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Abstract—With computer vision-based technologies, current Augmented reality (AR) systems can effectively recognize multiple
objects with different visual characteristics. However, only limited degrees of distinctions can be offered among different objects with
similar natural features, and inherent information about these objects cannot be effectively extracted. In this paper, we propose
TaggedAR, i.e., an RFID-based approach to assist the recognition of multiple tagged objects in AR systems, by deploying additional
RFID antennas to the COTS depth camera. By sufficiently exploring the correlations between the depth of field and the received
RF-signal, we propose a rotate scanning-based scheme to distinguish multiple tagged objects in the stationary situation, and propose
a continuous scanning-based scheme to distinguish multiple tagged human subjects in the mobile situation. By pairing the tags with
the objects according to the correlations between the depth of field and RF-signals, we can accurately identify and distinguish multiple
tagged objects to realize the vision of “tell me what I see” from the AR system. We have implemented a prototype system to evaluate
the actual performance with case studies in real-world environment. The experiment results show that our solution achieves an
average match ratio of 91% in distinguishing up to dozens of tagged objects with a high deployment density.

Index Terms—Passive RFID; Augmented Reality System; Object Recognition; Prototype Design
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1 INTRODUCTION

Augmented Reality (AR) systems (e.g., Microsoft Kinect,
Google Glass) are nowadays increasingly used to obtain an
augmented view in a real-world environment. For example,
by leveraging the computer vision and pattern recognition,
depth camera-based devices like the Microsoft Kinect [1]
can effectively perform object recognition. Hence, the users
can distinguish multiple objects of different categories, e.g.,
a specified object in the camera can be recognized as a
vase, a laptop, or a pillow based on its visual characteristics.
However, these techniques can only offer a limited degree
of distinctions, since multiple objects of the same type may
have very similar physical features, e.g., the system cannot
effectively distinguish between two laptops of the same
brand, even if they belong to different product models.
Moreover, they cannot indicate more inherent information
about these objects, e.g., the specific configurations, the
manufacturers, and production date of the laptop. It is
rather difficult to provide these functions by purely lever-
aging the computer vision-based technology.
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(a) Scenario 1: Recognize different
human subjects in the cafe

(b) Scenario 2: Recognize different
cultural relics in the museum

Fig. 1. Typical scenarios of “Tell me what I see” from the AR system

Nevertheless, the RFID technology has brought new
opportunities to meet the new demands [2, 3]. The RFID
tags can be used to label different objects, and store inherent
information of these objects in their onboard memory. In
comparison to the optical markers such as QR code, the
COTS RFID tag has an onboard memory with up to 4K or 8K
bytes, and it can be effectively identified even if it is hidden
in/under the object. This provides us with an opportunity
to effectively distinguish these objects, even if they have
very similar natural features from the visual sense. Fig. 1
shows two typical application scenarios. The first scenario is
to recognize different human subjects in the cafe, as shown
in Fig. 1(a). In this scenario, multiple people are standing or
sitting together in the cafe, while they are wearing the RFID
tagged badges. From the camera’s view, the depth camera
such as Kinect can recognize multiple human subjects, and
capture the depth from its embedded depth sensor, which
is associated with the distance to the camera. The RFID
reader can identify multiple tags within the scanning range,
moreover, it is able to extract the signal features like the
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phase and RSSI from the RFID tags. By pairing these in-
formation together, the vision of “tell me what I see” can
be effectively realized in the AR system. In comparison
to the pure AR system, which can only show some basic
information like the gender and race according to the vision-
based pattern recognition, by leveraging this novel RFID
assisted AR technology, the inherent information such as
their names, jobs and titles can be directly extracted from
the RFID tags and associated with the corresponding human
subjects in the camera’s view. For example, when we are
meeting multiple unknown people wearing RFID badges in
public events, the system can effectively help us recognize
these people by illustrating the detailed information on the
camera’s view in a smart glass. The second scenario is to
recognize different cultural relics in the museum, as shown
in Fig. 1(b). In this scenario, multiple cultural relics like the
ancient potteries are placed on the display racks. Due to the
same craftsmanship, they might have very similar natural
features like the color and shape from the visual sense. This
prohibits the pure AR system from distinguishing different
objects when they have very similar physical features. In
contrast, using our RFID assisted AR technology, these ob-
jects can be easily distinguished according to the differences
in the labeling tags. In summary, the advantages of RFID
assisted AR systems over the pure AR systems lie in the
essential capability of identification and localization in RFID.

Although many schemes for RFID-based localization
[4, 5] have been proposed, they mainly focus on the ab-
solute object localization, and usually require anchor nodes
like reference tags for accurate localization. They are not
suitable for distinguishing multiple tagged objects because
of two reasons. First, we only require distinguishing the
relative location instead of absolute location of multiple
tagged objects, by pairing the tags to the objects based on
the correlation between the depth of field and RF-signals.
Second, the depth camera cannot effectively use the anchor
nodes, and it is impractical to deploy multiple anchor nodes
in most AR applications.

In this paper, we leverage the RFID technology [6, 7] to
further label different objects with RFID tags. We deploy
additional RFID antennas to the COTS depth camera. To
recognize the stationary tagged objects, we propose a rotate
scanning-based scheme to scan the objects, i.e., the system
continuously rotates and samples the depth of field and RF-
signals from these tagged objects. We extract the phase value
from RF-signal, and pair the tags with the objects according
to the correlation between the depth value and phase value.
Similarly, to recognize the mobile tagged human subjects,
we propose a continuous scanning-based scheme to scan
the human subjects, i.e., the system continuously samples
the depth of field and RF-signals from these tagged human
subjects. In this way, we can accurately identify and distin-
guish multiple tagged objects, by sufficiently exploring the
correlations between the depth of field and the RF-signal.

However, there are several challenges in distinguishing
multiple tagged objects in AR systems. The first challenge
is conducting accurate paring between the objects and the
tags. In real applications, the tagged objects are usually
placed in very close proximity, and the number of objects
is usually in the order of dozens. It is difficult to realize
accurate paring due to the large cardinality and mutual

interference. The second challenge is mitigating the interfer-
ences from the multi-path effect, object occlusion in real set-
tings. These issues lead to nonnegligible interference to pair
the tags with the objects, such as the missing tags/objects
which fail to be identified as well as extra objects which
are untagged. The third challenge is designing an efficient
solution without any additional assistance, like the anchor
nodes. It is impractical to intentionally deploy anchor nodes
in real AR applications due to intensive deployment costs
on manpower and time.

This paper presents the first study of using RFID to assist
recognizing multiple objects in AR systems (a preliminary
version of this work appeared in [8]). Specifically, we make
three key contributions : 1) We propose TaggedAR to real-
ize the vision “tell me what I see” from AR systems. By
sufficiently exploring the correlations between the depth of
field and the RF-signal, we propose a rotate scanning-based
scheme to distinguish multiple tagged objects in the sta-
tionary situation, and propose a continuous scanning-based
scheme to distinguish multiple tagged human subjects in
the mobile situation. 2) We efficiently tackle the interference
from the multi-path effect, object occlusion in real settings,
by reducing this problem to a stable marriage problem
and propose a stable-matching-based solution to mitigate
the interferences from the outliers. 3) We implemented a
prototype system and evaluated the performance with case
studies in real-world environment. Our solution achieves an
average match ratio of 91% in distinguishing up to dozens
of RFID tagged objects with a high deployment density.

2 RELATED WORK

Pattern recognition via depth camera: Pattern recognition
via depth camera mainly leverages the depth and RGB
captured from the camera to recognize objects in a computer
vision-based approach. Based on the depth processing [9], a
number of technologies are proposed in object recognition
[10] and gesture recognition [11, 12]. Nirjon et al. solve the
problem of localizing and tracking household objects using
depth-camera sensors [13]. The Kinect-based pose estima-
tion method [11] is proposed in the context of physical
exercise, examining the accuracy of joint localization and
robustness of pose estimation with respect to the orientation
and occlusions.

Batteryless sensing via RFID: RFID has recently been
investigated as a new scheme of batteryless sensing, includ-
ing indoor localization [14] , activity sensing [15], physical
object search [16], etc. Prior work on RFID-based localization
primarily relied on Received Signal Strength [14] or Angle
of Arrival [17] to acquire the absolute location of an object.
The state-of-the-art systems use the phase value to estimate
the absolute or relative location of an object with higher
accuracy [6, 18–20]. RF-IDraw uses a 2-dimensional array
of RFID antennas to track the movement trajectory of one
finger attached with an RFID tag so that it can reconstruct
the trajectory shape of the specified finger [21]. Tagoram
exploits tag mobility to build a virtual antenna array, and
uses differential augmented hologram to facilitate the in-
stant tracking of a mobile RFID tag [4].

Combined use in augmented reality environment:
Recent works further consider using both depth camera
and RFID for indoor localization and object recognition in
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augmented reality environment [22–26]. Wang et al. propose
an indoor real-time location system combined with active
RFID and Kinect by leveraging the positioning feature of
identified RFID and the object extraction ability of Kinect.
Klompmaker et al. use RFID and depth-sensing cameras
to enable personalized authenticated tangible interactions
on a tabletop [23]. Galatas et al. propose a multimodal
context-aware localization system, by using RFID and 3D
audio-visual information from 2 Kinect sensors deployed
at various locations [24]. Cerrada et al. present a method
to improve the object recognition by combining the vision-
based techniques applied to the range-sensor captured 3D
data, and object identification obtained from RFID tags
[25]. Li et al. present a hybrid computer vision and RFID
system ID-Match, it uses a novel reverse synthetic aperture
technique to recover the relative motion paths of RFID tags
worn by people, and correlate that to physical motion paths
of individuals as measured with a 3D depth camera [26].
Duan et al. present TagVision, a hybrid RFID and computer
vision system for fine-grained localization and tracking of
tagged objects [27]. Instead of simply performing indoor
localization or object recognition, in this paper, we aim to
identify and distinguish multiple tagged objects with depth
camera and RFID antennas. Our solution does not require
any anchor nodes for assistance, and only leverages at most
two RFID antennas for rotate/continuous scanning, which
greatly relieves the intensive deployment cost and makes
our solution more practical in various scenarios.

3 SYSTEM OVERVIEW

3.1 Design Goals

To realize the vision of “tell me what I see ” from the aug-
mented system, we aim to propose an RFID-based approach
to use RFID tags to label different objects. Therefore, we
need to collect the responses from multiple tags and objects,
and then pair the RFID tags to the corresponding objects,
according to the correlations between the depth of field and
RF-signals, such that the information stored in the RFID tag
can be used to illustrate the specified objects in a detailed
approach. Hence, we need to consider the following metrics
in regard to system performance: 1) Accuracy: Since the
objects are usually placed in very close proximity, there is
a high accuracy requirement in distinguishing these objects,
i.e., the average match ratios should be greater than a
certain value, e.g., 85%. 2) Robustness: The environmental
factors, like the multi-path effect and partial occlusion, may
cause the responses from the tagged objects to be missing
or distorted. Besides, the tagged objects could be partially
hidden behind each other due to the randomness in the
deployment. The solution should be robust to these noises
and distractions.

3.2 System Framework

3.2.1 System Prototype
We design a system prototype as shown in Fig. 2(a). We
deploy one or two additional RFID antennas to the COTS
depth camera. The RFID antenna(s) and the depth camera
are fixed to a rotating shaft so that they can rotate simul-
taneously. For the RFID system, we use the COTS ImpinJ
R420 reader [28], one or two Laird S9028 antennas, and

multiple Alien 9640 general purpose tags; for the depth
camera, we use the Microsoft Kinect for windows. They
are both connected to a laptop placed on the mobile robot.
The mobile robot can perform a 360 degree rotation along
with the rotation axis. By attaching the RFID tags to the
specified objects, to recognize the stationary tagged objects,
we propose a rotate scanning-based scheme to scan the
objects, i.e., the system continuously rotates and samples
the depth of field and RF-signals from these tagged objects.
In this way, we can obtain the depth of the specified objects
from the depth sensor inside the depth camera, we can also
extract the signal features such as the RSSI and phase values
from the RF-signals of the RFID tags. Similarly, to recognize
the mobile tagged human subjects, we propose a continuous
scanning-based scheme to scan the human subjects, i.e., the
system continuously samples the depth of field and RF-
signals from these tagged human subjects. By accurately
pairing these information, the tags and the objects can be
effectively bound together.

3.2.2 Software Framework
The software framework is mainly composed of three layers,
i.e., the sensor data collection layer, the middleware layer,
and the application layer, as shown in Fig. 2(b). For the
sensor data collection layer, the depth camera recognizes
multiple objects and collects the corresponding depth dis-
tribution, while the RFID system collects multiple tag IDs
and extracts the corresponding RSSIs or phases from the
RF-signals of RFID tags. For the middleware layer, we aim
to sample and extract some features from the raw sensor
data, and conduct an accurate matching among the objects
and RFID tags. For the application layer, the AR applications
can use the matching results directly to realize various ob-
jectives. In the following sections, without loss of generality,
we evaluate the performance using the Microsoft Kinect for
windows, the ImpinJ R420 reader, two Laird S9028 RFID
antennas, and multiple Alien 9640 general purpose tags. We
attach each tags to one object, and use the Kinect as the
depth-camera and use the RFID reader to scan the tags.
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Fig. 2. System Framework

4 FEATURE SAMPLING AND EXTRACTION

4.1 Extract the Depth of Field from Depth-Camera
Depth cameras, such as the Microsoft Kinect, are a kind
of range camera, which produces a 2D image showing
the distance to points in a scene from a specific point,
normally associated with a depth sensor. The depth sensor
usually consists of an infrared laser projector combined with
a monochrome CMOS sensor, which captures the depth.
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(c) Depth histogram of the same object at differ-
ent distances

Fig. 3. Experiment results of depth value

Therefore, the depth camera can effectively estimate the
distance to a specified object according to the depth, because
the depth is linearly increasing with the distance. If multiple
objects are placed at different positions in the scene, they are
usually at different distances away from the depth camera.
Therefore, it is possible to distinguish among different ob-
jects according to the depth values from the depth camera.

In order to understand the characteristics of the depth in-
formation collected from the depth camera, we conduct real
experiments to obtain more observations. We first conduct
an experiment to evaluate the characteristics of the depth.
Without loss of generality, each experiment observation is
summarized from the statistic properties of 100 repeatable
observations. We arbitrarily place three objects A, B, and C
in front of the depth camera, i.e., Microsoft Kinect, object A
is a box at distance 68cm, object B is a can at distance 95cm,
and object C is a tripod at distance 150cm. We then collect
the depth histogram from the depth sensor. As shown in
Fig. 3(a), the X-axis denotes the depth value, and the Y -
axis denotes the number of pixels at the specified depth.
We find that, as A and B are regular-shaped objects, there
are respective peaks in the depth histogram for objects A
and B, meaning that many pixels are detected from this
distance. Therefore, A and B can be easily distinguished
according to the distance. However, there exist two peaks
in the corresponding distance of object C, because object
C is an irregularly-shaped object (the concave shape of
the tripod), there might be a number of pixels at different
distances. This implies that, for the object with a continuous
surface, the depth sensor usually detects a peak in the
vicinity of its distance, for an irregularly-shaped object,
the depth sensor detects multiple peaks with intermittent
depths. Nevertheless, we find that these peaks are usually
very close in distance. If multiple objects are placed with
a rather close proximity, it may increase the difficulty to
distinguish these objects.

In order to further validate the relationship between the
depth and distance, we set multiple horizontal lines with
different distances to the Kinect (from 500 mm to 2500 mm).
For each horizontal line, we then move a certain object along
the line and respectively obtain the depth value from the
Kinect. We show the experiment results in Fig. 3(b). Here
we find that, for each horizontal line, the depth values of the
object keep nearly constant, with rather small deviations; for
different horizontal lines, these depth values have obvious
variations. Due to the limitation of the Kinect’s view, the
Kinect has a smaller view angle in a closer distance. This
observation implies that, the depth value collected from the
depth cameras depicts the vertical distance rather than the
absolute distance between the objects and the depth camera.

To extract the depth of specified objects from the depth
histogram of multiple objects, we set a threshold t to detect
the peaks in regard to the number of pixels. We thus iterate
from the minimum depth to the maximum depth in the
histogram, if the number of pixels for a certain depth is
larger than t, we identify it as a peak p(di, ni) with the
depth di and the number of pixels ni. It is found that for an
irregularly-shaped object, the depth sensor usually detects
multiple peaks with intermittent depths. In order to address
the multiple-peaks problem of irregularly-shaped objects,
we set another threshold ∆d. If the differences of these
peaks’ depth values are smaller than ∆d, we then combine
them as one peak. Both the value of t and ∆d are selected
based on the empirical value from a number of experimental
studies (t=200 and ∆d=10cm in our implementation). Then,
each peak actually represents a specified object. For each
peak, we respectively find the leftmost depth dl and the
rightmost depth dr with the number of pixels nr > 0. We
then compute the average depth for the specified object
as follows: d =

∑r
i=l (di ×

ni∑r
i=l ni

). The average depth is
calculated in a weighted average approach according to the
number of pixels for each depth around the peak.

Moreover, in Fig. 3(a), we also find some background
noises past the distance of 175 cm, which are produced
by background objects, such as the wall and floor. To ad-
dress the background noise problem, we note that these
background noises always lead to a continuous range of
depth value, with a very close amount of pixels in the depth
histogram. Therefore, we can use a specified pattern to
detect and eliminate this range of depth values. Specifically,
we respectively set a threshold tl for the length of the
continuous range and a threshold tp for the number of pixels
corresponding to each depth (tl=50cm and tp=500 in our
implementation). Then, for a certain range of depth value in
the depth histogram, if the range is greater than tl and the
number of pixels for each depth value is greater than tp, we
can determine this range as background noise.

The effective scanning distance of the depth camera is
very important to the potential range of AR applications,
otherwise the potential application scenario should be very
limited. In fact, the effective scanning distance of the depth
camera, such as Kinect, can be as far as 475cm. To validate
that, we perform a set of experiments in regard to the
effective scanning distance of the depth camera, e.g., Kinect.
We deploy a cardboard of size 20cm×20cm×5cm on the top
of a tripod, and evaluate the corresponding depth histogram
when the cardboard is separated from the depth camera
(i.e., Kinect) with the distance of 50cm, 150cm, 300cm and
450cm, respectively. We plot the experiment results in Fig.
3(c). Note that, when the object is deployed at different
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distances, the profiles of the correspond depth histogram
are very similar to each other in most cases. In particular,
when the object is deployed at a distance very close to the
depth camera, e.g., 50cm, the profile may be distorted to a
certain degree. When the object is deployed at a distance of
450cm, the depths over 475cm are no longer illustrated since
they are out of the effective scanning distance. Therefore,
the experiment results show that the depth camera is able to
extract the depth information of the objects at a distance as
far as 475cm.

4.2 Extract the Phase Value from RF-Signals
Phase is a basic attribute of a signal along with amplitude
and frequency. The phase value of an RF signal describes the
degree that the received signal offsets from the sent signal,
ranging from 0 to 360 degrees. Let d be the distance between
the RFID antenna and the tag, the signal traverses a round-
trip with a distance of 2d in each backscatter communica-
tion. Therefore, the phase value θ output by the RFID reader
can be expressed as [20, 29]:

θ = (
2π

λ
× 2d+ µ) mod 2π, (1)

where λ is the wave length. µ is a diversity term which
is related with additional phase rotation introduced by
the reader’s transmitter/receiver and the tag’s reflection
characteristic. According to the previous study [4], as µ is
rather stable, we can record µ for different tags in advance.
Then, according to each tag’s response, we can calibrate the
phase by offsetting the diversity term. Thus, the phase value
can be used as an accurate and stable metric to measure
distance.

According to the definition in Eq. (1), the phase is a
periodical function of the distance. Hence, given a speci-
fied phase value from the RF-signal, there can be multiple
solutions for estimating the distance between the tag and
antenna. Therefore, we can deploy an RFID antenna array
to scan the tags from slightly different positions, so as to
figure out the unique solution of the distance. Without loss
of generality, in this paper, we separate two RFID antennas
with a distance of d, use them to scan the RFID tags, and
respectively obtain their phase values from the RF-signals,
as shown in Fig. 4.

Antenna 1 Antenna 2

d

Tag

O

m
h

X-axis

Y-axis

Vertical
distance

T

A1 A2

T

Fig. 4. Compute the (x, y) coordinate of the tag
If we respectively use A1 and A2 to denote the midpoint

of Antenna 1 and Antenna 2, and use T to denote the
position of the tag, as a matter of fact, the three sides
of 〈T,A1〉, 〈T,A2〉, and 〈A1, A2〉 form a triangle. Since
Antenna A1 and Antenna A2 are separated with a fixed
distance d, according to Heron’s formula [30], the area of
this triangle is A =

√
s(s− d1)(s− d2)(s− d), where s

is the semiperimeter of the triangle, i.e., s = (d1+d2+d)
2 .

Moreover, since the area of this triangle can also be com-
puted as A = 1

2h × d, we can thus compute the vertical

distance h =
2
√
s(s−d1)(s−d2)(s−d)

d . Then, according to the
Apollonius’ theorem [31], for a triangle composed of point
A1, A2, and T , the length of median TO bisecting the
side A1A2 is equal to m = 1

2

√
2d21 + 2d22 − d2. Hence, the

horizontal distance between the tag and the midpoint of the
two antennas, i.e., T ′O, should be

√
m2 − h2. Therefore, if

we build a local coordinate system with the origin set to
the midpoint of the two antennas, the coordinate (x′, y′) is
computed as follows:

x′ =


√

1
2d

2
1 + 1

2d
2
2 − 1

4d
2 − h2 d1 ≥ d2

−(
√

1
2d

2
1 + 1

2d
2
2 − 1

4d
2 − h2) d1 < d2

(2)

y′ = h. (3)

Therefore, the next problem we need to address is to es-
timate the absolute distance between the tag and antenna
according to the extracted phase value from RF-signals.
Suppose the RFID system respectively obtains two phase
values θ1 and θ2 from two separated RFID antennas, then,
according to the definition in Eq. (1), the possible distances
from the tag to the two antennas are: d1 = 1

2 · (
θ1
2π + k1) · λ,

and d2 = 1
2 · (

θ2
2π + k2) · λ. Here, k1 and k2 are integers

ranging from 0 to +∞. Due to the multiple solutions of k1
and k2, there could be multiple candidate positions for the
tag. However, since the difference of the lengths of two sides
is smaller than the length of the third side in a triangle, i.e.,
|d1 − d2| < d, we can leverage this constraint to effectively
eliminate many infeasible solutions of k1 and k2. Besides,
due to the limited scanning range of the RFID system (the
maximum scanning range l is usually smaller than 10 m),
the value of k1 and k2 should be upper bounded by a certain
threshold, i.e., 2l

λ .
Fig. 5 shows an example of feasible positions of the target

tag according to the obtained phase values θ1 and θ2. The
feasible solutions include multiple positions like A ∼ D,
which respectively belong to two hyperbolas H1 and H2.
Due to the existence of multiple solutions, we can use these
hyperbolas to denote a superset of these feasible positions
in a straightforward approach.

Antenna 1 Antenna 2

d< /2 

Target
A

B

CD

/2 

HyPerbola H1 
HyPerbola H2 

Fig. 5. Estimate the distance from phase values

5 MATCH THE STATIONARY TAGGED OBJECTS VIA
ROTATE SCANNING

5.1 Motivation

To identify and distinguish the multiple tagged objects,
a straightforward solution is to scan the tags in a static
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approach, where both the depth camera and the RFID
antenna(s) are deployed in a fixed position without moving.
The system scans the objects and tags simultaneously and
respectively collects the depth value and RF-signals from
these tagged objects. We can further pair the tags with
the objects accordingly. However, when multiple tagged
objects are placed at a close vertical distance to the system,
this solution cannot effectively distinguish multiple tagged
objects in different horizontal distances.

To address this problem, we propose a rotate scanning-
based solution as follows: we continuously rotate the scan-
ning system (including the depth camera and RFID anten-
nas), and simultaneously sample the depth of field and RF-
signals from multiple tagged objects. Hence, we are able to
collect a continuous series of features like depth, RSSI and
phase values during rotate scanning. While the scanning
system is rotating, the vertical distances between multiple
objects and the scanning system are continuously changing,
from which we can further derive the differences of multiple
tagged objects in different horizontal distances. In this way,
we are able to further distinguish multiple tagged objects
with a close vertical distance but in different positions.

5.2 Pair the Tags with Objects via Rotate Scanning

5.2.1 Extract Depth via Rotate Scanning
During the rotate scanning, we continuously rotate the
depth camera from the angle of −θ to +θ and use it to
scan the multiple tagged objects. During this process, as the
vertical distance between the specified objects and the depth
camera is continuously changing, the depth values col-
lected from these objects are also continuously changing. We
conduct experiments to validate this judgment. As shown
in Fig. 6(a), we arbitrarily deploy multiple tagged objects
within the effective scanning range, the coordinates of these
objects are also labeled. We continuously rotate the depth
camera from the angle of−40◦ to +40◦ and collect the depth
values from multiple tagged objects for every 5∼6 degrees.
Fig. 6(b) shows the experiment results. Note that the series
of depth values for each object actually form a convex curve
with a peak value. For each depth value obtained at a certain
rotation angle, we can use k-NearestNeighbor(kNN) to clas-
sify it into a corresponding curve according to the distance
between the depth value and the other depth values in the
curve, and then use the method of quadratic curve fitting
to connect the corresponding depth values as a curve. In
this way, we are able to continuously identify and track
these depth values for a specified object. The peak value
of the convex curve denotes the snapshot when the vertical
distance reaches the maximum value. It appears only when
the perpendicular bisector of the depth camera crosses the
specified object, since the vertical distance reaches the value
of the absolute distance between the object and the depth
camera, which is the theoretical upper bound it can achieve.
In other words, the peak value appears when the depth
camera is right facing towards the object, we call it the
perpendicular point.

In this way, according to the peak value of depth, we
are able to further distinguish multiple objects with the
same vertical distance but different positions. The solution
is as follows: After the system finishes rotate scanning, it
extracts the peak value from the curve of each object’s depth

value. Then, we label each object with the coordinate of
its peak value, i.e., 〈θ, d〉, where θ represents the rotation
angle and d represents the depth value. Therefore, as the
depth d denotes the vertical distance of the objects, we
can use the depth to distinguish the objects in the vertical
dimension; as the rotation angle θ denotes the angle for the
camera to meet the perpendicular point, we can use the angle
to distinguish the objects in the horizontal dimension. For
example, in Fig. 6(a), we deploy the object 4 and object
5 with the same vertical distance to the depth camera,
according to the results in Fig. 6(b), these two objects can
be distinguished since the peak values of their depth exist
in different angles, i.e., −17◦ and +22◦ respectively. They
can be easily distinguished from the horizontal dimension.

RFID Antenna

y(m)

0.5

1.5

1

2

2.5

x(m)

Object1
(0,0.85)

Object2
(-0.23,1.2)

Object3
(0.35,1.3)

Object4
(-0.6,1.8)

Object5
(0.6,1.8)

3D-Camera

Rotation Scale:[- ,+ ]

(a) The deployment of multi-
ple tagged objects

−40 −20 0 20 40500

1000

1500

2000

Rotation angle

D
ep

th
 v

al
ue

(m
m

)

 

 
Object1
Object2
Object3
Object4
Object5

(b) Variation of the depth value

Fig. 6. The experiment results of rotate scanning

5.2.2 Estimate the tag’s position with hyperbolas

According to the analysis shown in Fig. 5, given the two
phase values of RF-signals extracted from two antennas
separated with a distance d (d=25cm in our implementa-
tion), there could be multiple solutions for the tag’s posi-
tion, which could be represented with multiple hyperbolas in
the two-dimensional space. In fact, we can leverage rotate
scanning to figure out a unique solution by filtering out
those unqualified solutions. The idea is as follows: for each
snapshot ti(i = 1 ∼ m) of the rotate scanning, for a
specified tag T , we can respectively extract the phase values
(θ1, θ2) from the two antennas, then compute the feasible
distances (d1, d2) between the tag and two antennas. We
further compute the set of feasible positions in a global
coordinate system as Si. Then, by computing the intersec-
tion of different sets Si for all snapshots, we are able to
figure out a unique solution for the tag’s position as follows:
S = ∩mi=1Si.

5.2.3 Estimate the tag’s position with angle of arrival

In some situations, it could be difficult to directly derive the
tag’s candidate position using the intersections of multiple
hyperbolas, since the hyperbolas must be exactly plotted in
the two-dimensional space, which might be computation-
ally expensive for some mobile devices. Nevertheless, it is
found that, as long as the tagged objects are relatively far
from the antenna pair, we can use the method of angle of
arrival at antenna pair [21] to simplify the solution. Specif-
ically, suppose the distance between the antenna pair A1

and A2 is d, the distances between the tag and the antenna
pair A1/A2 are respectively d1 and d2. As Fig. 7 shows,
when the distance between the tag and the antenna pair is
significantly larger than the distance between the antenna
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pair, i.e., d1 � d and d2 � d, suppose that the angle of
arrival of the tagged objects is α, then

∆d = d1 − d2 = d cosα. (4)

Furthermore, when the distance between the antenna pair is
less than half of the wavelength, i.e., d ≤ λ

2 , we can figure
out a pair of symmetric solutions for the angle of arrival
of the tagged object. In this regard, we can further use the
phase difference between the two antennas to depict the
value of ∆d, i.e., ∆d = |d1−d2| = ∆θ = |θ1−θ2|. Therefore,
we can figure out the angle of arrival of the tagged objects
using the equation:

α = arccos(
∆θ

d
). (5)

As a matter of fact, by leveraging the method of angle of
arrival at antenna pair, we are able to use the asymptotic lines
of the hyperbolas to approximate the candidate position of the
tagged object, as long as the tagged object is relatively far
from the antenna pair.

d1-d2=&1-&2=dcosα

α

A1 A2

d1 d2

d
Antenna Pair

RFID Tag

Fig. 7. Angle of arrival at antenna pair
Fig. 8 shows an example of deriving the unique solution

of tag’s position from the intersections. Suppose a target
tag is deployed at the coordinate (−60, 180). We first ob-
tain the phase values (2.58, 5.81) from the two antennas
when they are respectively at the position of A1 and A2.
After the antenna pair is rotated with a degree of 40◦,
we then obtain the phase values (5.56, 2.49) from the two
antennas when they are respectively at the position of A′1
and A′2. In this way, we can obtain three pairs of phase
values (2.58, 5.81), (2.58, 5.56), and (5.81, 2.49), which are
respectively collected from antenna pairs 〈A1, A2〉, 〈A1, A

′
1〉,

and 〈A2, A
′
2〉. We can respectively use them to compute the

feasible solutions in a unified coordinate system. We use
different colors to label the hyperbolas of multiple feasible
solutions according to different pairs of phase values. By us-
ing the method of angle of arrival, we use the asymptotic lines
to approximate the corresponding hyperbolas. For example,
as the distance between A1 and A2 is greater than half the
wave length, two pairs of symmetric directions of the tagged
object are derived, marked with red color; as the distance
between A1 and A′1 is less than half the wave length, one
pair of symmetric directions of the tagged object are derived,
marked with blue color; similarly, as the distance between
A2 and A′2 is less than half the wave length, one pair
of symmetric directions of the tagged object are derived,
marked with black color. Moreover, the multiple hyperbolas
of different feasible solutions all intersect at a small area
which is very close to the target tag’s real position. We thus
set the central point of the intersection region as the estimate
value of the tag’s position.
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Fig. 8. Figure out the unique solution of the tag’s position

5.2.4 Deriving the angle-distance pair
After deriving the target tag’s position, we can further de-
rive the angle when the tag is at the perpendicular point of the
RFID antennas, that is the moment when the perpendicular
bisector of the midpoint of the antenna pairs crosses the
tag. We use the pair 〈θ, δ〉 to denote this situation, here θ
denotes the offset angle of the antenna, and δ denotes the
vertical distance. The pair 〈θ, δ〉 is computed as follows:
θ = arctan x

y , and δ =
√
x2 + y2. Therefore, we can further

leverage an algorithm like Algorithm 2 to match multiple
tags to multiple objects.

Algorithm 1 Match multiple objects to multiple tags
1: Extract the vector: After continuous scanning, identify

the peak value from the depth curve and the crossing
point of multiple hyperbolas derived from phase pairs.
For each object Oi, label it with a vector 〈θi, di〉, respec-
tively normalize the angle and depth into the interval
[0, 1] by dividing the maximum value of angle and
depth, and add the vector to a set O; For each tag Tj ,
label it with a vector 〈θj , δj〉, normalize it and add the
vector to a set T .

2: while O 6= ∅ or T 6= ∅ do
3: Match the objects and tags: For each object Oi ∈ O

with vector 〈θi, di〉, compute the distance with each
tag Tj ∈ T with vector 〈θj , δj〉 as follows:

∆i,j =
√

(θi − θj)2 + (di − δj)2.

Select the tag Tj∗ with the minimum distance and pair
the object Oi with the tag Tj∗.

4: Calibrate the matching results: For any tag Tj ∈ T
paired with multiple objects, select the object Oi from
these objects with the minimum distance ∆i,j , and
pair the object Oi with the tag Tj . Respectively re-
move the object Oi and the tag Tj from set O and
T .

5: end while
6: Output the matched pairs of objects and tags.

5.3 Tackle the Issues of Interferences

5.3.1 Impact of Interferences
Due to the environmental issues like the multi-path fading
and object occlusion, the system may fail to identify some of
the objects and the tags. For example, the multi-path fading
may cause the line-of-sight RF-signal and the reflected RF-
signals to offset each other at the tag’s position, such that
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the tag cannot be effectively activated due to the reduced
incident power from the RF-antennas. Besides, the object
occlusion may cause one specific object to be blocked by
another object placed in front of it, such that this object
cannot be effectively identified from its depth histograms.
This leads to the issue of missing tags or objects. Moreover,
in some situations, it is essential to isolate the recognizable
object with non-recognizable ones, e.g., a number of tagged
objects are placed on an untagged table, and the tagged
objects are expected to be recognized instead of the table.
However, the table might have effects on the depth-camera
reading, but not in RFID-based scanning. This leads to the
issue of extra objects. The above two issues further lead to
imperfect matching between the objects and tags.

5.3.2 Tackle the Outliers in Bipartite Graph Matching
Since we need to find a matching between the set of tags
and the set of objects according to their estimated positions,
it is similar to finding a matching in a weighted bipartite
graph, where the weight refers to the distance between the
tag-object pairs. However, due to the existence of the above
interferences, they actually form the outliers in addition to
the regular points of the tag set and object set. Specifically,
these outliers are not essentially far from the regular points
in regard to their relative distance, e.g., the extra objects
can be fairly close to the regular tagged objects. Therefore,
traditional solutions for the weighted bipartite graph matching
such as the Hungarian algorithm [32] cannot effectively tackle
the outlier issues in matching, since they seek to find a
matching in a weighted bipartite graph which minimizes
the overall weight (i.e., the distance between points). They
aim to pursue the overall benefits of all members while
sacrificing the benefits of individuals. In this regard, to avoid
huge value in the overall weight, some specific regular
points can be mismatched to the outliers for trade off, then
a cascade of mismatches between the regular points could
appear frequently.

Hence, in order to tackle the outliers, we reduce this
problem to the stable marriage problem [33]. Specifically, we
aim to find a stable matching between the set of tags and
the set of objects, given an ordering of preferences for
each element. The ordering of preferences can be computed
according to the distance between each object-tag pair. We
aim to achieve the stable property for the matching, i.e.,
there does not exist any match (A,B) by which both A
and B would be individually better off than they are with
the element to which they are currently matched. The basic
intuition for using the idea of stable matching is that, for any
tagged object, the distance between the positions of the tag
and the object is usually much smaller than the distance
from the outliers. So we can give priority to matching the
specific pair of the tag and object according to their best
preferences in terms of distance. By considering the individ-
ual benefits rather than the overall benefits of the object-tag
pairs, we can mitigate the impact from the outliers.

We use the Gale-Shapley algorithm [33] to solve this prob-
lem, as shown in Algorithm 2. It involves a number of
iterations. Initially all objects and tags are set to free. In
the first round, each free object proposes to the tag it prefers
most, and then each tag replies “maybe” to the object it
most prefers and gets temporarily engaged to the object if it

is free. In each subsequent round, each free object proposes to
the most-preferred tag to which it has not yet proposed,
and each tag replies “maybe” if it is currently free or if
it prefers this object over its current partner object. This
scheme preserves the right of an already-engaged tag to
trade up for better choice. This process is repeated until all
objects/tags are engaged or have no candidate partner to
propose to.

Algorithm 2 Stable Matching-based Solution
1: Initialize all Oi ∈ O and Tj ∈ T to free.
2: Set the weight wi,j as the distance between each pair of

object Oi and tag Tj . Compute the ordering of preferences
for each object/tag according to wi,j . If the weight is greater
than a threshold t, remove the corresponding tag/object
from the object/tag’s preference list.

3: while ∃ free object o which still has a candidate tag t to
propose to do

4: t=first tag on o’s list to which o has not yet proposed.
5: if t is free then
6: (o, t) become engaged.
7: else
8: some pair (o′, t) already exists.
9: if t prefers o to o′ then

10: o′ becomes free, (o, t) become engaged.
11: else
12: (o′, t) remain engaged.
13: end if
14: end if
15: end while

We further illustrate the above idea with an example,
as shown in Fig. 9. Fig. 9 shows a scenario where 5 tagged
objects are randomly placed in the 2-dimensional space. Due
to the impact of interferences, there exist some outliers such
as the missing tags/objects and extra interference objects.
In this case, the Hungarian Matching (HM)-based solution
can mismatch the tag T2 to the extra objects rather than
the object O2, since it considers the overall benefit to make
the tag T4 to be paired with its only adjacent object O2.
Nevertheless, our Stable Marriage Matching (SMM)-based
solution is able to effectively tackle the outliers, by giving
priority to matching the tag-object pairs with best preference
in distance, e.g., it matches the tag T2 to the object O2 rather
than the extra object, since O2 is in higher order of T2’s
preference than the extra object, and T2 is in higher order of
O2’s preference than the tag T4.

Mismatch 
in HM

Scanned tags

Scanned objects

Missing tags/ objects

Interference objects

Fig. 9. Tackle the outliers with stable marriage matching

We further compare the performance of different so-
lutions under different settings, i.e., the Greedy Matching
in Algorithm 1 (GM), the Hungarian Matching (HM), and
the Stable Marriage Matching (SMM), as shown in Fig. 10.
By default, the average cardinality and spacing of tagged
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objects are set to 10 and 50cm, respectively, the average
missing ratio of tags/objects is set to 10%, the average
cardinality and distance of extra interference objects are set
to 2 and 50cm, respectively. In Fig. 10(a), we evaluate the
match ratios by varying the cardinalities of tagged objects.
It is found that SMM always achieves the best performance
than the other two solutions. In Fig. 10(b), we evaluate the
match ratio by varying the missing ratio of tags or objects for
the tagged objects. As the missing ratio increases from 0%
to 40%, the matching ratio of HM gradually decreases from
98% to 73%. This implies that HM cannot effectively tackle
the outliers due to the missing tags/objects. Nevertheless,
SMM always achieves the match ratios greater than 92%,
it effectively tackles the outliers of missing tags/objects. In
Fig. 10(c) and Fig. 10(d), we evaluate the match ratios by
varying the cardinalities of the extra interference objects,
and the average distance between the interference objects
and tagged objects, respectively. In all situations, SMM
achieves the best performance over the other solutions.

Cardinality of Tagged Objects
5 10 15 20

M
at

ch
in

g
 R

at
io

0

0.2

0.4

0.6

0.8

1

Greedy Matching (GM)
Hungarian Matching (HM)
Stable Marriage Matching (SMM)

(a) Different cardinalities of
tagged objects

Missing Ratio of Tagged Objects (%)
0 10 20 30 40

M
at

ch
in

g
 R

at
io

0

0.2

0.4

0.6

0.8

1

Greedy Matching (GM)
Hungarian Matching (HM)
Stable Marriage Matching (SMM)

(b) Different missing ratios of
tagged objects

Cardinality of Interference Objects
0 1 2 3 4 5

M
at

ch
in

g
 R

at
io

0

0.2

0.4

0.6

0.8

1

Greedy Matching (GM)
Hungarian Matching (HM)
Stable Marriage Matching (SMM)

(c) Different cardinalities of inter-
ference objects

Average Distance  between Interference

Objects and Tagged Objects (cm)

50 100 150 200

M
at

ch
in

g
 R

at
io

0

0.2

0.4

0.6

0.8

1

Greedy Matching (GM)
Hungarian Matching (HM)
Stable Marriage Matching (SMM)

(d) Different distances between
interference objects and tagged
objects

Fig. 10. Performance Evaluation

6 MATCH THE MOBILE TAGGED HUMAN SUB-
JECTS VIA CONTINUOUS SCANNING

6.1 Motivation

In most cases, the AR systems are designed towards a
mobile scenario, e.g., multiple human subjects wearing
RFID badges are continuously moving around. For this
mobile situation, the rotate scanning-based solution for
recognizing multiple stationary tagged objects is no longer
suitable. Since the locations of the tagged human subjects
are continuously changing, the scanning frequency of the
rotate scanning-based solution cannot be high enough to
locate the positions of the tags and human subjects in
a real-time manner. Nevertheless, we observe that, when
multiple tagged human subjects are continuously moving,
their moving traces in the two-dimensional space can be
distinguishable among each other. Hence, according to the
depth information and the phase information extracted from
multiple tagged human subjects, we are able to derive some
metric to depict the moving traces for the tags and human
subjects, respectively. In this way, by matching the moving

traces of tags to the corresponding human subjects, we are
able to match the mobile tagged human subjects. Therefore,
to recognize multiple tagged human subjects in the mobile
situation, in this section, we propose a continuous scanning-
based solution to pair the mobile tags with moving human
subjects via trace matching.

6.2 Pair the Tags with Mobile Human Subjects via Trace
Matching

When deploying our system in front of multiple human
subjects, where the human subjects wearing RFID badges
are moving around, it is known that the state-of-art depth
camera such as Kinect is able to extact the skeleton models
from the human subjects. Based on the skeleton model, we
can further extract the spinemid point [1] from the skeleton to
represent the human subject, which is also very close to the
place of RFID badge worn by the human subject, as shown
in Fig.11(a). According to the two-dimensional coordinate
of the spinemid point in the horizontal plane, we can figure
out the moving traces of different human subjects from the
depth camera, as shown in Fig.11(b). Moreover, suppose the
reader/depth camera is deployed in the origin O, for any
spinemid point P , we can use the angle profile to denote the
angle between the vector OP and the X-axis OX, as shown
in Fig.11(b).

As aforementioned, using the RFID antenna pair, our
system can estimate the Angle of Arrival (AoA) of the RFID
tag in the horizontal plane. Then, we can similarly use the
angle profile to denote the angle between the AoA direction
of the tag and the X-axis. Recall that according to the phase
values collected from the RFID antenna pair, there could be
multiple solutions for the angle of arrival of the RFID tag.
Hence, there could be multiple angle profiles corresponding
to the specified tag. Therefore, while the tagged human
subjects are moving from time to time, we can plot the
angle profiles for both the human subjects and the tags over
time. Fig.11(c) shows the corresponding angle profiles for
the human subjects and RFID tags over time, where the Tag
i is worn on the Body i. Note that for a specified tag, there
are multiple solutions for its angle profile, we use the same
color to label them. We can observe that the angle profile
of the specified body has very close variation trend to one
of the angle profiles of the corresponding RFID tag, as they
share very similar moving traces in the horizontal plane.
Therefore, in order to evaluate the correlation of the angle
profile between the bodies and tags, we use the difference
score to denote this correlation. Specifically, in a specified
sliding window W with length L, for the lth snapshot
(1 ≤ l ≤ L), suppose the angle profiles of the body Oi
and the tag Tj are αi(l) and {α′j(l)}, respectively. Then, the
difference score si,j between αi and α′j in W is as follows:

si,j = min
α′

j∈{α′
j}

1

L

L∑
l=1

(
αi(l)− α′j(l)

)2
. (6)

Here we enumerate all feasible angle profiles α′j for the tag
Tj to compare with the angle profile of αi for the body
Oi, and obtain the minimum value as the difference score
si,j . Fig.11(d) shows the difference scores in angle profiles
between various pairs of tags and bodies, it is found that
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Fig. 11. An example to illustrate the idea of matching the mobile tagged human subjects via continuous scanning

the least difference score is achieved only for the correct tag-
body pair. Based on the above analysis, we further propose
Algorithm 3 to pair the tags with mobile human subjects via
trace matching.

Algorithm 3 Pair the Tags with Mobile Human Subjects via
Trace Matching

1: Perform continuous scanning on the human subjects
and the tags, respectively, with the depth camera and
RFID antenna pair. Add the human subjects into set O
and the tags into set T within a sliding window W .

2: for each tag Tj ∈ T do
3: For each snapshot in W , extract the phases of Tj from

the antenna pair, and figure out the angle of arrival
of Tj . Compute the feasible angle profiles {α′j(l)}
corresponding to Tj .

4: end for
5: for each human subject Oi ∈ O do
6: For each snapshot in W , capture the spinemid point

from the skeleton ofOi, and calculate the angle profile
αi(l) of Oi.

7: end for
8: while O 6= ∅ or T 6= ∅ do
9: Match the objects and tags:

10: for each human subject Oi ∈ O do
11: for each tag Tj ∈ T do
12: Calculate the difference score si,j between αi and

{α′j}.
13: end for
14: Select the tag Tj∗ with the minimum difference

score and pair the object Oi with the tag Tj∗.
15: end for
16: Calibrate the matching results: For any tag Tj ∈ T

paired with multiple objects, select the object Oi from
these objects with the minimum difference score si,j ,
and pair the object Oi with the tag Tj . Respectively
remove the object Oi and the tag Tj from set O and T .

17: end while

Note that we use the angle profiles to depict the human
movement in this paper, whereas the previous works such
as TagVision[27] and ID-Match[26] mainly use the metric
radial distance, i.e., the Euclidean distance between the reader
and the tagged human subject, to depict the human move-
ment. When multiple tagged human subjects are moving
around in a large range, e.g., greater than 100cm, which we
call large movement, the angle profiles can depict the human
movement in a more sensitive manner than radial distance,
especially when the human subjects are moving in the scan-

ning range close to the RFID reader/ depth camera, since
the angle profiles change more rapidly than the radial distance
when the human subject is performing large movement.

However, when multiple tagged human subjects are
close to each other in position, e.g., the distances between
adjacent human subjects are less than 20∼30cm, and they
only have slight movements, e.g., shaking body or turning
around, for this situation, our trace-matching-based solution
cannot further distinguish these tagged human subjects
purely based on the angle profiles, since the changes of angle
profiles from the tagged human subjects are rather small,
which could be less than the inherent errors of the trace-
matching-based solution in usual multi-path environment.
In this situation of slight movement, we can use the radial dis-
tance to distinguish the multiple tagged human subjects, by
referring to the previous solutions [27][26], since the radial
distance still has some sensitivities to the human movement.

7 DISCUSSION

7.1 Robustness to Environmental Variances

In the real-world environment, besides the environmental
interferences such as the multi-path effect, path loss fading,
the environmental variances like the material variances and
deployment variances could also impact the system perfor-
mance. E.g., when the RFID tags are deployed to different
materials like beverage can, human body or plastic toys, the
RF-signal features like RSSI could be totally different. This
could greatly impact the performance of the Depth-RSSI
pairing-based solution [8]. Nevertheless, the RF-signal fea-
tures like phase are irrelevant to these factors like different
materials, the phase describes the degree that the received
signal offsets from the sent signal, which is only correlated
to the relative distance and orientation between the antenna
and tag. Moreover, the RSSI variation is very sensitive to the
orientation change of the tag, whereas the phase variation is
relatively insensitive to the orientation change of the tag.
In other words, as the tag orientation changes, the RSSI
might be changing sharply, whereas the phase is changing
relatively gently. Thus, based on the stability of the phase,
our Depth-Phase pairing-based solution is able to effectively
address the variability of these environmental factors.

Hence, we further evaluate the RSSI and phase values
with different orientations of the tag and different materials
of the tagged objects. First, we continuously rotate the tag
to measure the RSSI and phase values with different tag
orientations. Fig.12 shows the diagram of tag rotation. We
rotate the tag on two different axes, i.e., the X-axis and
Y -axis. While the tag is rotating on the Y -axis, we use
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α to define the angle between the antenna plane and the
tag plane, and continuously change the value of α from
−90◦ to 90◦. We find that both the RSSI and the phase
keep stable, as shown in Fig.13(a) and Fig.13(b). It implies
that they are insensitive to the tag orientation change on
the Y -axis. While the tag is rotating on the X-axis, we fix
the value of α to 0◦, 30◦, 60◦, 70◦, 80◦ and 90◦, respectively,
and rotate the tag on the X-axis. We find that the phase
is changing relatively gently, whereas the RSSI is changing
very sharply in most situations, as shown in Fig.13(c) and
Fig.13(d). It implies that the phase is relatively insensitive
to the tag orientation change on the X-axis, whereas the
RSSI is very sensitive to the tag orientation change on the
X-axis. We further evaluate the RSSI and phase values
by attaching the RFID tag to different materials like the
carton, plastic bottle (with/without water) and metal can
(with/without water). As shown in Fig.13(e) and Fig.13(f),
while we vary the distance between the tag and the reader
from 50cm to 300cm, we find that the RSSI is rather sensitive
to the attached materials, whereas the phase is relatively
insensitive to the attached materials. Therefore, the phase is
a more stable metric than RSSI in regard to the robustness
to environmental variances.

O
Orthogonal Axis

Parallel Axis

Antenna Plane

RFID Tag

O

X Axis

Y Axis

Normal 
Vector

Tag Plane

Fig. 12. The diagram of tag rotation
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Fig. 13. RSSI and phase values with different orientations of the tag and
different materials of the tagged objects

7.2 Robustness to Severe Tag Missing
In real application environment, due to the environmental
factors like the multi-path effect and energy absorption of
different materials, the miss reading of RFID tags can be
frequent. As a matter of fact, in the real-world environment,
tag missing seems to be unavoidable based on current RFID
design. As aforementioned, it may further lead to mismatch
in the pairing process of the system. In the situation of
severe tag missing, the actual performance can be greatly
degraded, even if the stable matching-based solution is
applied. In order to tackle this issue, we can mitigate the
negative effect of severe tag missing by deploying multiple
tags on the objects. Specifically, we can attach a tag array
of multiple tags onto the surface of the specified object. The
tags in the tag array can be deployed in a one-dimensional
manner or two-dimensional manner, where the tags are
separated with a certain distance, e.g., 3∼10cm. As the tags
are placed at different positions and different orientations
on the object’s surface, the environmental factors can be
different, this sufficiently reduces the possibility of miss
reading of all tags simultaneously. As long as the RF-signals
of at least one tag can be resolved from one object, the
pairing process can be executed. Therefore, the robustness to
severe tag missing can be guaranteed by deploying multiple
tags on the objects.

8 PERFORMANCE EVALUATION

8.1 Experiment Settings
We evaluated our system using one Microsoft Kinect for
windows, one ImpinJ R420 reader, two Laird S9028 RFID
antennas, and multiple ImpinJ E41-B general purpose tags.
We deployed multiple objects in an area of about 3.5m×
3.5m, and attach each tag to an object. We used the Kinect
as the depth-camera and use the RFID reader to scan the
tags.

8.2 Evaluate the Performance in Stationary Situation
We implemented four schemes for performance comparison
(Readers can refer to a preliminary version of this work in
[8] for the detailed solution):
1) Static Scanning via Depth-RSSI Pairing (SS-RSSI): The
system scans the tagged objects once at a fixed position,
and pairs the tags with the objects according to their partial
orders respectively in collected depth and RSSI.
2) Hybrid Scanning via Depth-Phase Pairing (HS-Phase): The
depth camera continuously rotates and scans the tagged
objects, while the RFID antennas scan the tagged objects
once at a fixed position, and pairs the tags with the objects
according to the extracted depth and phase.
3) Continuous Scanning via Depth-RSSI Pairing (CS-RSSI): The
system continuously scans the tagged objects while it is
rotating, and pairs the tags with the objects according to
the extracted series of depth and RSSI.
4) Continuous Scanning via Depth-Phase Pairing (CS-Phase):
The system continuously scans the tagged objects while it
is rotating, and pairs the tags with objects according to the
extracted series of depth and phase.

Without loss of generality, by default we deployed 10
tagged objects in the scanning area. We varied the settings of
the average horizontal/vertical distance, and the cardinality
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of tagged objects. For each setting, we randomly generated
10 types of deployments for the tagged objects, and eval-
uated the average match ratio for successful pairing in the
above four schemes.
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Fig. 14. The experiment results in stationary situation

8.2.1 Evaluate the Accuracy
Accuracy for different cardinalities of tagged objects Our
solution achieves good performance in accuracy when the cardi-
nalities of tagged objects are varied from 3 to 15. We evaluated
the match ratio for pairing different cardinalities of tagged
objects, by varying the cardinality of tagged objects from 3 to
15. As shown in Fig. 14(a), as the cardinality increases from 3
to 15, the match ratios of SS-RSSI and HS-Phase decrease in
a rapid approach, whereas the match ratios of CS-RSSI and
CS-Phase decrease slowly. Nevertheless, CS-RSSI and CS-
Phase respectively achieve a match ratio of 60% and 77%
when the cardinality of tagged objects is 15.

Accuracy for different vertical/horizontal distances Our
solution achieves good performance in accuracy when the ver-
tical/horizontal distances are varied from 10 cm to 50 cm. We
respectively varied the average vertical distances and hor-
izontal distances among the tagged objects, thus to further
evaluate the performance in accuracy. We fixed the average
horizontal (vertical) distance among the objects to 30 cm,
and varied the average vertical (horizontal) distance from 10
cm to 50 cm. Fig. 14(b) and Fig. 14(c) show the match ratios
with different vertical distances and horizontal distances,
respectively. We find that as the average vertical/horizontal
distance decreases, the match ratios of all schemes gradu-
ally decrease. Besides, for the same vertical distance and
horizontal distance, the match ratio of the former situation

is apparently less than the latter situation, since the vertical
distance is more difficult to estimate than the horizontal dis-
tance. Nevertheless, CS-Phase respectively achieves a match
ratio of 68% and 72% when the average vertical/horizontal
distance is 10cm, which is corresponding to a rather high
density for the tagged objects, i.e., 33 objects/m2.

8.2.2 Evaluate the Robustness
Robustness to missing tags/objects Our solution achieves
good performance in robustness with different ratios of missing
objects/tags ranging from 10% to 50%. We ran experiments to
evaluate the robustness to missing tags/objects, when there
exist several objects or tags which fail to be identified. Here
we measured the match ratio for the remaining objects or
tags. Fig. 14(d) and Fig. 14(e) show the experiment results
for different ratios of missing objects and tags, respectively.
As the ratio of missing objects/tags increases from 10% to
50%, the match ratios for all schemes decrease in most cases,
except that in some cases, the match ratio of SS-RSSI and HS-
Phases slightly increase, since the number of objects/tags
for pairing is reduced. Nevertheless, CS-RSSI and CS-Phase
respectively achieve a match ratio of near 60% and 72%
when the ratio of missing objects/tags is even 50%.

Robustness to different numbers of samplings Our
solution achieves good performance in robustness with different
numbers of samplings ranging from 3 to 15 during rotate scan-
ning. Fig. 14(f) shows the experiment results. As the number
of samplings increases from 1 to 15, we find that the match
ratio of CS-RSSI rapidly increases from 30% to 75%, while
the match ratio of CS-Phase first rapidly increases to 91%
when the number of samplings is 3, then slowly increases
to 96% when the number of samplings is 15. This implies
that CS-Phase is more robust to the low sampling situation
than CS-RSSI, since CS-Phase requires only a few phase-
pair samples to figure out the position according to the
intersections of multiple hyperbolas.

8.3 Evaluate the Performance in Mobile Situation

We implemented three schemes of recognizing the tagged
moving objects for performance comparison, i.e., ID-Match
[26], TagVision [27], and our solution CS-Phase. Without loss
of generality, by default we let 5 tagged human subjects
move around in the scanning area. We varied the cardinality,
moving range, and moving speed of the tagged human sub-
jects. For each setting, we randomly generated 50 different
moving traces for the tagged human subjects, and evaluated
the average match ratio for successful pairing.

Accuracy for different cardinality of tagged human
subjects Our solution achieves good performance in accuracy
when the number of tagged human subjects is varied from 3 to 6.
As shown in Fig. 15(a), as the cardinality increases from 3
to 6, the match ratios of CS-Phase and ID-Match decrease
slightly, whereas the match ratios of TagVision decrease
rapidly. The reason is probably that TagVision is originally
designed to track the moving objects like the toy trains
rather than the human subjects, it is not robust to tackle the
heavy multi-path effect from human subjects. Nevertheless,
CS-Phase achieves a match ratio greater than 92% in all cases.

Accuracy for different moving range of tagged human
subjects Our solution achieves good performance in accuracy
when the average moving range of tagged human subjects is
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Fig. 15. The experiment results in mobile situation

varied from 0.5 to 3m. As shown in Fig. 15(b), as the moving
range increases from 0.5 to 3m, the match ratios of CS-Phase
and ID-Match increase slightly, whereas the match ratios of
TagVision fluctuate around 65%. The increase of the match
ratio is mainly because the larger moving ranges help to
further distinguish different moving traces of the tags and
human subjects. Nevertheless, CS-Phase achieves a match
ratio greater than 83% in all cases.

Accuracy for different moving speed of tagged human
subjects Our solution achieves good performance in accuracy
when the moving speed of tagged human subjects is varied from
0.5m/s to 3m/s. As shown in Fig. 15(c), as the moving speed
increases from 0.5m/s to 3m/s, i.e., low speed (0.5-1m/s),
medium speed (1-1.5m/s), and high speed (1.5-3m/s), the
match ratios of all three solutions mainly keep unchanged.
The reason is mainly because the sampling rate of both
the RFID reader and the depth camera is large enough to
accurately capture and distinguish the moving trace of the
tags and the human subjects, whatever the moving speed is.
Nevertheless, CS-Phase achieves a match ratio greater than
92% in all cases.

9 CASE STUDY: RECOGNIZE TAGGED HUMAN
SUBJECTS IN THE CAFE

To further evaluate the real performance of our system by
considering more practical issues (e.g., indoor multi-path
and energy absorption), we did more thorough experiments
in a more realistic setting. We deployed our system in a typ-
ical application scenario, i.e., recognizing multiple tagged
human subjects in the cafe, as shown in Figure 16. In the
case study, a major task of our system is to effectively
identify and distinguish these real-world objects and further
show their inherent information in the camera’s view. Thus,
we implemented an application which was executed on
a SAMSUNG PC equipped with an Intel(R) Core(TM) I5
1.4GHz CPU and 4G RAM. The PC was remotely connected
to the system via WiFi. We deployed our system in front of
these human subjects with the distance from 1.5m to 4.5m.

9.1 Stationary Situation
Experiment Settings: As shown in Fig. 16, we let multiple
human subjects (4∼8 people) stand or sit freely in the cafe,
while wearing the RFID tagged badges. These “tagged”
human subjects are thus different in terms of height, hor-
izontal distance and vertical distance. It raises more chal-
lenges than the free-space testing, since the human body
may lead to many interferences like multi-path effect and
energy absorption. We conducted experiments to evaluate

Fig. 16. Example deployment of multiple human subjects wearing RFID
badges in the cafe

the performance of match ratios, by varying the factors
like the number of human subjects, the spacing between
human subjects, and the moving state. The default number
of human subjects and the default average spacing are 6 and
60 cm, respectively.

Performance Evaluation: In the stationary situation, our
solution achieves good matching accuracy to recognize multiple
tagged human subjects of different factors like the height, spacing,
etc. Fig. 17(a)-(d) respectively show the match ratios with
different configurations. Without loss of generality, we show
the matching results of 5 randomly generated deployments
with different spacing and heights of the human subjects.
In the first experiment, we let the human subjects remain
stationary, i.e., standing or sitting still, and evaluate the
match ratios. As shown in Fig. 17(a), our solution achieves
a match ratio of 50% and 80% respectively with CS-RSSI
and CS-Phase. In the second experiment, we let the human
subjects keep in slightly moving state, i.e., they may be
moving or turning with a limited speed (≤40cm/s) or angle
(≤ 30◦/s). As shown in Fig. 17(b), our solution achieves
a match ratio of 60% and 74% respectively with CS-RSSI
and CS-Phase. In the third experiment, we vary the average
spacing between the human subjects from 60cm to 90cm.
As shown in Fig. 17(c), our solution achieves an average
match ratio of over 50% and 75% respectively with CS-
RSSI and CS-Phase. In the fourth experiment, we vary the
number of human subjects from 4 to 8. As shown in Fig.
17(d), our solution achieves an average match ratio of over
45% and 70% respectively with CS-RSSI and CS-Phase. The
performance reduction of CS-RSSI in the above experiments
is mainly due to the energy absorption of human bodies,
which distracts the conventional distribution of RSSI in RF-
signals. Nevertheless, CS-Phase always achieves fairly good
performance as the phase in RF-signals is irrelevant to the
energy absorption problems.
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Fig. 17. Performance evaluation in stationary situation

9.2 Mobile Situation
Experiment Settings: We let 5 human subjects walking
around in the cafe, wearing the RFID tagged badges. For
each experiment setting, we randomly generated 15 sets
of traces for these human subjects. For each moving trace,
these human subjects can be moving around with different
speeds and different ranges. The dynamic movement of
human bodies leads to more dynamics and uncertainties in
the multi-path environment. We conducted experiments to
evaluate the performance of match ratios by investigating
the confusion matrix.

Performance Evaluation: In the mobile situation, our solu-
tion achieves good matching accuracy to recognize multiple tagged
human subjects of different factors like the moving speed, mov-
ing range, etc. Fig. 18(a)-(c) respectively show the example
confusion matrix for pairing the tag (T1, T2, · · · , T5) with
the human subject (B1, B2, · · · , B5) with different solutions,
i.e., our solution CS-Phase, TagVision[27], ID-Match[26]. Ac-
cording to the confusion matrix, it is found that both CS-
Phase and ID-Match are able to accurately pair the tag with
the human subject for most of the 15 sets of traces, CS-Phase
achieves an average accuracy of 93.3%, whereas ID-Match
achieves an average accuracy of 92%. TagVision achieves the
worst performance with the average accuracy of 66.7%. The
reason is probably that TagVision is originally designed to
track the moving objects like the toy trains rather than the
human subjects, it is not robust to tackle the heavy multi-
path effect from human subjects.
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Fig. 18. Confusion matrix in mobile situation

10 CONCLUSION

In this paper, we propose TaggedAR, i.e., an RFID-based
system to recognize multiple RFID tagged objects in AR
system, by deploying additional RFID antennas to the COTS
depth camera. By sufficiently exploring the correlations
between the depth of field and the RF-signal, we propose
a rotate scanning-based scheme to distinguish multiple

tagged objects in the stationary situation, and propose a
continuous scanning-based scheme to distinguish multiple
tagged human subjects in the mobile situation. The experi-
ment results show that we achieve an average accuracy of
91% in distinguishing up to dozens of tagged objects.
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