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1. Introduction

l Earth is mostly sea

¡ > 70 % of the surface

l Signal propagation

¡ Electromagnetic signal decays quickly in the water

¡ Acoustic signal has limited bandwidth and long delay

lSpeed: 10 kbps

lDistance: 100 m



1. Introduction

l Efficient search in deep sea is notoriously difficult
¡ The detection of oil pipe leak in Mexico



1. Introduction
Malaysia Airlines MH 370

l DigitalGlobe
¡ Crowdsourcing volunteers comb satellite 

photos for Malaysia Airlines jet

l March 11, 2014 (from CSU prof. email)

I just saw on our local Denver Fox news 
(KDVR.com) that a local company, 
DigitalGlobe, has reoriented their satellites 
to take high-res images in the area where the 
plane may have crashed. Crowdsourcing 
efforts are on to have people scan these 
images and find signs of debris. I was 
reminded of Jie Wu's talk earlier this month.



1. Introduction
l Multi-tiered networks

¡ In the air
Unmanned Aerial Vehicle (UAV)

¡ On the ground
¡ Under the sea

Autonomous Underwater Vehicle (AUV)

l Communication
¡ A2A (Air-to-Air), A2G, and G2A
¡ G2G (Ground-to-Ground)
¡ U2U (Underwater-to-Underwater), U2G, and G2U

UAVs and AUVs: swarm intelligence

J. Wu, “A Multi-tiered Network with Aerial and Ground Coverage,” 
Computer Communications, 40-years special issue, 2018



1. Introduction

l Surfacing of multiple AUVs to transmit collected data

¡ Parallel 2-D  search space (a set  of connected line segments) 
to the water surface

l Examples: 
¡ Undersea tunnel

lDepth: 75m~300m
¡ Sensors on oil pipes

lDepth: 200m~5,000m
¡ Submarine cable

lDepth: up to 8,000m



How to Solve It

l If you can’t solve a problem, then there is 
an easier problem you can solve: find it

l Four principles
¡ Understand the problem

¡ Devise a plan

¡ Carry out the plan

¡ Look back                                      Polya
8



2. Optimal AUV Resurfacing
l AUV trajectory planning: minimizing the average delay

¡ How can we schedule AUVs to 
resurface optimally in  a circular 
search space (Eulerian cycle)?

¡ How can we schedule multiple AUVs to
resurface in general search space?

¡ How can we convert a search 
space to a circular search space?

¡ How can we merge the cycles to 
reduce the average delay?



2. Optimal AUV Resurfacing

l Data are uniformly distributed with a fixed 
generation rate

l Objective: minimize the long-term average delay to 
the water surface

l The speed of a AUV is unit
¡ C : the cycle circumference
¡ L : the depth of the search space 
¡ k : the frequency of resurfacing

Unit speed through distance scaling
(cruising speed: 37 km/h, diving/surfacing: 26 km/h, current: 5 km/h)



2. Optimal AUV Resurfacing

l A larger AUV resurfacing frequency 
¡ can bring node A’s data to the water surface more quickly

¡ However, node A’s data needs to wait for the next AUV for a 
longer time, since resurfacing takes additional time

C

k = 2

L



2. Optimal AUV Resurfacing

l Theorem 1: Optimally, the AUV resurfaces after 
traveling a distance of            on the original cycle 
(if only one AUV is used)

l If we have multiple AUVs (n AUVs)

¡Evenly distribute these AUVs on the cycle
¡Each AUVs resurfaces after traveling 

a distance of

LC2



3. Constructing A Cycle

Scheme 1 
(non-shared)

l Why do we use only one large cycle instead of multiple small 
cycles to cover the search space?

l Theorem 2: Scheme 2 is no worse than Scheme 1, due to 
more balanced cycling tasks among AUVs.

Search space Scheme 2
(shared)



3. Constructing A Cycle

l General search space: a set of connected line segments 
(called sensing edges in the graph)

l Graph with an even degree for every vertex
¡ An Eulerian cycle exists (i.e., a cycle that visits each edge 

once and only once)

l Graph has vertices with odd degrees
¡ Add redundant edges to make odd degree even
¡ We need to minimize pairwise odd degree nodes by adding one 

link   (There is an even number of vertices with odd degrees)



Odd-degree 
vertex matching 

Given graph

3. Constructing A Cycle

l Algorithm 1: construct an Eulerian cycle by adding sensing edges

l Some sensing edges are visited for multiple times

+ =

Combined graph Hierholzer's 
algorithm



Odd-degree
vertex matching 

Given graph

4. Cycle Enhancement

l Geometric shortest non-sensing edges (which may not be in the 

search space) can shorten the cycle circumference, although no 

data is collected from them

l Algorithm 2: construct the cycle by adding non-sensing edges

+ =

Combined graph Hierholzer's 
algorithm



l Theorem 3: In the enhanced cycle construction, the total 
length of the non-sensing edges is no larger than the total 
length of sensing edges.

¡ No single edge will appear in the  shortest 

paths of two matching pairs using sensing edges

¡ In the worst case, all the edges in the 

given graph are used once in pair matching

¡ Moreover, non-sensing edges provide

“short-cuts” for all pairs using sensing edges

4. Cycle Enhancement



Algorithm 2s (cycles with non-sensing edges): shift the    
surface point from  each non-sensing edge to the end of the 
last sensing edge  (i.e., change resurfacing locations)

4. Cycle Enhancement



\
l Algorithm 2r (cycles with non-sensing edges): by removing non-sensing 

edges (and change both resurfacing frequency and locations)

¡ Optimal when      is the total circumference of sensing edges and      

the length of each sensing edge is an integer multiple of

4. Cycle Enhancement



l Greedy Cycle Merge

¡ Initialize each connected component in the

search space as a cycle

¡ Merge two cycles in each greedy iteration

¡ Average data delay before merge

¡ Estimated average data delay after merge

5. Extensions



l Two-way Merge Criterion

¡ Algorithm 3: largest average delay reduction

¡ Algorithm 4: largest cycle circumference difference (with 
delay reduction threshold)

¡ Algorithm 5: closest geographical distance (with delay 
reduction threshold)

l Merge Termination
¡ When no merges are available

5. Extensions



l Three-way merge

l Parallel Cycle Merge Implementation
¡ Parallelism by dividing the scenario into small regions

5. Extensions



l Parallelism performance tradeoff

¡ 500m by 500m with 10 cycles (sparse) and 25 cycles (dense)

¡ Circle circumference is randomly chosen from 40m, 60m, 80m

5. Extensions



l 3-D search space

¡ Use average sea depth to estimate 

5. Extensions

Water Surface

Search 
Space

Water Surface

Search 
Space

Average
Depth

AUV 
Surfacing

Water Surface

Search 
Space

Basic 2-D scenario General 3-D scenario Average depth



6. Experiments

l Settings

¡ The test is based on a synthetic trace

¡ A 100*100 square unit with a depth 100

¡ To guarantee the graph connectivity,
a spanning tree is constructed

¡ Additional edges, with given total 
numbers of 20 and 100, are added

¡ AUV has unit speed



6. Experiments

l Simulation results:

Algorithms 1 and 2: cycles with sensing edges and non-sensing edges  

Sparse graph Dense graph



6. Experiments

l Summary:

¡A sparser graph leads to a larger gap between 
Algorithms 1 and 2

¡The gap between Algorithms 1 and 2 is becoming 
smaller, when the trace gets denser

¡The delay reduction brought by one additional AUV 
decreases (i.e., the effect of diminishing return)



7. Experiments

l 2-D and 3-D pseudo search space

l 10 AUVs

l Depth randomly
chosen from 
50 to 150

Water SurfaceWater Surface



6. Experiments
l Results for 2-D and 3-D search spaces

¡ Algorithms 1 and 2: cycles with sensing edges and non-sensing edges
¡ Algorithms 2s and 2r: adjust the surface point at the end of sensing 

edges, and round off the length of sensing edges in Algorithm 2
¡ Algorithms 3, 4, and 5: cycle merges with three merging criteria: 

largest delay reduction, largest cycle circumference difference, 
closest geographical distance 



6. Experiments

l Real data-driven experiments
¡ Oil pipes in Florida, Taiwan, and Japan
¡ Sea depth 3,790m (average depth over the world)
¡ AUV cruising speed 37km/h
¡ AUV diving/surfacing speed 26km/h



6. Experiments

l Results for Florida (in hours)

¡ Algorithm 1: cycle with only sensing edges
¡ Algorithms 2, 2s, and 2r: cycle with non-sensing edges, adjust 

resurface points, and  round off sensing edge schedules
¡ Algorithms 3, 4, and 5: cycle merges with three merging criteria: 

largest delay reduction, largest cycle circumference difference, 
closest geographical distance 



6. Experiments

l Results for Taiwan (in hours)

l Results for Japan (in hours)



6. Experiments

l Summary:
¡ There is a significant performance gap between Algorithms 

1 and 2, since the real trace is sparse

¡ Algorithm 2s can reduce the average data reporting delay 
of Algorithm 2 by about 5% (AUVs should not resurface at 
non-sensing edges)

¡ Algorithm 2r may not outperform Algorithm 2s

¡ Algorithms 3, 4, and 5 have different performances, 
depending on the trace



7. Conclusions and Future Work

l The AUV trajectory planning determines the AUV 
resurfacing frequencies and their locations

l The deep sea trajectory planning is simplified to an 
extended Euler cycle problem

l Future Work

¡More sophisticated AUV routing & resurfacing policies 
¡More real data-driven experiments in 3-D search
¡Extension to the notion of age of information 
¡Overall architectural design for multi-tired networks



Questions

l J. Wu and H. Zheng, “On efficient data collection and event detection 
with delay minimization in deep sea,” Proc. of ACM CHANTS, 2014.

l H. Zheng, N. Wang, and J. Wu, “Minimizing deep sea data collection 
delay with autonomous underwater vehicles,” Journal of Parallel and 
Distributed Computing, 2017.


