
P-Accountability: A Quantitative Study of Accountability
in Networked Systems

Zhifeng Xiao1 • Yang Xiao2,3 • Jie Wu4

Published online: 3 February 2017
� Springer Science+Business Media New York 2017

Abstract Accountability in computing implies that an entity should be held responsible

for its behaviors with verifiable evidence. In order to study accountability, quantitative

methods would be very helpful. Even though there are some researches in accountability,

there are no other works which study quantitative accountability in practical settings, while

quantitative accountability is defined as using quantities or metrics to measure account-

ability. In this paper, we propose P-Accountability, which is a quantitative approach to

assess the degree of accountability for practical systems. P-Accountability is defined with

two versions, a flat model and a hierarchical one, which can be chosen to use depending on

how complex the system is. We then provide a complete case study that applies P-Ac-

countability to PeerReview, which provides Byzantine fault detection for distributed

systems. In addition, we propose Traceable PeerReview, which is our effort to apply

PeerReview to wireless multi-hop environments. In addition, through the system evalua-

tion we can show that the simulation outcomes are aligned with the numeric results.

Keywords Accountability � Quantification � Wireless networks � Distributed system �
Performance metric

& Yang Xiao
yangxiao@ieee.org

Zhifeng Xiao
zux2@psu.edu

Jie Wu
jiewu@temple.edu

1 Department of Computer Science and Software Engineering, Penn State Erie, The Behrend
College, Erie, PA 16509, USA

2 School of Computer and Software, Nanjing University of Information Science and Technology,
Nanjing 210044, China

3 Department of Computer Science, The University of Alabama, Tuscaloosa, AL 35487-0290, USA

4 Department of Computer and Information Science, Temple University, Philadelphia, PA 119122,
USA

123

Wireless Pers Commun (2017) 95:3785–3812
DOI 10.1007/s11277-017-4026-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-017-4026-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-017-4026-5&domain=pdf

1 Introduction

Recent advances have witnessed the development and application of accountability, which

has become a core requirement of building trustworthy computer systems [1] and

dependable networked systems [2, 3]. Generally, accountability in computing implies that

an entity should be held responsible for its own activities with verifiable evidence [4]. Prior

researches have discussed the design of accountable systems in different contexts,

including accountable logging using flow-net [4, 5] and virtual flow-net [6], a multi-

resolution flow-net accountable logging [7, 8], a quantitative accountable logging method

[9, 10], an accountability system called PeerReview in distributed systems with deter-

ministic protocols in terms of ensuring detecting Byzantine (i.e., arbitrary) faults [11], a

design for ID accountability in terms of using self-certifying network layer addresses for

future Internet [12, 13], a design of source signature and verification for packets in a future

Internet architecture [14], an extension of PeerReview called Cryptographically Strong,

Accountable Randomness (CSAR) with an effort to achieve accountability for distributed

systems that use randomized protocols [15], an accountable method of detecting and

preventing from malicious software modification and violations in virtual networks [16], a

layered trust management to support accountability in email systems [17], an account-

ability interface called AudIt for ISPs for handling packet loss and delay [18], an

accountable network storage service called Certified Accountable Tamper-evident Storage

service (CATS) for evidence of read and write responses [19], an effort to add account-

able congestion for Transmission Control Protocol (TCP) and the Internet Protocol (IP)

[20, 21], an accountable operating system (OS) in terms of providing accountable admin-

istrators [22–24], an approach for temporal accountability for medical sensor networks

[25], an accountable method for household appliances in terms of power usage [26, 27], an

accountable framework for sensing-oriented mobile cloud computing [28], a mutual ver-

ifiable provable data possession scheme for public cloud storage [29, 30], etc.

Through the previous studies that we have investigated, we observe that accountability

was interpreted differently for each specific system. However, the common core of

accountability is honored. In summary, an accountable computing system is by design (1)

for responsibility assignment with irrefutable evidence, and (2) for applying the reward and

punishment to the responsible party, if necessary. It is challenging to achieve these two

goals, because in a complex networked system, any entity could be responsible for an event

(e.g., a cloud server, a Personal Computer (PC), a mobile device, a router/switch, a smart

phone App). When a network incident occurs (e.g., external attacks or system miscon-

figuration), the network operator needs to identify the origin of related events and then

apply fixies. However, to prevent a responsible entity from denying its behavior, an

accountable system must present irrefutable evidence that can prove an entity’s misbe-

havior, and this verification can be either conducted by other correct entities or a third

party. Based on the evidence, every entity can be held responsible, and punishment or

reward can be applied thereafter.

The motivations of this paper are as follows. First, we regard accountability as a system

feature which is constrained by certain requirements. In this case, it is beneficial to have a

practical and unified metric for accountability assessment, as this quantified information

will supply valuable guidance for system improvement. Second, prior research shows that

it is usually unaffordable to implement a system with perfect accountability due to various

touch conditions and uncertainties in the real world such as strong identification for every

computing device [11, 13, 14], per-hop/message verification [11], and a powerful

3786 Z. Xiao et al.

123

repository/logging system [4, 8, 19], which generate tremendous computational and stor-

age overhead that contribute to performance degradation for production network. In

addition, it is difficult to achieve perfect accountability for a networked system due to

numerous network dynamics such as packet delay, packet loss, and node failure.

Even though there are some researches in accountability, there are no other works which

study quantitative accountability in practical settings, while quantitative accountability is

defined as using quantities or metrics to measure accountability. In this paper, we propose a

practical guidance that instead of pursuing perfect accountability, system designers only

need to provide satisfactory accountability so that system resources will not be overcon-

sumed. To this end, it is essential to study the balance of accountability and system

overhead. A quantitative study of accountability is the first step to achieve this goal.

Our goal is to find out the capability of a system in terms of accountability. In this paper,

we develop P-Accountability, a generic model for accountability assessment for networked

systems. P-Accountability models an accountable network system by abstracting the

notions of entities, events, and the mapping relation between them. P-Accountability

should be customized to suit the needs for a practical system. First, we need to identify the

event space and entity space for a system, and then find out the factors that may affect the

degree of accountability in order to give formal analysis and an empirical study.

The contributions of this paper are explained as follows:

• We propose P-Accountability, which is a quantitative model for accountability

assessment. The model includes two parts: a flat model and a hierarchical model. The

flat model is applicable to accountable systems with flat structures, meaning that the

entities are on the same logical level. We then extend the flat model to a hierarchical

model, which considers a multi-level environment where each entity in a certain level

may be further composed of fine-grained entities in a lower level. This indicates that

blame may be assigned to a more concrete entity in some circumstances. P-Account-

ability derives from practical needs, and we also propose an analytical method to study

a system to approach the experimental results.

• We provide a complete case study to apply P-Accountability to PeerReview, which

studies the Byzantine fault detection problem (i.e., the problem to detect Byzantine

faults) for distributed systems. Note that Byzantine faults are important since they

exhibit arbitrary behaviors. We discover that message loss may be a key factor to affect

accountability provided by PeerReview. We demonstrate that P-Accountability can be

adopted to assess PeerReview given that message loss is inevitable.

• With the feedback we obtain from the case study, we propose Traceable PeerReview

which extends PeerReview to a wireless multi-hop network environment.

• Our evaluation results show that P-Accountability is effective in the assessment of

accountability.

We structure the rest of the paper as follows: we review the prior studies in Sect. 2. We

then define two models of P-Accountability in Sects. 3 and 4, respectively. In Sect. 5, we

conduct a case study that applies P-Accountability to PeerReview. Section 6 proposes

Traceable PeerReview, which extends PeerReview to a wireless multi-hop environment.

Section 7 discusses the evaluation outcomes. The paper is concluded in Sect. 8.

P-Accountability: A Quantitative Study of Accountability in… 3787

123

2 Related Work

2.1 Existing Accountable Systems

Accountability has been applied to a variety of networked systems for security enhance-

ment. Certified Accountable Tamper-evident Storage service (CATS) [19] is an applica-

tion-level storage service providing verifiable misbehavior detection. AudIt [18] is

described as an accountability interface that facilitates ISPs to determine the Adminis-

trative Domains (ADs) that are responsible for dropping or delaying the traffic. The authors

in [13, 14] present Accountable Internet Protocol (AIP), which employs a hierarchy of self-

certifying addresses to enable network-layer accountability to ensure that a forged IP

address can be detected with verifiable evidence. However, AIP requires modifying the

current IP protocol, which is unlikely to be immediately deployed. As an alternative to

AIP, the authors in [14] design a perfect accountability scheme by binding an unforgeable

signature to each packet and having the closest router verify it for fake IP detection.

PeerReview in [11, 31] offers accountability support for distributed systems that suffer

Byzantine faults in a deterministic environment via a tamper-evident logging scheme to

record node’s actions and a witness scheme to conduct periodical status checking for every

node in the system. Cryptographically Strong, Accountable Randomness (CSAR) [15]

extends PeerReview’s work to ensure that a Random Number Generator is accountable for

all the numbers it generates with verifiable proof; this property fulfills the need of

accountability for a randomized system. The authors in [25] study temporal accountability

for medical sensor networks, also adopting some of the techniques of PeerReview. The

authors in [26, 27] study accountable home appliances in smart grids and some of the

methods of PeerReview are also adopted.

The authors in [16] propose two approaches to enable accountability in hosted virtual

networks. The first approach leverages network measurement techniques to detect viola-

tions of Service Level Agreements (SLAs), and the second approach re-architects a router

to prevent SLA violation beforehand. The authors in [17] have proposed a layered trust

management framework to help email receivers eliminate their unwitting trust and provide

them with accountability support. Re-Explicit-Congestion-Notification (Re-ECN) [20, 21]

is able to locate congestion points in a network such that upstream parties causing con-

gestions can be identified; Re-ECN requires changing the current TCP specification. The

authors in [22–24] have proposed an accountable administration model for operating

systems where all system administrators can be accounted for even if they are untrust-

worthy. The authors in have proposed Flow-Net [4–6] which is a logging mechanism that

captures events and the relations among them for system accountability. The authors in

[8, 9] extends Flow-Net to have multiple resolutions. The authors in [9, 10] study

accountable logging and logging overhead. Flow-Net can be implemented as an OS kernel

service [22, 23] to capture, log, and audit events with multiple granularities, and thus

become a system-level tool for evidence generation in the design of accountable systems.

Based on the systems we have surveyed, we conclude that one needs to specify three core

elements for an accountability scheme, i.e., entity, event, and evidence, in which an entity

can generate various events, while evidence is used to link an event to the responsible

entities.

Despite the abundant research efforts, accountability has not been widely deployed in

real world settings. Researchers have designed and tested several systems

[11, 15, 19, 22, 23] for experimental purposes. In terms of performance evaluation, prior

3788 Z. Xiao et al.

123

studies mainly focus on general performance metrics such as system response time,

communication overhead, and throughput, while the core property, i.e., accountability, has

not been well evaluated. To this end, a generic model is desired to assess accountability for

the aforementioned systems. P-Accountability is an attempt to fulfill this demand. Even

though the papers [9, 10] consider accountable metrics, they focus on accountable logging

while this paper focuses on root-cause of accountability, which is the core aspect of

accountability and is more important. Note that a short and preliminary version of this

work was presented in the conference [32].

The authors in [33–35] provides verifiable proofs for cloud out-source data including

image data and image data retrievals. The authors in [36, 37] studies provable digital

evidence for networks.

2.2 Theoretical Definitions of Accountability

Security quantification [38–40] has been studied in recent years. There are a few prior

works attempting to formally define accountability. However, in most definitions, the

degree of accountability decreases due to internal problems such as cryptographic design

flaws. Our model focuses on external and practical factors (e.g., network dynamics) that

affect the degree of accountability. These factors may not be considered when the protocol

is designed in the first place, but they may become significant when the system is running

in real world.

The authors in [41] develop a mathematical model that employs an inductive method

[42] to verify accountability protocols. Two factors including validity of evidence and

fairness are used to verify the accuracy of accountability protocols. The model has been

applied to protocol analysis for a certified email protocol and a non-repudiation protocol.

The authors in [43] propose an accountability model based on I/O automata, Com-

municating Sequential Processes, and discrete timed process algebra. The model enables

auditors to identify dishonest party in a protocol with pre-defined specification. The issue

of the proposed model is its inability to handle cryptography.

The authors in [44] present a general definition of accountability based on p - calculus

[45] and IO/automata, as well as with interpretations in both symbolic and computational

models. Informally, the proposed model highlights two features of accountability: (1)

fairness implies that honest parties will not be falsely blamed; (2) completeness, on the

other hand, implies that dishonest parties will be blamed. In addition, the authors have

applied the proposed model to three protocols as case studies.

The authors in [46] propose an accountability model that firstly takes anonymity into

account, as some applications requires keeping parties anonymous unless someone breaks

the security policy. From this point of view, the proposed model is more versatile.

3 A Flat Model for P-Accountability

A typical notation style is employed throughout the paper: capitalized letters like V and E,

represent set, and lowercase letters like v and e, denote members of corresponding sets.

P-Accountability: A Quantitative Study of Accountability in… 3789

123

3.1 A Flat Model

The major concern of prior studies [11–13, 15, 17, 18] is to generate verifiable evidence

that is used to hold each entity accountable for its actions (i.e., events). However, the

entities and events in different contexts differ. Therefore, a networked system can be

modeled as Q = (V, E), in which V and E are the entity set and the event set, respectively.

Precisely, V = {v|v is an entity in the system}, and E = {e|e is an event in the system}.

Typically, an event is caused by one or multiple entities. Let Ve denote a set of entities that

cause an event e. A typical accountable system should be able to handle blame assignment,

which can be modeled as a mapping function: a:E ? {Ve|Ve (V} that takes as input an

event e and returns an entity (or entities) generating (or causing) the event. Ideally, the

mapping function will always output the correct results. The ideal situation is named as a

perfect mapping (PM). Formally, a mapping becomes a PM if and only if

a(e) = Ve|PM (V, where Ve|PM is the complete set of responsible entities. In real world

systems, however, perfect mapping is difficult to achieve due to many external factors such

as network dynamics. In that case, we have a(e) = Ve , Ve|PM (V, which indeed makes

the system less accountable, as not all responsible parties can be identified. However, we

still regard it as a correct mapping, because none of returned results are incorrect. For

instance, an Internet packet is delayed by multiple admin domains including AD1, AD2,

and AD3, while only AD1 is picked up by the accountable system responsible for the delay

event. The mapping in this case is correct, but not perfect.

Definition 1 Accountability in a networked system Q = (V, E), for Ve 2 E, if a(e) is a
PM, then the system is accountable; otherwise the system is non-accountable. In other

words, accountability A(Q) is defined as

AðQÞ ¼
Y

e2E
IðaðeÞ is a PMÞ ð1Þ

where I(x) is an indication function, which returns 1 is if x is true and 0 otherwise.

Definition 1 implies that accountability is binary. Value 1 indicates perfect account-

ability for the system, while value 0 indicates that the system is completely non-ac-

countable. As mentioned in Sect. 1, perfect accountability is usually not feasible to achieve

in practical settings due to various uncertainties and rigorous conditions. In another word,

the mapping could be correct but not perfect. Apparently, a binary value is not sufficient to

describe the degree of accountability. To fill this gap, we propose P-Accountability, in

which the prefix ‘‘P’’ represents both performance and probability. P-Accountability

intends to be a performance metric for empirical study, as well as a probabilistic analysis

approach.

Definition 2 P-Accountability (flat model) in a network system Q = (V, E), where |E|

denotes the number of total events in E, P-Accountability AF(Q) is defined as follows:

AFðQÞ ¼
1

jEj �
X

e2E

jVej
jVejPMj

� IðaðeÞ is correctÞ
� �

: ð2Þ

Definition (2) is a fine-grained model, compared to definition (1). Meanwhile, when the

system is perfectly accountable, i.e., for Ve 2 E, IðaðeÞ is a PMÞ � 1, (1) and (2) are

3790 Z. Xiao et al.

123

consistent, since AF(Q) equals one in this particular case. In this paper, once P-Account-

ability is defined in (2), the definition of accountability in (1) does not need to be used.

Model (2) gives an empirical definition which is applicable to practical systems, while it

is not convenient for analysis. Let P(e) be the probability that aðeÞ is a PM. We can then

estimate P-Accountability using a probabilistic approach:

AFðQÞ � ~AðQÞ � PðeÞ

3.2 Usage of the Flat Model

The flat model can be generally applied to any flat networked system in which entities and

events can represent appropriate system elements. For instance, AIP [12] is able to detect

Internet hosts with forged IPs. Therefore, a network device with an IP can be a basic entity.

Meanwhile, a basic event could be ‘‘host A 10.0.0.6 sends a message to host B 10.0.0.5’’.

AIP is able to determine whether host A and host B are the machines they claimed to be.

The flat mode can also be applied to Audit [18], which is able to hold each admin domain

accountable for the packets passing through it. In this case, an admin domain is a basic

entity, while an event could be that how a packet is handled within a domain, i.e., relayed

or dropped. It is convenient to use the flat model to assess system accountability once we

can determine the entity space and event space. We conduct a complete case study that

applies P-Accountability to PeerReview in Sect. 5.

4 A Hierarchical Model for P-Accountability

P-Accountability defined in the previous section is only applicable to a flat network model,

which drives us to dive into a more mixed network setting consisting of multiple hierar-

chies. To enhance the applicability of P-Accountability, we extend the flat model to a

hierarchical model, which is able to handle such circumstances.

4.1 A Hierarchical Definition of Accountability

A networked system is a collection of a variety of network devices with different software

running on the platform [47]. From a logical point of view, a hierarchical structure can be

used to describe a network [48]. Each hierarchy consists of one kind of entities. Table 1

describes an example network with five hierarchies, in which the top one H1 represents the

entire network; depending on the context, H1 could be as large as the Internet, or as small

Table 1 An example network with five hierarchies

Hierarchy Description Entities

H1 Network Internet, WAN, LAN, PAN, etc.

H2 Sub-networks Federal departments, universities, enterprises, other administrative
domains, etc.

H3 Devices Routers, PCs, smart phones, etc.

H4 Applications Computer programs

H5 Conversational
Elements

Messages, packets, traffic flows, etc.

P-Accountability: A Quantitative Study of Accountability in… 3791

123

as a Personal Area Network (PAN) [49, 50]. H2 is comprised of domains/sub-networks. In

this paper, we loosely define H2 which contains all sub-networks regardless of the internal

relations among them. H3 consists of all kinds of devices with network interface cards,

while H4 is a layer of software applications that run on top of devices of H3. Apparently, a

physical device will host multiple applications. H5, the bottom layer, is made up of con-

versational elements which are essentially messages generated by H4 applications and

passed among H3 devices. It is worth noting that the above structure can be customized

depending on the particular system being considered. For example, when a system lies

within a PAN, H2 is not needed. Also, when we model a networked system with embedded

devices connected together, a possible case is that each device may only host one appli-

cation; e.g., the only mission of a temperature sensor node is to capture the environment

temperature and report to the control node. In this case, H3 and H4 are essentially the same

so it is meaningless to distinguish them.

This hierarchical structure provides more flexibility in the assessment of accountability.

For instance, one of the challenges to defend against Denial of Service attacks is to identify

the source of attacking traffic, which is possibly generated by some H4 malware on some

H3 zombie machines from multiple H2 organization networks across the world. Obviously,

the level of the identified attack source will determine the degree of accountability. For

instance, consider an event ‘‘a zero-day virus x running on a Bat machine y in company

z launched an attack toward an Internet target’’, we call the virus program x the root cause

of this event. If a system is able to identify the root cause for most events, its accountability

level should be valued higher, compared to a system that can only pinpoint a causal entity

from upper hierarchies such as the machine y or the company network z in this case.

To generalize the model, a network consists of n hierarchies. Let Hi (1 B i B n) rep-

resent the ith hierarchy. To be consistent, we still let V and E denote a set of entities set and

a set of events, respectively. However, in this model, an event is caused by entities at

different hierarchies, meaning that the event cause has granularities. The definition of the

mapping function a does not change, but the result entity set Ve should locate at a certain

hierarchy. In addition, if different granularities are considered, a(e) might output multiple

responsible entities in different hierarchies. For instance, if an event e is caused by v, which

is a H4 program running on a H3 device u, then we regard both v and u are correct results of

a(e). Apparently, v has a finer granularity than u; as such, v is a better candidate to describe
the event cause. Essentially, a more accountable system should have a higher chance to

identify responsible entities with finer granularity. Therefore, the notion of perfect map-

ping is redefined as ‘‘for all e 2 E, the mapping result Ve is correct, complete, and is

located at the deepest hierarchical level’’. A result being the deepest means that the system

is able to find a correct result with the finest granularity.

Definition 3 P-Accountability (hierarchical model) in a networked system, P-Account-

ability AH(H) is defined as follows:

AHðHÞ ¼ 1

jEj �
X

e2E

de

dejPM
� jVej
jVejCj

� IðaðeÞ is correctÞ
� �

ð3Þ

In the above definition, de and de|PM denote the indices of the hierarchies where Ve and

Ve|PM are located at, respectively. Ve|C denotes the complete and correct entity set for event

e at hierarchy de. Obviously, if Ve lies in a higher hierarchy than Ve|PM, then event e is less

3792 Z. Xiao et al.

123

accountable, because existing evidence does not generate a PM that points to the root

causal entities.

4.2 Example: P-Accountability for AudIt

AudIt enables Internet Service Providers (ISPs) to proactively send feedback to the traffic

source regarding link quality. The proposed hierarchical model can be applied to AudIt, for

which we have H2 admin domains, H3 PCs and routers, as well as H4 applications. The

main event for an AD is relaying traffic, i.e., a packet could be relayed or dropped. Our

model assigns a higher value of accountability to the system, if a H3 router or a network

interface card can be identified being responsible for an event of packet loss. Also, the

corresponding version of the probabilistic model can be given as the probability that a

responsible router or network interface card can be identified for a packet drop/delay event.

5 Applying P-Accountability to PeerReview

5.1 PeerReview Overview

PeeReview [11] implements a set of protocols that apply to generic distributed systems.

PeerReview offers robust Byzantine fault detection such that nodes with misbehaviors can

be witnessed by honest nodes, which produce evidence to irrefutably link a faculty or

malicious node with bad actions. The following describes the assumptions of PeerReview:

• Each node owns a deterministic application, indicating that a certain input will yield the

same output regardless of the current state of the system. PeerReivew relies on a

reference mechanism to examine the behavior of nodes. In another word, output

produced by the reference will be compared to the one produced by a node, and if they

are not matched, the node should be flagged.

• Each message will be eventually transmitted to the destination, if sufficient

retransmissions are applied.

• Identify of a node cannot be forged due to the security of public key infrastructure.

• A node can be indicated as either ‘trusted’, ‘suspected’, or ‘exposed’.

• A set of witness x(k) is used to closely monitor the behavior of node k; if k is detected

faulty, other nodes in the system will be notified by the witnesses.

There are six corner stones for PeerReview, including commitment protocol, tamper-

evident logs, audit protocol, consistency protocol, evidence transfer protocol, and chal-

lenge/response protocol. In addition, PeerReview uses ak
j to denote the evidence, which is

essentially a signed statement by node j with its private key. With ak
j , another node i can

verify that node j has correctly logged event ek, which specifies j’s action at the moment, as

well as all events before ek. PeerReview ensures that node j is unable to falsify ek without

being detected, because all evidence will be available to the entire network, and the witness

scheme makes sure that a node will be examined periodically.

Results in [31] show that PeerReview cannot achieve a high degree of accountability in

a complex network environment (e.g., the Internet) due to the end-to-end packet dynamics

[51]; in addition, false accusations may happen because messages could be eventually lost.

Eventual message loss means that both the direct and the witness assisted deliveries fail,

thus the message will never reach the destination.

P-Accountability: A Quantitative Study of Accountability in… 3793

123

5.2 Network Model

The flat model suits PeerReview very well because there is merely one hierarchy which

contains all nodes (i.e., hosts) in a distributed system. Before further analysis is given, we

introduce some notations:

Q(V, E) A networked system supported by PeerReview. V and E denote the entity set

and the event set, respectively. More concrete definitions of V and E will be

given later in this section

VH A set of honest nodes in the system such that VH (V

u The fraction of faulty nodes. Note that u is not unchanged. It could be low when

the system is started, but it will increase as some honest nodes may be

compromised and become faulty or malicious. Later on, u may shrink due to the

eviction of compromised nodes in an accountable system

w The size of witnesses. In this paper, we assume that the all nodes have the same

witness size, which is a constant value w, i.e., Vv 2 V, |x(v)| = w. In the

simulation, the w can be adjusted as a parameter

5.3 P-Accountability of PeerReview

In order to evaluate the system accountability for PeerReview, we first give analysis that

how a node can judge another one, as well as the underlying reasons. Nodes in a networked

system can have three possible statuses defined in set O = {Correct (C), Faulty (F),

Ignorant (I)}, and we let ov be the node v’s status. An ignorant node refers to a node that is

unresponsive to any incoming message. A faulty node refers to a node whose behavior can

be arbitrary. Rigorously, an ignorant status is a special case of the faulty status. A correct

node refers to an honest node whose actions comply with the protocol specification. When

a node is compromised, it becomes be either faulty or ignorant.

An indication of a node refers to the way it is judged by other nodes. PeerReview has

given three kinds of indications from a set U = {Trusted (T), Exposed (X), Suspected (S)}.

Each node v keeps a table of indications for all nodes in the network. Let Cv = {\
i, ui,v[|i 2 V, ui,v 2 U} denote the table kept at node v. ui,v is an indication of node i from

v’s viewpoint. As such, a node can be trusted, exposed, or suspected by any other node, and

the indication will be recorded. When the system just starts, each node v’s indication

table will be initialized as Cv ¼ f\i; ui;v [j8i 2 V; ui;v¼Tg; in other words, node v trusts

every other node in the initial state. However, Cv will be dynamically updated as the

system is running.

Figure 1 shows three kinds of indications along with the corresponding three node

statuses. Formally, let ui,v|oi denote the result of i indicated by v, given that the real status

Correct (C)

Faulty (F)

Ignorant (I)

Trusted (T)

Exposed (X)

Suspected (S)

Status IndicationFig. 1 Statuses and indications

3794 Z. Xiao et al.

123

of node i is oi. For instance, (ui,v = T)|(oi = C) = T|C means that node i is ‘Trusted’ by

node v when node i is a correct node. From a combination point of view, apparently, there

are nine possibilities, listed in Table 2.

Table 2 shows that there are three accurate indications and six false indications, i.e.,

errors. In this paper, we regard message loss as the only cause of errors. As mentioned,

PeerReview enables a temporarily lost message to eventually reach the destination, which

essentially turns off message loss. In theory, a PeerReview-supported system is error free

and perfectly accountable, while in reality this assumption is too strong.

The PeerReview primitives determines that event X|I will never occur, because no

evidence can be provided to expose an ignorant node. Even under the new assumption that

a message may never reach the destination, the fact of absence for event X|I will not

change.

Definition 4 False positives cover two cases: (1) a faulty node is Trusted, i.e., T|F; (2) an

ignorant node is Trusted, i.e., T|I.

Definition 5 False negative cover two cases: (1) a correct node is Exposed, i.e., X|C; (2)

a correct node is Suspected, i.e., S|C.

For PeerReview, the event space is defined as E = {(i,j)|Vi 2 V, Vj 2 VH, node i is

indicated by node j}. The size of event set is thus |E| = |V| � |VH|. We also define a PM as a

node i being correctly indicated by node j. Therefore, P-Accountability for PeerReview can

be defined:

AFðQÞ ¼
P

v2V Number of PMs at node vð Þ
jV j � jVH j

ð4Þ

For Vv 2 V, let PC be the probability of node v correctly indicating the status of any

other node in V, and PFP and PFN denote the probabilities of false positive and false

negative, respectively. We obtain the probabilistic model of P-Accountability ~AðQÞ as

follows.

~AðQÞ ¼ PC ¼ 1� PFP � PFN ð5Þ

Equation (5) is a probabilistic approach to measure accountability. In order to calculate

PC we will first calculate the End-to-end (E2E) Message Loss Probability (MLP) and

eventual MLP, and then obtain PFP and PFN, respectively.

5.3.1 E2E MLP and Eventual MLP

Let P0 be the E2E MLP between any two end nodes. In PeerReview, however, a tem-

porary message loss event does not imply an eventual message loss, as the challenge/

response protocol will retransmit the lost message later on using a challenge message.

Figure 2 describes this situation: node j sends a message to i, while the message is lost

due to network issues. As there is no response from i, node j decides to initiate the

Table 2 Nine indication possibilities of UI,V|OI

Accurate indication Error

T|C, X|F, S|I X|C, S|C, T|F, S|F, T|I, X|I

P-Accountability: A Quantitative Study of Accountability in… 3795

123

challenge/response protocol by creating a challenge, and send it to i’s witnesses, i.e.,

x(i), which will forward the challenge to i. Let Pe denote the probability that a message

is eventually lost, we can conclude that a message is eventually lost if and only if all

challenges forwarded by witnesses are lost. The statement yields the following

calculation.

Pe ¼ P0 �
Xw

r¼0

w

r

 !
� 1� P0ð Þr�Pw�r

0 � Pr
0

 !

¼ Pwþ1
0 �

Xw

r¼0

w

r

 !
� 1� P0ð Þr�1w�r

 !

¼ Pwþ1
0 2� P0ð Þw

ð6Þ

5.3.2 False Positive

To indicate the status of a node i, node j needs to constantly fetch a set of evidence

from i’s witnesses. Once there is any accusation from the evidence set pointing to i,

node i will not be trusted by j anymore. Nevertheless, we cannot assume that all

witnesses are trustworthy as some of them may become compromised and controlled

by hackers. A compromised witness is capable of accusing a correct node or tolerating

a faulty node with fabricated evidence. Luckily, PeerReview is able to prevent a piece

of evidence from being forged. Therefore, as long as at least one witness is honest

(which is also assumed by PeerReview), the only cause of false positive is that all

messages containing evidence are lost. Therefore, after one operation of evidence

transfer protocol, we have

PFP ¼ Pw�ð1�/Þ
e ð7Þ

The system will run the evidence transfer protocol when it is needed, and each run is

independent. In other words, if we take a snapshot of the system at a certain moment, we

will discover all status indications only depends on the latest run of the evidence transfer.

The issue is that as u keeps growing, resulting limu?1 PFP = limu?1 Pe
w(1-u) = 1. This

means that if all witnesses of i turns faulty, i will always be trusted.

j i

w

Witness of i

ch
al chal

msg
S1

S2 S3

Fig. 2 Communication in
PeerReview

3796 Z. Xiao et al.

123

5.3.3 False Negative

False negative consists of X|C and S|C. The cause of X|C is twofold: (1) if i is a witness of j,

X|C will be caused by message loss in auditing; (2) if i is not a witness of j, X|C will occur

because some witnesses of j, which also suffer X|C, forward wrong evidence to node i. For

the second cause, let r be the number of honest witnesses that suffer error X|C, so r pieces

of faulty evidence will be generated and distributed. If by any chance any of the r evidence

messages arrives at node i, then I will also be suffering X|C. For convenience of derivation,

we assume that for each time of audit one log segment will be sliced into �l small pieces

and loaded into �l messages. The probability of false negative is given below:

PFN ¼ PrðXjCÞ þ PrðSjCÞ ð8Þ

in which

PrðXjCÞ ¼ w

N
� 1� 1� Peð Þl
� �

þ 1� w

N

� �
�
Xwð1�uÞ

r¼0

wð1� uÞ
r

� �
� 1� 1� Peð Þl
� �r

� 1� Pr
e

� �� � ð9Þ

PrðSjCÞ ¼ Pe þ ð1� PeÞ � P0 ð10Þ

A proof sketch of (9) is given as follows: Consider a correct node x. There are two cases

in which node x will be exposed by another correct node y. Case 1: node y is one of node

x’s witnesses (with probability w/N), and at least 1 msg of �l messages are eventually lost

(with prob. 1� 1� Peð Þl
� �

). Case 2: node y is not node x’s witness (with prob. (1 - w/

N)); if there are r witnesses of node x that have already suffered X|C, they will pass the

fault evidence (r in total) to node y. Therefore, node y will suffer X|C if and only if at least

one evidence of r reaches node y.

Based on Eqs. (5)–(10), we obtain ~AðQÞ for PeerReview.

Theorem 1 In the PeerReview context, if eventual message loss exists during the system

lifetime, the entire system will ultimately become entirely non-accountable.

Proof In a practical system, it is likely that the eventual message loss rate is not equal to

0 all the time, thus AF(Q) will keep decreasing and ultimately reach 0, because that

eventual message loss results in errors. If more and more messages are lost, more errors

will show up and accumulate; in the end, the percentage of correct indications will drop to

zero. In other words, P-Accountability reaches 0. Therefore, the system becomes non-

accountable at all. h

6 Accountable Wireless Multi-hop Networks

PeerReview-supported systems mainly consider end-to-end communication, which suits

generic distribute systems very well. However, for a multi-hop network, we argue that

although the fundamental idea of PeerReview still applies, there are some critical chal-

lenges that require additional efforts. For example, relay nodes play an important role in a

multi-hop network. When a relay is compromised, new vulnerabilities will emerge.

PeerReview is unable to deal with a malicious relay as its function differs from an end

P-Accountability: A Quantitative Study of Accountability in… 3797

123

node. This concern leads us to design Traceable PeerReview (TPR), which is an extension

of the original version in the multi-hop network environment. In particular, a new protocol

called Message Tracing protocol is designed and integrated into the original protocol set.

A wireless channel suffers various network dynamics such as interference, congestion,

and packet loss/delay [52]. If a message is lost, any hop could be the cause of it. The

default number of retransmissions for IEEE 802.11 is seven [53, 54], which opens the door

of message loss given a bad channel. In addition, nodes in a system may be down due to

misconfiguration, program crash, external attack, and so on, leading to an unstable wireless

connection. Therefore, a message may never be able to reach the destination, i.e., message

eventual loss. In this section, message loss is considered as a factor for the analysis of

P-Accountability for TPR.

6.1 TPR Environment

A wireless multi-hop network presents some characteristics that are different from a

generic distributed system:

1. In additions to being source and destination, a node also plays a third role of relay.

2. We define a path between nodes S and D as ZS,D = hS, R1, R2, …, Rl, Di, where
R1, R2, …, Rl are the relays. If a message chooses path ZS,D, it takes (l ? 1) hops to

reach the destination.

3. In addition to the E2E ACK, a new type of ACK called Hop ACK is enabled in the

multi-hop environment. A Hop ACK is used to indicate successful message delivery

between hops. In particular, if a Hop ACK is not received by the sender if after q-1

retransmissions, the sender will pick another route.

6.2 Problem Description

Potential vulnerabilities will emerge when simply apply PeerReview to the wireless multi-

hop network. As shown in Fig. 3, a message travels through multiple relays to reach the

destination. Let ZS,D = hS, R1, R2, …, Rl, Di be the path of the message, then the delivery

will be successful if and only if (1) all relays in the path are honest, and (2) the message is

not lost along the route. Consider the case that a relay, say Rk, is faulty, then there might be

a few possible consequences:

1. Rk is inactive to messages coming from source S, meaning that the connection from S

to D will never be established.

DS R1

Rk

Rl

Witness set of Rk
Fig. 3 Relays in a multi-hop
network

3798 Z. Xiao et al.

123

2. Rk selectively or randomly relays the traffic from S; as such, recipient D is unable to

obtain a complete message from the source.

3. Rk performs a replay attack by re-sending a message to D, which may cause a denial of

service on D.

4. Rk may intentionally or mistakenly relay a message to a different recipient other than

D, leading to a data leakage incident.

PeerReview is capable of dealing with the above problems only if the relay Rk keeps its

log faithfully, because logs will be replayed by Rk’s witnesses, who inform other nodes to

expose Rk if there is any action that deviates from the reference. However, if Rk takes a

more intelligent strategy to not leave any evidence about message relay in its logs, then

PeerReview will not be able to expose it. For instance, a malicious relay Rk receives a

message mx, but instead of delivering it to the next hop, Rk discards mx and does not update

its log. Later on, when Rk’s log is checked by the witnesses, mx will never appear in the log

entries, meaning that PeerReview is not able to expose a malicious node as such. However,

it does not mean Rk can always be at large. Consider Rk-1, which might be honest, the

predecessor of Rk within the route, has delivered mx to Rk, and all log entries related to this

message delivery exist in Rk-1’s log. Based on these info, the behavior of Rk can be

inferred: if Rk-1 received a hop ACK of mx, Rk must have problem as it is certain that Rk

has received mx while failed to update the log. This example shows the basic idea of TPR:

to expose a faulty relay, it is not sufficient to examine a single suspect; instead, a coop-

erative inspection approach that involves other nodes in the path is needed for evidence

generation.

Traceable PeerReview (TPR) is highlighted by being able to: (1) detect the exact hop

when a message disappears or manipulated, and (2) generate a piece of verifiable evidence

for exposing the first malicious node in the route.

6.3 Traceable PeerReview

This subsection provides the technical details of Traceable PeerReview, the core of which

is the Message Tracing protocol.

6.3.1 Modifications on PeerReview

Tamper-evident logs (Sect. 4.4 in [11]): we include four additional addresses needed to

generate evidence: source, destination, last hop, and next hop, in the log entry for each

individual message the passes through a relay.

6.3.2 Message Tracing Protocol

On top of the slight modification on logs, we add a Message Tracing protocol which is core

of TPR. Equipped with message tracing, a source is able to initiate the challenge/response

protocol if the E2E ACK is not received, and start to suspect D unless the challenge is

properly addressed. If D is honest, then there are two possible reasons that D is suspected:

(1) either the message or the ACK is lost, or (2) one of the relays along the path is faulty.

We describe the Message Tracing below:

• Step 1 Consider a particular message mx that is sent from the source S to the destination

D, if the E2E ACK is not received by S, then S will kick off the tracing process to

examine the path from S to D. To start, source S creates a Tracing tag rS(seqx), which

P-Accountability: A Quantitative Study of Accountability in… 3799

123

essentially is a signed message of the sequence number of mx. The tracing tag is then

sent to the relay, say R1, right next to the source. R1 will verify S’s identity by

decrypting the tag with S’s public key, and then, if the tag is valid, R1 retrieves all log

entries that involve mx and send them to S, which will replay the log entries to check if

R1 behaves honestly. Since the setting is deterministic, R1’s reaction involving mx

should be deterministic as well. As soon as R1’s behavior is validated, S delivers a Pass

tag to R1 which can be trusted by now. Next, R1 will create a Tracing tag using its own

private key for signature and start checking the validity of the next hop, say R2. If,

however, S determines that R1 is faulty, a Reject tag is produced and R1 won’t be

trusted.

• Step 2 Consider a relay in the middle of the path, say Ri receives a tracing tag from the

its last hop Ri-1, Ri is asked to send all log entries relevant to mx to Ri-1. In particular,

Ri-1 checks the following about mx in Ri: the source ID, the destination ID, the last hop

node ID, and the next hop ID. If all of these identifiers are correct, then Ri is verified to

have forwarded mx honestly, or Ri is proved faulty. All log entries Ri sent to Ri-1

become evidence that can be verified by a third party. If Ri happens to be D, the tracing

for mx is finished. Note that the log is tamper-evident, any malicious modification to the

log will be detected by the witnesses.

• Step 3 If all nodes from S to D are honest, the protocol will start tracing the

acknowledgement, denoted by ACK(mx), which should be sent from D. As such, D

kicks off another round of tracing along the path through which ACK(mx) travels.

• Step 4 If a faulty node is detected. Related evidence will be distributed to the rest of the

network through the evidence transfer protocol (Sect. 4.9 in [11]).

The design of Message Tracing can detect faulty relay nodes in most cases. However,

when a recently compromised node which is also in the path blocks the tracing, it is

difficult to detect the actual faulty node. Consider path ZS,D(mx) where a message mx is lost

somewhere in the middle. Assume that node k is the faulty relay node which causes the

loss of mx, while node h turns into a faulty node just before the tracing procedure.

• Case I If node h is located before k in the path, then h can be identified by Message

Tracing, and k will be detected if it causes message loss in the future. This case can be

handled by the current protocol.

• Case II if node k is located before h in the path, Message Tracing will stop working

since k becomes faulty and does not comply with the protocol any more. To fix it, we

add a backward tracing scheme: if a faulty node blocks the tracing process in path from

S to D, we will launch a reverse tracing of mx starting from the destination. The

difference is that a backward tracing will stop only if mx appears in a node’s event logs,

and we can determine that this node is responsible for the loss of mx since all

subsequent nodes never received mx.

• Case III if another node h’ also turns faulty just before tracing, it is likely that the actual

faulty node k is located in between h and h’. Therefore, both forward and backward

tracing will not work, because the tracing cannot reach node k at this moment. In this

case, k is not detected. The protocol will choose another path to redeliver mx. Although

k remains undetected, there is a high probability that k can be eventually detected as

long as it keeps being malicious.

3800 Z. Xiao et al.

123

6.4 Traceable PeerReview Analysis

Let Ph be the probability that a message is lost in a hop, and let PC denote the probability

that the process of message tracing is finished; in other words, a message will never be

eventually lost during tracing, meaning that the scheme either identifies a faulty relay, or

the hop that causes message loss. Let si,j be the hop count between nodes i and j. and let Rk

be the first faulty node along the tracing path. We have

PC ¼ 1� P
q
h

� �3�ss;k ð11Þ

Proof of (11) The tracing will be successfully finished if and only if all relays can be

reached. As mentioned in the tracing description, a hop checking involves three kinds of

tracing messages including a tracing tag, a log segment, and a message indicating pass/

reject. In addition, a message can be re-transmitted by up to q-1 times. Therefore, the

probability of a successful one-hop checking is (1 - Ph
q)3. There are two cases to be

discussed according to Rk’s location:

Case 1 Rk is located in the path before mx arrives at D. Obviously, the tracing can only be

finished if all hop checkings within the ss,k hops are successful, which has a probability of

1� P
q
h

� �3�ss;k .

Case 2 Rk lies in the path of ACK(mx) from D to S. Similar to Case 1, we have

PC ¼ 1� P
q
h

� �3�ðss;dþsd;kÞ¼ 1� P
q
h

� �3�ss;k

Theorem 1 The message complexity of message tracing is O(ssd ? sds), which is pro-

portional to the hop count of the tracing path.

Proof Assume that the hop level ACK/retransmission is enabled; as such a message can

be retransmitted up to q - 1 times, the message tracing protocol requires that any relay to

exchange three different messages (see Fig. 4) with its next hop node. If message loss and

retransmission are taken into account, the maximum messages for a single hop is 3q, and

the maximum number of hops is ssd ? sds - 1; thus, the message overhead is computed as

3q � (ssd ? sds - 1) = O(ssd ? sds).h

Ma
i.e., TracingTag

Mb
i.e., Log Segment

Mc
i.e., Pass/Reject

Source DestinationRi-1 Ri

Fig. 4 Tracing in path ZS,D(mx)

P-Accountability: A Quantitative Study of Accountability in… 3801

123

6.5 P-Accountability on TPR

Since events T|C, X|C, and S|C are mutually exclusive, then

Pr(T|C) = 1 - Pr(X|C) - Pr(S|C). Similarly, Pr(X|F) and Pr(S|I) can be computed.

Therefore, for TPR, P-Accountability ~AðQÞ can be defined below:

For any node v 2 V,

~AðQÞ ¼ Prðnode v makes correct indicationsÞ
¼ PrðTjCÞ þ PrðXjFÞ þ PrðSjIÞ
¼ 1� PrðXjCÞ þ PrðSjCÞð Þ
þ 1� PrðTjFÞ þ PrðSjFÞð Þ
þ 1� PrðTjIÞ þ PrðXjIÞð Þ

¼ 3� PrðXjCÞ � PrðSjCÞ � PrðT jFÞ
� PrðSjFÞ � PrðT jIÞ � PrðXjIÞ

ð12Þ

6.5.1 Eventual E2E Message Loss

Given end nodes i and j, the probability of the E2E message (sent from i to j) loss is

Ptði;jÞ ¼ 1� ð1� P
q
hÞ

si;j ð13Þ

and the probability of eventual E2E message loss is

PEði;jÞ ¼ Ptði;jÞ

�
Xw�ð1�uÞ

k¼0

w � ð1� uÞ

k

 !
�
Yk

r¼1

1� Ptði;rÞ
� �

�
Yw�ð1�uÞ�k

l¼1

Ptði;lÞ
� �

�
Yk

r¼1

Ptðr;jÞ
� �

 ! !

ð14Þ

Equation (14) is another version of Eq. (6) in the multi-hop scenario. The basic idea of

calculating (6) still applies: if a message mx is lost (with probability Pt(i,j)), source i will

transfer challenges to its witnesses. Message mx is eventually lost if and only if all chal-

lenges forwarded by the witnesses are lost.

6.5.2 Error Analysis

The six error types are in line with the ones introduced in Sect. 5. Also, we treat normal

faulty (NF) nodes and relay faulty (RF) nodes differently. Let VNF [VRF = VF and

VNF \ VRF = [; let pnf be the probability of a node being a normal faulty node, and let prf
be the probability of a node being relay faulty node. Consider nodes i and j, given that i is

honest, then we can provide analysis for the errors.

• Error (uj,i = X)|(oj = C) = X|C. TPR does not introduce additional error causes for

X|C, because an honest node can always provide a message of verifiable log entries to

its previous hop during tracing. Thus, Eq. (9) in the multi-hop setting can be given as

3802 Z. Xiao et al.

123

PrðXjCÞ ¼ w

jVj � 1� 1� PEði;jÞ
� �l� �

þ 1� w

jVj

� �
�
Xwð1�uÞ

r¼0

wð1� uÞ

r

 !
� 1� 1� PEði;jÞ

� �l� �r
� 1� Pr

Eði;jÞ

� � !

ð15Þ

• Error S|C and S|F:

• Case C1: node i and j are source and destination, respectively. Node i will suspect

another node j, regardless of its status, is caused by eventual message loss, which

may either occur (1) in the route from i to j for the original message, or (2) in the

route from j to i for the ACK message.

PrðC1Þ ¼ PEði;jÞ þ ð1� PEði;jÞÞ � Ptði;jÞ ð16Þ

• Case C2: Nodes i and j are next to each other during tracing. If j is the successor of

i, and that j’s status is unknown.

PrðC2Þ ¼ P
2q
h � PEði;jÞ ð17Þ

• Because of the mutual exclusivity between C1 and C2, the following equation

holds:

PrðSjCÞ þ PrðSjFÞ ¼ PrðC1Þ þ PrðC2Þ ð18Þ

• Error T|F and T|I. TPR introduces another cause of T|F: if the evidence for exposing a

faulty relay node is lost, then the rest network will keep trusting the faulty node. We

then have

PrðT jFÞ þ PrðTjIÞ ¼ w

jVCj
� prf � PEðt;iÞ þ 1� w

jVCj

� �
� pnf �

Yw�pc

r¼1

PEðr;iÞ ð19Þ

• Error X|I. The adoption of TPR will also not expose an ignorant node as it is always

unresponsive. Therefore, Pr (X|I) = 0

Combining Eqs. (12)–(19), we obtain ~AðQÞ for TPR.

7 Evaluation

This section presents numerical results in Sect. 2.1 and simulation outcomes in Sect. 2.2 to

validate the proposed quantitative model. Numerical results are those obtained via math-

ematical models and simulation results are those obtained via simulating the methods. The

simulated system is a wireless multi-hop ad hoc network; however, the proposed method

can be used in any networks including wired and wireless networks.

P-Accountability: A Quantitative Study of Accountability in… 3803

123

7.1 Numerical Results

7.1.1 PeerReview

~AðQÞ for PeerReview can be numerically plotted in Fig. 5. In this figure, P-Accountability

is a probability affected by E2E message loss probability and witness size. The reason that

a larger witness set increases P-Accountability is that more witnesses will help forward the

challenge once a message is lost.

7.1.2 Traceable PeerReview

If no tracing messages are eventually lost in the tracing route, we call the tracing a

successful one. The probability of successful tracing is determined by two factors including

hop re-transmissions, i.e., (q - 1), and the average number of hops savg between the source
and the first faulty relay. Figure 6 is obtained via Eq. (11) and shows the effects of other

parameters on PC, and we assume that Byzantine faults are directly related to the message

loss. Figure 6 shows that PC increases as q increases, indicating a positive impact on PC,

while savg causes a negative impact on PC. To make sense of the observation, an increased

number of retransmissions reduces the chance of message loss, while a higher number of

hops does the opposite. This claim is consistent with the analysis result in Fig. 7, which

shows how P-Accountability is affected by the message loss probability Ph. The higher Ph

is, the lower P-Accountability will be.

7.2 Simulation Results

TPR is an extension of PeerReview, and our simulation program is also extended from the

original PeerReview software library [55]. Figure 8 describes the network stack of a

computing device with TPR enabled. TPR is independent of applications, meaning that

TPR can be installed as a plugin so that general Byzantine faults can be detected with

verifiable evidence. If we follow the example in Table 1, we can identify two hierarchies in

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E2E MLP

P-
Ac

co
un

ta
bi

lit
y

w = 2
w = 4
w = 8

Fig. 5 The E2E MLP and
P-Accountability for PeerReview
when u = 0.1

3804 Z. Xiao et al.

123

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hop Message Loss Probability ph

P C
: t

he
 p

ro
ba

bi
lit

y
of

 th
e

su
cc

es
sf

ul
 tr

ac
in

g

q = 4, avg = 40
q = 4, avg = 20
q = 8, avg = 20

Fig. 6 Hop MLP and PC for
TPR (u = 0.1)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hop MLP Ph

P
-A

cc
ou

nt
ab

ili
ty

w=4, avg=20
w=4, avg=10
w=8, avg=10

Fig. 7 Hop MLP and
P-Accountability for TPR
(u = 0.1)

Traceable PeerReview

Other Apps

Transport Layer

App 1 App 2 App 3 ...

...

Fig. 8 Framework of TPR enabled system

P-Accountability: A Quantitative Study of Accountability in… 3805

123

any TPR-supported systems, including H3 that contains all nodes, and H4 that consists of

multiple applications.

TRP will create a log file for each application, and each node is associated with one key

pair as its identity. As shown in Fig. 8, all applications are running independently. In

addition, witnesses are in H3, meaning that the same set of witnesses are shared across

applications on a node.

As a single device has multiple applications running on it, we can then define a metric

that is aligned with definition (3). The event space can be given as ‘‘the status of appli-

cation x on node y is indicated by every other correct node in the system’’. The entity space

then consists of all H3 nodes and all H4 applications. Let M be the number of applications

running on a node, the size of event space is M � |V| � |VH|.

AHðQÞ ¼
P

m2M
P

v2VH

P
k2V Iðuk;v is correctÞ
� �

M � jVj � jVH j
ð20Þ

The numerator in the right hand side of the above equation is the total number of correct

indications for node v. Our metric in (20) is in line with the one given in (3). However, the

notion of perfect mapping in this setting means an ability to identify a responsible

application in H4, which has a finer granularity than pinpointing a responsible node in H3.

In addition, when judging an ignorant node, there is no way to determine the honesty of the

applications running on it, because the node itself is totally unresponsive.

7.2.1 P-Accountability on Traceable PeerReview

PeerReview assumed that a message will be eventually received by the destination as long

as the lost message is retransmitted sufficiently enough. Our simulation assigns a certain

probability that a message will get lost in each hop; in addition, we set a limit on the

number of retransmissions, meaning that there is a chance that a message is eventually lost.

The goal of the simulation is to figure out how P-Accountability is influenced by message

loss in a TPR-enabled environment. For that purpose, we have simulated a wireless multi-

hop network deployed in a square area. There are two applications running on each node,

and all nodes are homogeneous. Table 3 lists all parameters of the simulation.

The percentage of each indication type is shown in Table 4. We can observe that when

ph rises from 0.2 to 0.8, the percentage of correct indications has dropped by 52.6%,

meaning that the worse the channel quality is, the less accountable the system would be. In

contrast, the percentage for each error type increases. Another finding is that over the five

error types, three of them, including X|C, T|F, and T|I, rarely occur, which is also expected.

For X|C, it will be triggered if and only if a message is lost in the audit protocol so that a

witness cannot generate output as expected. In that case, a temporary X|C will occur,

although it may be addressed later on by the challenge/response protocol. T|F and T|I are

caused by the message loss during evidence transfer. S|C and S|F, on the other hand, do

Table 3 Simulation parameters
Parameter Values

Ph—hop message loss probability 0.0, 0.1, 0.2 up to 1.0

N—node # in total [50, 100, 250, 500]

u—initial faulty nodes rate [0.0, 0.05, 0.1, 0.2]

w—witness size [2, 4, 8]

3806 Z. Xiao et al.

123

appear quite often, as they happen once a message or its ACK is lost. For errors, some of

them will be resolved, while the rest contribute to make the system less accountable.

According to the analysis in Sect. 4. E.2, X|I will never exist, and our simulation result is

aligned with this conclusion.

In our simulations, we change hop message probability in our programs under different

simulations so that we can obtained Fig. 9, which shows the relationship between P-ac-

countability and hop message loss probability. On the other hand, Byzantine faults can

cause message loss and in the simulation, we assume that Byzantine faults are the only

reason for the loss besides some network protocol limitation such as collisions and

retransmissions. Figure 9 demonstrates how P-Accountability is affected by the hop

message loss probability, i.e., ph. The result is consistent with the numeric outcome in

Fig. 7. It confirms two findings: (1) P-Accountability decreases as ph increases; (2) when ph
is fixed, the more witnesses there are, the more accountable the system would be. It turns

out the chance of errors will also be decreased by a larger size of witness set, as more

witnesses will help forward the challenge, and a node being challenged have to justify

itself to every member in the witness set. As such, it is more likely that the response will

reach the other end. Moreover, an evidence message is less likely to be lost, leading to a

reduced chance of the occurrence of T|F and T|I.

In our simulation, some relay faulty nodes are inserted into the network. Figure 10

shows that comparison of a TRP-enabled system and a PeerReview-enabled system. We

can discover that when the hop message loss probability is fixed, the TPR-enabled system

Table 4 Error ratios for trace-
able PeerReview

Ph

0.2 (%) 0.4 (%) 0.8 (%)

Indication

Correct 73 55 37

X|C 1.5 2.3 1.7

S|C 12 19 28

T|F 2.4 3.9 4.2

S|F 9 15 21

T|I 2.0 4.9 8.1

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Hop message Loss Probability h

P
-A

cc
ou

nt
ab

ilit
y

w = 2
w = 4

Fig. 9 Simulation result—Ph

and P-Accountability

P-Accountability: A Quantitative Study of Accountability in… 3807

123

presents a higher degree of accountability, because TRP is able to expose the faulty relays,

while the original PeerReview is unable to.

8 Conclusion

P-Accountability is our attempt to quantify and evaluate accountability for networked

systems. To achieve this goal, we have developed a flat model and a hierarchical model.

Both models are generic and widely applicable. The flat model suits systems with flat

structure, meaning that all concerned entities are homogeneous. The hierarchical model is

an advanced version that applies to more complex environments. P-Accountability should

be customized before applied to a practical system.

To examine our model, we first conduct a case study that applies P-Accountability to

PeerReview. In addition, we propose Traceable PeerReview which enables PeerReview to

be used in wireless multi-hop network by making relay nodes accountable. We conduct

extensive simulation to validate our analysis. We show that in the PeerReview case,

message delivery plays a crucial role in determining accountability. Our simulation results

are well approached by the numeric results in Sects. 5 and 6. We also discover that

Traceable PeerReview increases P-Accountability in the simulation, compared to the

original version. Both our analysis and simulation results show that P-Accountability

makes accountability more flexible, adjustable, and fine-grained for a networked system.

This research will also generate many potential applications; for example, it offers a

practical approach to study the trade-off between accountability and system overhead, as

the latter is usually easy to quantify, while P-Accountability explores a feasible way for the

former. This will greatly benefit the design of distributed and networked systems that

regard accountability as the first class requirement.

Acknowledgements This work was supported in part by the US National Science Foundation (NSF) under
grants CNS-0716211, CNS-0737325, CCF-0829827, and CNS-1059265. The authors would like to thank the
anonymous reviewers for their valuable comments as well as the authors of PeerReview for offering their
program source code.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

hop MLP ph

P
-A

cc
ou

nt
ab

ili
ty

Wireless M-hop with PeerReview
Wireless M-hop with TPR

Fig. 10 Simulation result—hop MLP and P-Accountability for TPR

3808 Z. Xiao et al.

123

References

1. Department of Defense. (1985). Trusted computer system evaluation criteria. Technical Report
5200.28-STD, Department of Defense.

2. Yumerefendi, A. R., & Chase, J. S. (2005) The role of accountability in dependable distributed systems.
In Proceedings of HotDep

3. Yumerefendi, A. R., & Chase, J. S. (2004) Trust but verify: accountability for network services. In
Proceedings of the 11th workshop on ACM SIGOPS European workshop (p. 37). Leuven: ACM.

4. Xiao, Y. (2009). Flow-net methodology for accountability in wireless networks. IEEE Network, 23(5),
30–37.

5. Xiao, Y., Meng, K., & Takahashi, D. (2012). Accountability using flow-net: Design, implementation,
and performance evaluation. Security and Communication Networks, 5(1), 29–49. doi:10.1002/sec.348.

6. Takahashi, D., Xiao, Y., & Meng, K. (2014). Virtual flow-net for accountability and forensics of
computer and network systems. Security and Communication Networks, 7(12), 2509–2526.

7. Fu, B., & Xiao, Y. (2014). A multi-resolution flow-net methodology for accountable logging and its
application in TCP/IP networks. In Proceedings of the IEEE international conference on communica-
tions 2014 (IEEE ICC 2014).

8. Fu, B., & Xiao, Y. (2015). A multi-resolution accountable logging and its applications. Computer
Networks, 89(4), 44–58.

9. Fu, B., & Xiao, Y. (2012). Q-Accountable: A overhead-based quantifiable accountability in wireless
networks. In Proceedings of IEEE consumer communications and networking conference (IEEE CCNC
2012) (pp. 138–142).

10. Fu, B., & Xiao, Y. (2014). Accountability and Q-Accountable logging in wireless networks. Wireless
Personal Communications, 75(3), 1715–1746.

11. Haeberlen, A., Kouznetsov, P., & Druschel, P. (2007). PeerReview: Practical accountability for dis-
tributed systems. In Proceedings of twenty-first ACM SIGOPS symposium on operating systems prin-
ciples (pp. 175–188). New York, NY: ACM.

12. Andersen, D., Balakrishnan, H., Feamster, N., Koponen, T., Moon, D., & Shenker, S. (2007). Holding
the internet accountable. ACM HotNets-VI.

13. Andersen, D., Feamster, N., Koponen, T., Moon, D., & Shenker, S. (2008). Accountable internet
protocol (AIP). In Proceedings of the ACM SIGCOMM 2008 conference on data communication (pp.
339–350). New York, NY: ACM.

14. Mirkovic, J., & Reiher, P. (2008). Building accountability into the future internet. In 4th workshop on
secure network protocols, 2008 (pp. 45–51). NPSec 2008.

15. Backes, M., Druschel, P., Haeberlen, A., & Unruh, D. (2009). CSAR: A practical and provable tech-
nique to make randomized systems accountable. In Proceedings of the 16th annual network and
distributed system security symposium (NDSS’09), San Diego, CA.

16. Keller, E., Lee, R., & Rexford, J. (2009). Accountability in hosted virtual networks. In Proceedings of
the ACM SIGCOMM workshop on virtualized infrastructure systems and architectures (VISA).

17. Liu, W., Aggarwal, S., & Duan, Z. (2009). Incorporating accountability into internet email. In Pro-
ceedings of the 2009 ACM symposium on applied computing (pp. 875–882).

18. Argyraki, K., Maniatis, P., Irzak, O., Ashish, S., Shenker, S., & Epfl, L. (2007). Loss and delay
accountability for the internet. In IEEE international conference on network protocols, 2007 (pp.
194–205). ICNP 2007.

19. Yumerefendi, A. R., & Chase J. S. (2007). Strong accountability for network storage. ACM Transac-
tions on Storage, 3(3), 33. doi:10.1145/1288783.1288786.

20. Briscoe, B., Jacquet, A., Moncaster, T., & Smith, A. (2009). Re-ECN: Adding accountability for
causing congestion to TCP/IP. In IETF internet-draft.

21. Briscoe, B., Jacquet, A., Moncaster, T., & Smith, A. (2009). Re-ECN: The motivation for adding
accountability for causing congestion to TCP/IP. In IETF internet-draft.

22. Zeng, L., Chen, H., & Xiao, Y. (2011). Accountable administration and implementation in operating
systems. In Proceedings of the IEEE GLOBECOM 2011.

23. Zeng, L., Chen, H., & Xiao, Y. (in press). Accountable administration in operating systems. Interna-
tional Journal of Information and Computer Security. http://www.inderscience.com/info/ingeneral/
forthcoming.php?jcode=ijics.

24. Xiao, Y. (2008). Accountability for wireless LANs, ad hoc networks, and wireless mesh networks. IEEE
Communication Magazine, 46(4), 116–126.

25. Liu, J., & Xiao, Y. (2011). Temporal accountability and anonymity in medical sensor networks. Mobile
Networks and Applications, 16(6), 695–712.

P-Accountability: A Quantitative Study of Accountability in… 3809

123

http://dx.doi.org/10.1002/sec.348
http://dx.doi.org/10.1145/1288783.1288786
http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijics
http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijics

26. Liu, J., & Xiao, Y. (2012). An accountable neighborhood area network in smart grids. In Proceedings of
7th FTRA international conference on embedded and multimedia computing (EMC 2012), lecture notes
in electrical engineering (Vol. 181, pp. 171–178). Springer.

27. Liu, J., Xiao, Y., & Gao, J. (2014). Achieving accountability in smart grids. IEEE Systems Journal, 8(2),
493–508.

28. Xiao, Z., Xiao, Y., & Chen, H. (2014). An accountable framework for sensing-oriented mobile cloud
computing. Journal of Internet Technology, 15(5), 813–822. doi:10.6138/JIT.2014.15.5.11.

29. Ren, Y., Shen, J., Wang, J., Han, J., & Lee, S. (2015). Mutual verifiable provable data auditing in public
cloud storage. Journal of Internet Technology, 16(2), 317–323.

30. Li, J., Li, X., Yang, B., & Sun, X. (2015). Segmentation-based Image copy-move forgery detection
scheme. IEEE Transactions on Information Forensics and Security, 10(3), 507–518.

31. Xiao, Z., & Xiao, Y. (2012). PeerReview re-evaluation for accountability in distributed systems or
networks. International Journal of Security and Networks, 7(1), 40–58.

32. Xiao, Z., Xiao, Y., & Wu, J. (2010). A quantitative study of accountability in wireless multi-hop
networks. In 2010 39th international conference on parallel processing (ICPP) (pp. 198–207).

33. Zhou, Z., Wang, Y., Wu, Q. M. J., Yang, C., & Sun, X. (2016). Effective and efficient global context
verification for image copy detection. IEEE Transactions on Information Forensics and Security.
doi:10.1109/TIFS.2016.2601065.

34. Xia, Z., Wang, X., Zhang, L., Qin, Z., Sun, X., & Ren, K. (2016). A privacy-preserving and copy-
deterrence content-based image retrieval scheme in cloud computing. IEEE Transactions on Informa-
tion Forensics and Security. doi:10.1109/TIFS.2016.2590944.

35. Fu, Z., Wu, X., Guan, C., Sun, X., & Ren, K. (2016). Toward efficient multi-keyword fuzzy search over
encrypted outsourced data with accuracy improvement. IEEE Transactions on Information Forensics
and Security, 11(12), 2706–2716.

36. Rekhis, S., & Boudriga, N. A. (2009). Visibility: A novel concept for characterising provable network
digital evidences. International Journal of Security and Networks, 4(4), 234–245.

37. Ray, I., & Poolsappasit, N. (2008). Using mobile ad hoc networks to acquire digital evidence from
remote autonomous agents. International Journal of Security and Networks, 3(2), 80–94.

38. Madan, B. B., Goeva-Popstojanova, K., Vaidyanathan, K., & Trivedi, K. S. (2004). A method for
modeling and quantifying the security attributes of intrusion tolerant systems. Performance Evaluation,
56, 167–186.

39. Breu, R., Innerhofer-Oberperfler, F., Yautsiukhin, A. (2008). Quantitative assessment of enterprise
security system. In Third international conference on availability, reliability and security (ARES 08)
(pp. 921–928).

40. Sallhammar, K., Helvik, B., & Knapskog, S. (2006). A game-theoretic approach to stochastic security
and dependability evaluation. In 2nd IEEE international symposium on dependable, autonomic and
secure computing (pp. 61–68).

41. Bella, G., & Paulson, L. C. (2006). Accountability protocols: Formalized and verified. ACM Trans-
actions on Information and System Security, 9(2), 138–161.

42. Bella, G. Inductive verification of cryptographic protocols. Ph.D. thesis, Research Report 493, Com-
puter Laboratory, University of Cambridge.

43. Jagadeesan, R., Jeffrey, A., Pitcher, C., & Riely, J. (2009). Towards a theory of accountability and audit.
In ESORICS’09, volume 5789 of LNCS (pp. 152–167). Springer.

44. Küsters, R., Truderung, T., Vogt, A. (2010). Accountability: Definition and relationship to verifiability.
In Proceedings of the 17th ACM conference on computer and communications security, New York, NY,
USA (pp. 526–535).

45. Milner, R. (1999). Communicating and mobile systems: the pi calculus. Cambridge: Cambridge
University Press.

46. Feigenbaum, J., Jaggard, A. D., & Wright, R. N. (2011). Towards a formal model of accountability. In
Proceedings of the 2011 workshop on new security paradigms workshop, New York, NY, USA (pp.
45–56).

47. Ramazani, S., Kanno, J., Selmic, R. R., & Brust, M. R. (2016). Topological and combinatorial coverage
hole detection in coordinate-free wireless sensor networks. International Journal of Sensor Networks,
21(1), 40–52.

48. Mu, J., Song, W., Wang, W., & Zhang, B. (2015). Self-healing hierarchical architecture for ZigBee
network in smart grid application. International Journal of Sensor Networks, 17(2), 130–137.

49. Xiao, Y., Shen, X., & Jiang, H. (2006). Optimal ACK mechanisms of the IEEE 802.15.3 MAC for ultra-
wideband systems. IEEE Journal on Selected Areas in Communications, 24(4), 836–842.

50. Fantacci, R., & Tarch, D. (2006). Efficient scheduling techniques for high data-rate wireless personal
area networks. International Journal of Sensor Networks, 2(1/2), 128–134.

3810 Z. Xiao et al.

123

http://dx.doi.org/10.6138/JIT.2014.15.5.11
http://dx.doi.org/10.1109/TIFS.2016.2601065
http://dx.doi.org/10.1109/TIFS.2016.2590944

51. Paxson, V. (1997). End-to-end Internet packet dynamics. SIGCOMM Computer Communication
Review, 27, 139–152.

52. Liu, X., Liu, X., Li, Z., & Wang, B. (2014). The portable distributed fusion algorithm between loss and
lossless systems. International Journal of Sensor Networks, 16(1), 16–22.

53. Xiao, Y., & Rosdahl, J. (2002). Throughput and delay limits of IEEE 802.11. IEEE Communications
Letters, 6(8), 355–357.

54. Xiao, Y., & Rosdahl, J. (2003). Performance analysis and enhancement for the current and future IEEE
802.11 MAC protocols. ACM SIGMOBILE Mobile Computing and Communications Review, 7(2),
6–19.

55. PeerReview Software. http://peerreview.mpi-sws.org/.

Zhifeng Xiao received his Bachelor of Engineering in Computer
Science in 2008 from Shandong University, China. His Ph.D. in
Computer Science was completed at the University of Alabama in
2013. Zhifeng Xiao joined Penn State Behrend College, in August
2013. His research interests are in the design and analysis of secure
distributed and networked systems. His personal homepage is http://cs.
bd.psu.edu/*zux2/.

Yang Xiao currently is a Professor of Department of Computer Sci-
ence at the University of Alabama, Tuscaloosa, AL, USA. His current
research interests include networking and computer/network security.
He has published over 200 journal papers and over 200 conference
papers. Dr. Xiao was a Voting Member of IEEE 802.11 Working
Group from 2001 to 2004, involving IEEE 802.11 (WIFI) standard-
ization work. He is a Fellow of IET. He currently serves as Editor-in-
Chief for International Journal of Security and Networks, International
Journal of Sensor Networks, and Journal of Communications. He had
(s) been an Editorial Board or Associate Editor for 20 international
journals. He served (s) as a Guest Editor for over 20 times for different
international journals. Dr. Xiao has delivered over 30 keynote speeches
at international conferences around the world and gave more than 60
invited talks at different international institutes.

P-Accountability: A Quantitative Study of Accountability in… 3811

123

http://peerreview.mpi-sws.org/
http://cs.bd.psu.edu/%7ezux2/
http://cs.bd.psu.edu/%7ezux2/

Jie Wu is the Associate Vice Provost for International Affairs at
Temple University. He also serves as Director of Center for Networked
Computing and Laura H. Carnell professor. He served as Chair of
Computer and Information Sciences from 2009 to 2016. Prior to
joining Temple University, he was a program director at the National
Science Foundation and was a distinguished professor at Florida
Atlantic University. His current research interests include mobile
computing and wireless networks, routing protocols, cloud and green
computing, network trust and security, and social network applications.
Dr. Wu regularly publishes in scholarly journals, conference pro-
ceedings, and books. He serves on several editorial boards, including
IEEE Transactions on Service Computing and the Journal of Parallel
and Distributed Computing. Dr. Wu was general co-chair for IEEE
MASS 2006, IEEE IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc
2014, ICPP 2016, and IEEE CNS 2016, as well as program co-chair for
IEEE INFOCOM 2011 and CCF CNCC 2013. He was an IEEE

Computer Society Distinguished Visitor, ACM Distinguished Speaker, and chair for the IEEE Technical
Committee on Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker and a Fellow of the
IEEE. He is the recipient of the 2011 China Computer Federation (CCF) Overseas Outstanding Achievement
Award.

3812 Z. Xiao et al.

123

	P-Accountability: A Quantitative Study of Accountability in Networked Systems
	Abstract
	Introduction
	Related Work
	Existing Accountable Systems
	Theoretical Definitions of Accountability

	A Flat Model for P-Accountability
	A Flat Model
	Usage of the Flat Model

	A Hierarchical Model for P-Accountability
	A Hierarchical Definition of Accountability
	Example: P-Accountability for AudIt

	Applying P-Accountability to PeerReview
	PeerReview Overview
	Network Model
	P-Accountability of PeerReview
	E2E MLP and Eventual MLP
	False Positive
	False Negative

	Accountable Wireless Multi-hop Networks
	TPR Environment
	Problem Description
	Traceable PeerReview
	Modifications on PeerReview
	Message Tracing Protocol

	Traceable PeerReview Analysis
	P-Accountability on TPR
	Eventual E2E Message Loss
	Error Analysis

	Evaluation
	Numerical Results
	PeerReview
	Traceable PeerReview

	Simulation Results
	P-Accountability on Traceable PeerReview

	Conclusion
	Acknowledgements
	References

