jth round.

We prove this lemma through the induction of j.
Base Case: j = 1. ∀u, v, u ̸= v, W 2

u = d1u + d2u,W
1
v = d1v.

Because d2u ≥ d1v, we have W 2
u ≥W 1

v .
By the induction hypothesis, we let W k+1

u ≥W k
v .

j = k+ 1 It is easy to show that W k+2
u = W k+1

u + dk+2
u

and W k+1
v = W k

v + dk+1
v . According to the I.H. condition,

we have W k+1
u ≥ W k

v , and we reach the basic conclusion
dk+2
u ≥ dk+1

v . Then we have W k+2
u ≥W k+1

v .
Therefore, ∀u, v, u ̸= v, we have W j+1

u ≥ W j
v . This

concludes the proof of this lemma.
Theorem 4: For nph-case, i.e. M =

⌈ K
N
⌉
, Algorithm 2

achieves an approximation ratio of 2.
Proof: From M =

⌈ K
N
⌉
, we have K ≤ M · N . We

assume K = M · N . Actually, if K < M · N , we can add
some groups with degree d = 0, until K =M ·N .

Let opt indicate the minimum makespan. As mentioned
above, we have a lower bound of opt, as shown in Eq. 1.
Makespan should not be less than the degree of any of the
groups, so we have opt ≥ d∗, where d∗ refers to the greatest
degree of the groups..

Without loss of generality, we assume that server Su has
the greatest workload WM

u , which also indicates the corre-
spondent makespan. Meanwhile, we assume server Sv has the
least workload WM

v . It is easy to show that

WM
v ≤

⌈
1

N

K∑
i=1

di

⌉
≤ opt

Let ∆ = WM
u −WM

v . According to Lemma 2, we conclude
that ∆ ≤ dMu . (If not (∆ > dMu ), we have WM−1

u = WM
u −

dMu > WM
u − ∆. Because ∆ = WM

u −WM
v , this implies

that WM−1
u > WM

v , which contradicts Lemma 2.) Therefore,
∆ = WM

u −WM
v ≤ dMu ≤ d∗ ≤ opt. Then, we conclude that

WM
u = WM

v +∆ ≤ 2 · opt.
In addition to the approximate algorithm (Algorithm 2), we

propose another heuristic algorithm to solve the assignment
problem when M =

⌈ K
N
⌉
. The framework of the algorith-

m is given in Algorithm 3. In the algorithm, the function
selectServer(S) returns the server with minimal workload at
the current time. The available memory slots of the returned
server should be no less than 1, and its value should be cut
by 1 before returning. The variable j is an index to indicate
which item should be assigned.

This algorithm is similar to the approximation algorithm for
the minimal makespan scheduling problem, but it includes a
memory capacity constraint. We believe that the theoretical
performance of the heuristic algorithm hec is similar to the
approximate algorithm app, but hec shows more potential. We
will present this in the simulation results.

Algorithm 3 Heuristic Algorithm: heu
Input: G: sorted group sequence

1: j ← |G|;
2: for i = 1→ |G| do
3: S⋆ ← selectServer(S);
4: assign(gj ,S⋆);
5: j ← j − 1;
6: end for

IV. PERFORMANCE EVALUATION

In this section, we focus on evaluating the Approximation
Algorithm app and Heuristic Algorithm heu with respect to
various parameters. The algorithm csa (Algorithm 1) will not
be evaluated since we have already prove that it provides the
optimal solution for the problem.

A. Simulation Settings

To evaluate our approximation algorithm and heuristic algo-
rithm, we let M =

⌈ K
N
⌉
, which means that M is determined

by the input parameters, jobs, and data center settings.
It is hard to achieve the optimal solution when M =

⌈ K
N
⌉
.

It is impossible to traverse all the possible assignment cas-
es. However, we can get the lower bound of the minimal
makespan, represented by opt. There are three factors that
indicate the lower bound: (1) ϖ, as shown in Eq. 1; (2)
d∗, the greatest degree of the groups; and (3) sum(M),
the degree sum of the first M items of the sorted group
sequence. Because M = ⌈ KN ⌉, we have (M− 1) · N < K,
which means that there is at least one server that hosts M
items. Therefore, the optimal makespan should be no less than
sum(M). Therefore, we let opt = max{ϖ, d∗, sum(M)}.

In the typical Hadoop file system, each data block size is
64MB [15]. We adopt the same setting in our simulation. For
the shared common data set, we take into account 3 sizes: 10
GB, 100GB, and 1TB. Therefore, the value of K equals 160,
1600, and 16000 respectively. The degree of each data block
is a random number belonging to the interval (0, 2000), and
the expected value is 1,000. Meanwhile, we consider various
values for N .

B. Simulation Results

We conduct extensive simulations based on the above set-
tings. The simulation results are shown in Fig. 3. For each
value of K, which implies the size of a common data set,
there is one sub-figure to exhibit the corresponding results.
In each sub-figure, the x-coordinate represents the number of
servers N . To compare the performance clearly, we transform
the makespan to ratio, i.e. the ratio of makespan determined
by the algorithms to the value of opt.

According to the above analysis, the value of opt is deter-
mined by ϖ and d∗. When M is very large, there are lots of
items on each server and no item, not even d∗, has a big impact
on the makespan. The approximation algorithm and heuristic
algorithm are more likely to reach the optimal solution. That
is why the results are nearly the same in Fig. 3(c) when



20 50 100 150 160

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
a

ti
o

Number of Servers

 optimal

 approximate

 heuristic

(a) K = 160

100 300 500 1000 1400

0.8

1.0

1.2

1.4

1.6

1.8

R
a

ti
o

Number of Servers

 optimal

 approximate

 heuristic

(b) K = 1600

200 1000 1600 3000 5000

0.8

1.0

1.2

1.4

1.6

R
a

ti
o

Number of Servers

 optimal

 approximate

 heuristic

(c) K = 16000

Fig. 3. Evaluation results

N < 3, 000 and this observation also explains some of the
cases in Figs. 3(a) and 3(b). As a result, we adopt different
N for each K in the experiments.

When N ≥ K, there should be at most one item on each
server to achieve the optimal solution. This explains the result
when N = 160 in Fig. 3(a). However, when the value of M
is not too great, d∗ has a remarkable impact on the makespa,
as shown by the other cases like N = 150 in Fig. 3(a), N =
1, 400 in Fig. 3(b), and N = 5, 000 in Fig. 3(c). The result
varies for different cases, but there is a solid upper bound for
the results, i.e. ratio < 2, as declared in Theorem 4.

V. RELATED WORK

Job scheduling is one of the most hot topics in cloud data
center, the works are conducted from all kinds of aspects, like
energy [16], resource sharing [17], data locality [6], etc. With
the development of data-intensive applications, data placement
becomes more and more important [3] [4]. This motivates us
focus on the joint job and data assignment problem. Makespan
optimization is one of the most important issues for both
job scheduling and data placement problem [5], and many
researchers have pointed that preserving data locality is an
efficient method to reduce makespan [7].

The authors in [7] addressed the conflict between data
locality and fairness, and proposed a simple delay scheduling
algorithm to make a tradeoff between locality and fairness.
In [3], the authors focus on multiple data items for one
traction, and proposed an associated data placement scheme.
The capacity is taken into account in [4] for heterogeneous
clusters to achieve data placement.

VI. CONCLUSION

In this paper, we investigate the joint job and data assign-
ment problem for data centers with the new memory system.
We classify the problem into three cases and propose an
optimal algorithm when M ≥

⌈K+N−1
N

⌉
. When M =

⌈ K
N
⌉
,

we present a 2-approximation algorithm and a heuristic al-
gorithm. The experimental results show the performance of
our algorithms. Because

⌈K+N−1
N

⌉
−

⌈ K
N
⌉
≤ 1, the optimal

algorithm works most of the time.

ACKNOWLEDGEMENT

This work is supported in part by the National High Tech-
nology Research and Development Program of China under

Grant No. 2015AA015303; National Natural Science Foun-
dation of China under Grant No. 61472181, 61373015 and
61402225; Jiangsu Natural Science Foundation under Grant
No. BK20160813, BK20151392 and BK20140832; Project
Funded by China Postdoctoral Science Foundation; and NSF
grants CNS 1629746, CNS 1564128, CNS 1449860, CNS
1461932, CNS 1460971, and CNS 1439672.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in USENIX OSDI, 2004.

[2] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,” in
EuroSys, 2007, pp. 59–72.

[3] B. Yu and J. Pan, “Location-aware associated data placement for geo-
distributed data-intensive applications,” in IEEE INFOCOM, 2015.

[4] B. Wang, J. Jiang, and G. Yang, “Actcap: Accelerating mapreduce on
heterogeneous clusters with capability-aware data placement,” in IEEE
INFOCOM, 2015.

[5] Y. Zhu, Y. Jiang, W. Wu, L. Ding, A. Teredesai, D. Li, and W. Lee,
“Minimizing makespan and total completion time in mapreduce-like
systems,” in IEEE INFOCOM, 2014.

[6] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Map task scheduling
in mapreduce with data locality: Throughput and heavy-traffic optimal-
ity,” in IEEE INFOCOM, 2013.

[7] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in EuroSys, 2010.

[8] F. Ahmad, S. Chakradhar, A. Raghunathan, and T. Vijaykumar, “Shuffle-
watcher: Shuffle-aware scheduling in multi-tenant mapreduce clusters,”
in USENIX ATC, 2014.

[9] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Cae-
sar, “Network-aware scheduling for data-parallel jobs: Plan when you
can,” in ACM SIGCOMM, 2015.

[10] T. Hirofuchi and R. Takano, “RAMinate: Hypervisor-based virtualization
for hybrid main memory systems,” in ACM SoCC, 2016.

[11] L. Wang, C. Yang, and J. Wen., “Physical principles and current status
of emerging non-volatile solid state memories,” Electronic Materials
Letters, vol. 11, no. 4, pp. 505–543, 2015.

[12] S. Robbins, “RAM is the new disk,” InfoQ, June 2008.
[13] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-

berg, “Quincy: Fair scheduling for distributed computing cluster,” in
ACM Symposium on Operating Systems Principles (SIGOPS), 2009.

[14] A. Verma, L. Cherkasova, and R. H. Campbell, “Two sides of a coin:
Optimizing the schedule of mapreduce jobs to minimize their makespan
and improve cluster performance,” in IEEE MASCOTS, 2012.

[15] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in IEEE MSST, 2010.

[16] J. Fu, J. Guo, E. W. Wong, and M. Zukerman, “Energy-efficient
heuristics for job assignment in processor-sharing server farms,” in IEEE
INFOCOM, 2015.

[17] J. Tan, X. Meng, and L. Zhang, “Coupling task progress for mapreduce
resource-aware scheduling,” in IEEE INFOCOM, 2013.


