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Abstract—In recent years, healthcare IoT have been helpful in mitigating pressures of hospital and medical resources caused by
aging population to a large extent. As a safety-critical system, the rapid response from the health care system is extremely important.
To fulfill the low latency requirement, fog computing is a competitive solution by deploying healthcare IoT devices on the edge of
clouds. However, these fog devices generate huge amount of sensor data. Designing a specific framework for fog devices to ensure
reliable data transmission and rapid data processing becomes a topic of utmost significance. In this paper, a Reduced Variable
Neighborhood Search (RVNS)-based sEnsor Data Processing Framework (REDPF) is proposed to enhance reliability of data
transmission and processing speed. Functionalities of REDPF include fault-tolerant data transmission, self-adaptive filtering and
data-load-reduction processing. Specifically, a reliable transmission mechanism, managed by a self-adaptive filter, will recollect lost or
inaccurate data automatically. Then, a new scheme is designed to evaluate the health status of the elderly people. Through extensive
simulations, we show that our proposed scheme improves network reliability, and provides a faster processing speed.

Index Terms—Healthcare IoT, Fog Computing, Reduced Variable Neighborhood Search (RVNS), Data Load Reduction, Transmission
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1 INTRODUCTION

IN recent years, elderly people have witnessed improve-
ments in healthcare IoT systems. These intelligent system-

s take a comprehensive remote health care by monitoring
food quality, diet, daily exercise, physiological status, etc.
of elderly people. Along with the developments, it also
generates more demanding in terms of storing and pro-
cessing huge amount of data with low latency. As a time-
sensitive service, traditional cloud computing can hardly
meet the requirement because sensor data takes too much
time before arriving at core storage and processing nodes.
To solve the problem, the idea of fog computing is adopted
in recent years. Instead of sending data to core nodes,
fog devices receive the sensor data and provide processing
results for eHealth clients, e.g., local hospitals and health
care providers, which diminishes the latency significantly.
Nonetheless, many factors may restrict the development
and implementation of the fog computing supported health-
care IoT systems. For instance, when sensors are deployed
into everyday objects [1], the network scale will expand
significantly, which is likely to result in huge amount of
data. On the other hand, it can hardly to deploy powerful
processors in fog devices. How to process large amount of
complex data fast and efficiently with limited computing ca-
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pability, is one of the most important issues to be addressed.
To deal with the big data processing problem, a typical

approach is to break data into small pieces. Guided by this,
a novel algorithm, Variable Neighborhood Search (VNS) [2],
was proposed. In VNS, a global solution space is divided
into a neighborhood structure consisting of several small
changeable neighborhoods through some predefined crite-
ria. Then, VNS calls subroutines to find better local optimal
solutions from the neighborhoods to approach the global
optimal solution, and reconstructs the neighborhoods itera-
tively until the number of neighborhood reconstruction or
the running time of CPU reaches the maximum. The major
issue associated with this method is that calling subroutines
can be extremely time consuming. To address this problem,
P. Hansen et al. [2] proposed a simplified version: Reduced
Variable Neighborhood Search (RVNS). In RVNS, complex
subroutines are replaced by the selection of a random point
in each neighborhood, which means randomly selecting a
local optimal. Thereby, RVNS simplifies computation com-
plexity. This characteristic is quite suitable for healthcare
IoT in several aspects. For example, the simplicity of RVNS
facilitates rapid processing. Also, the collected data is not
as meaningful as the data that may carry information indi-
cating danger. The randomness of RVNS provides a chance
that processor skips less meaningful data and focuses on the
data that might be more valuable.

In this paper, we leverage the RVNS algorithm to refine
valuable information from raw sensing data at fog devices.
Specifically, we rearrange data processing sequence inspired
by the neighborhood structure in RVNS, which differs from
the traditional processing where First-in First-out (FIFO)
queues [3] are normally deployed. In the queue, data pro-
cessing algorithms take data with receiving sequence, which
implies that the waiting time of the latest data is high if the
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data volume is large. To solve this problem, we design a
new RVNS queue for fog devices. we divide the collected
sensor data into several levels according to its range first.
Then, neighborhood structures are constructed according
to their levels, and an RVNS queue is formed based on
these neighborhood structures. In the end, data in the RVNS
queue is processed in sequence through a customized risk
assessor with specially designed parameters.

However, there are several challenges to introduce RVNS
into the data processing phase of fog computing based
healthcare IoT. As a safety-critical system, an healthcare IoT
system has to quickly retrieve and process accurate sensor
data, and provide proper decisions [4]. During this process,
any faults or failures may lead to serious problems for the
elderly people. Therefore, how can the system collect data
reliably is of utmost significance. To ensure reliable trans-
mission, integrating some fault tolerant algorithms is neces-
sary. In addition, how to balance resource utilization inside
fog computing platforms is another issue [5]. Ultimately, in
order to process the data, we need to design an efficient
scheme. In this paper, we introduce modifications and shed
light on their implementation in the RVNS algorithm, to
jointly consider both reliability and efficiency requirements.

We primarily concentrate on the reliability of data pro-
cessing in healthcare IoT based on fog computing, and
design an RVNS-based sEnsor Data Processing Framework
(REDPF) to reduce data load and refine results for eHealth
clients. The contributions of our paper are summarized as
follows:

• We develop a fault-tolerant mechanism to increase
the reliability of data transmission between fog de-
vices. The mechanism combines the thought of Di-
rected Diffusion and Limited Flooding to ensure the
reliability.

• We propose a self-adaptation scheme to dynamically
optimize system resources. It can adjust parameters
of the fault-tolerant mechanism based on curren-
t condition of fog computing platform, which im-
proves the reliability for healthcare IoT further.

• We design a data analyzing scheme with an RVNS
queue to respond to different kinds of requests from
ehealth clients efficiently. By adjusting original ter-
minal condition of RVNS algorithm, the new scheme
fits well with the need of fog computing supported
healthcare IoT.

The rest of the paper is organized as follows. In section II,
we introduce state of the art on data processing and reliabili-
ty for healthcare IoT systems, and current trends in fog com-
puting. In section III, the overall design of the framework
is presented. In the following three sections, we demon-
strate three main functionalities of REDPF: Fault-tolerant
Data Transmission, Self-adaptive Filtering and Data-load-
reduction Processing, respectively. Simulation results are
presented in section VII. Section VIII concludes the paper.

2 RELATED WORK

2.1 Data Processing in healthcare IoT
A good volume of literature exists on data computing in
healthcare IoT systems. Winkey et al. [6] improved the

original sensor interface, and added a classifier to reduce
data dimension. Magherini et al. [7] proposed an automated
recognizer that records daily activities, which ensures the ac-
curacy for sensor data through propositional temporal logic
and model checking. J. Wang et al. [8] proposed a sound
analyzing architecture to distinguish acoustical signals a-
mong noise. Recent studies on real-time data processing
architectures and platforms [9-12] focus on improving the
accuracy of data analysis. It is also important to consider
environmental factors, such as, temperature or air pressure
in order to further improve the accuracy. In this regard,
existing studies can be divided into two categories. One
tries to minimize the influence of environmental factors with
more precise analysis algorithms or tools [13-15], the other
involves collecting comprehensive data [16-18]. However,
both of these methods increase the workload and pressure
on healthcare IoT system.

2.2 Fault Tolerant Transmission

Systems become unreliable when more environmental fac-
tors are involved, because some failing nodes have a higher
possibility to become trunk nodes. Classical sensor fault
tolerant algorithms can be categorized as follows. Firstly,
there are some flooding-based algorithms [19], which relay
packets to surrounding nodes. Another category is based on
gradient broadcasting. This kind of algorithm first sets a gra-
dient field in the network, and packets are relayed according
to the gradient filed. A typical algorithm in this category
is Directed Diffusion [20-22]. The last category is based on
clustering hierarchy. These algorithms use the condition of
clustering heads as a decision maker in relay, and the typical
algorithm is Low-Energy Adaptive Clustering Hierarchy
[23,24]. Despite the comprehensive studies regarding sensor
fault tolerance, whether they are suitable for safety-critical
systems, such as ambient assisted living deserves further
discussion.

2.3 Fog Computing

Before fog computing is proposed, cloud computing plays
an important role in on-demand data processing. Cloud
computing [25] can provide various service including
Software-as-a-Service, Platform-as-a-Service, Infrastructure-
as-a-Servce, Sensing-as-a-Service, etc. Compared with cloud
computing, fog computing is a relatively new concept. It
processes data at the edge of cloud to support low laten-
cy and geo-distribution services [26]. Even recently many
researchers pay attention to fog computing architectures.
For example, Hu et al. [27] proposed a hierarchical multi-
access edge computing framework for vehicular network
integrated with a specially designed protocol and millimeter
wave communications, which improves performance in lots
of network condition.

Introducing fog computing into healthcare IoT is not a
new idea. Cao et al. [28] adopted fog computing to detect
falling. Aazam et al. [29] optimized emergency alert service
through fog computing. However, existed state of arts paid
limited attention towards transmission and computing abil-
ity of fog computing itself.
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Fig. 1: Structure of REDPF

3 SYSTEM MODEL

We aim to implement a new framework for eHealth clients
taking advantages of fog computing to flexibly fulfill their
requirements on data gathering and data processing. In
order to achieve this goal, we need to first ensure reliable
communications between portable intelligent sensors and
fog devices. It can be evaluated through completeness and
correctness of the received data. Usually, transmission be-
tween portable sensors and storage nodes of a fog comput-
ing supported healthcare IoT system is implemented by wifi
of some other highly reliable technologies, but problems
may happen between the storage nodes and processing
nodes inside the system. Additionally, we need a rule to
measure the system conditions, and dynamically allocate
system resources. In terms of big data processing, the fog
devices need to run various functions for different eHealth
clients, and it is possible that lots of data is waiting in
the processing queue because the huge amount of data is
straining processors. Furthermore, the following metrics are
also important for processing performance.

• Accuracy of processing results: In healthcare IoT sys-
tems, the processing results directly reflect safety of
the elderly. Some potential risk may be ignored if e-
Health clients receive inaccurate results. Accordingly,
there is a high accuracy requirement in distinguish-
ing different living situations.

• Time-efficiency: To ensure the accuracy, healthcare
IoT systems tend to collect more data to indicate
a comprehensive living status. Also, For accurate
results, more powerful and complex data analyzing
algorithms are adopted. When a complex algorithm
is run on a set of more data, the processing time will
clearly be longer. On the contrary, eHealth clients
promptly need the results from the analysis.

• Data-Load-Reduction: Since the final results are trans-
mitted to eHealth clients for direct use, the data
volume should be reduced for reliable transmission.

Fig. 1 shows the structures of the RVNS-based sEnsor
Data Processing Framework (REDPF). The functionalities of
REDPF can be summarized into three parts: Fault-tolerant

Fig. 2: System Model

Data Transmission, Self-adaptive Filtering, and Data-load-
reduction Processing. Fault-tolerant Data Transmission is
designed for receiving relevant data from the portable intel-
ligent devices. Also, it checks completeness of the received
data, and retrieves the lost data through a fault-tolerant
mechanism. Then, sensor data will enter a self-adaptive
filter. The filter is designed to ensure the effectiveness of
data. In addition, a self-adaptation module is used to adjust
the parameters of this fault-tolerant mechanism. Finally, an
RVNS-based computing and analyzing (RCA) scheme is de-
signed for dealing with the RVNS queue. RCA will generate
results according to relevant pre-defined rules from eHealth
clients. These results will provide overall evaluations of
elderly people’s living status, which will be transmitted to
eHealth clients as feedback.

4 FAULT-TOLERANT DATA TRANSMISSION

In REDPF, the Fault-tolerant Data Transmission ensures
transmission reliability between the storage nodes and the
processing nodes. Currently, related studies have focused on
data transmission in sensing level, but transmission inside
a fog computing platform has received much less attention.
Accordingly, we introduce a new fault-tolerant mechanism.

In a fog computing supported healthcare IoT system, fog
devices consists of storage nodes and processing nodes, as
shown in Fig. 2. A storage node is used to store sensor
data collected from intelligent sensors. These fog storage
nodes also upload their stored data to core cloud for future
reference. When an eHealth clients propose a request, the
processing nodes will retrieve relevant data from the storage
nodes, and send back the refined results. As mentioned
before, due to transmission between intelligent devices and
fog devices are usually supported by some highly reliable
technologies, we will assume sensor data can be transmitted
to the storage nodes reliably.

However, with the expanding of deployment, a storage
node may need several relay nodes to help relay towards
the destination. When some relay nodes do not function,
the connected links will also be broken, as marked in red in
Fig. 2. We propose a fault-tolerant mechanism that takes the
advantages of both directed diffusion and limited through-
put, as shown in Fig. 3. Here, we assume all the storage
nodes have more than one potential links to the processing
node, and focus on the fault-tolerant mechanism in routing
stage, rather than the self recover mechanism. Even though
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(a) Transmission without Fault Tolerance (b) Transmission after Fault Tolerance

Fig. 3: Comparison between Original and Improved Transmission

multiple links exist, there is no guarantee the mechanism
can recollect all the lost packets if all the links are broken, as
shown in the experiment.

For the fault-tolerant mechanism, we need a proper
trace back strategy. At the beginning, to identify the storage
nodes, each storage node is initialized with a unique index.
In the storage node, each received packet will be granted
a timestamp. When a processing node retrieves data, the
corresponding storage nodes will attach their indexes to
relevant stored packets before sending. When a processing
node receives a packet from a storage node, it can find the
source of the packet by checking the index of the packet.
In addition, due to transmission latency, the receiving se-
quence can be different than the sent sequence. To recover
the original sequence, the processing node will sort the
received data based on timestamps.

Leveraging the trace back strategy above, a processing
node is able to identify those lost packets. When sorting
the received packets using timestamps, it can find the miss-
ing storage node indexes through a index table initialized
during firing. Then, for each lost index, a corresponding
interest containing the index and timestamp is generated
and broadcasted.

Once an interest is received by a storage node, it will
search whether it has the lost packet in its storage. If
the corresponding packet is not stored in the storage, the
broadcasting process will continue. On the other hand, if the
packet is found, lost packets will be resent through limited
flooding. Specifically, each storage node adopts the flooding
algorithm to relay packets in a geographical rectangle using
the point of the storage node and the processing node as
vertices or a predefined logical range.

Both frequent broadcasting and flooding mechanisms
can cause congestion, especially near the processing nodes.
Assuming that the storage nodes near a processing node in
a fog computing supported healthcare IoT system are more
or less evenly distributed, we construct a graph G = (V,E)
whose nodes are distributed evenly, where V represents the
set of nodes, and E represents the set of edges. Then, the
average number of relays of an interest at each node RI
should be

RI =
|E|
|V |

. (1)

Let DT denote total data volume, DR denote the re-
ceived data volume. Then, in the whole system, the max-
imum number of interest NI is

NI = RI · |V | · (DT −DR) = |E| · (DT −DR). (2)

Based on (2), the cost of broadcasting increases with the
intensity of the graph. For the storage nodes, they have to
relay packets that match with interest. Suppose that there
is a processing node at point (0, 0), and a specific storage
node at point (x, y). Denote r ∈ (0, R] as the distance
between the processing node and the storage node where R
is the maximum distance between the processing node and
system boundary. Then, we have r2 = x2+ y2. Accordingly,
the flooding area of a storage node A should be

A =
|xy|
πR2

. (3)

Since nodes are distributed approximately evenly, the
number of nodes could be represented directly by its area.
Furthermore, for each interested packet, the number of
relays before it arrives at server NPT (x, y)→ svr is

NPT (x, y)→ svr = RI · |V | ·A =
|xyE|
|πR2|

. (4)

Based on (4), the number of relays for packets sent from
the storage nodes on a circle of radius r to the processing
node NPT (r) → svr can be calculated. To ensure the
existence of nodes on this circle, we set a parameter δr,
denoting the longest hop in the system. Then, all the storage
nodes can be divided into R

δr rings based on their distance
from the processing node

r1 = δr

r2 = r1 + δr

. . .

rn = rn−1 + δr

. . .

r R
δr

= r R
δr−1

+ δr.

(5)

In (5), we call each ring area a field. For example, the area
between rn−1 and rn is called field n. Clearly, the longest
possible distance between the storage nodes in field n and
the processing node is n · δr. Thus, we have
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NPT (r)→ svr =
π(rn + δr)2 − πr2n

πR2
·|V |· |xy|

πR2
·|V |· |E|

|V |
·FR,

(6)
where π(rn+δr)

2−πr2n
πR2 · |V | denotes the number of nodes in

field n, |xy|πR2 · |V | · |E||V | is NPT (x, y)→ svr, and FR denotes
the failure rate.

As continuous broadcasting of interests results in the
increase of resource occupancy, the cost grows with the
distance between the nodes and the server. Accordingly,
newly generated packets cannot get enough resources so
that the overall quality may decrease. On the other hand,
system resources are not fully used if the mechanism is
excessively restricted. Thereby, we need to find a proper
intermediary to allocate system resources properly. In the
following section, a self-adaptation module is designed to
achieve this target.

5 SELF-ADAPTIVE FILTERING

5.1 Filter
The transmission mechanism above ensures data complete-
ness, but the data may be modified due to outside disruptive
factors during transmission. We design a filter to address
this issue, by checking the received data type and range
before processing. Fig. 4 shows the structure of the filter.
To provide the proper range of collected data, we introduce
relevant data sets as a reference. A relevant data set contains
historical data gathered by a healthcare IoT system, and is
updated by a specific eHealth client periodically. Different
eHealth clients usually hold their own business, for exam-
ple, some focus on food and diet, some monitor exercise,
and some pay more attentions to physiological status. They
need to maintain their own relevant data sets to support
their business. At the same time, the maintaining method
keeps the relevant data sets to be as simple as possible.

For a received packet, the filter first extracts useful in-
formation from the packet header and body. Then, the filter
will launch a category checking by identifying whether the
data is health-related or not. Due to the fact that a storage
node does not have a powerful processor, it may provide
some data not related to health, leading to an error when
processing. After that, the filter will check the data based on
the range provided by corresponding relevant data sets. If
the received data is out of the range from a relevant data
set, the data will be regarded as invalid. To speed up the
checking process, we adopt a learning machine to record
common errors, and detect them faster.

The detected invalid data is recollected through reliable
transmission, where data is recollected based on the indexes
and the timestamps.

5.2 Self-adaptation Module
The fault-tolerant mechanism and the filter are designed
for reliability. However, when transmission conditions are
poor between the storage nodes and the processing nodes,
the successful transmission ratio may degrade because of
the high overhead. Therefore, we design a self-adaptation
module to allocate system resources for the fault-tolerant
mechanism according to the successful transmission ratio.

Fig. 4: Self-adaptive Filter

Some inaccurate data needs recollection after filtering
which may decreases the valid data volume. Recall that
we defined DT to represent total data volume, and DR
for received data volume. Now, we define DC to indicate
correct data volume out of what is received. Then, we have
DT ≥ DR ≥ DC , and according to DC , the failure ratio FR
can be defined as

FR =
DT −DC
DT

. (7)

Meanwhile, (2) can be rewritten as

NI = RI · |V | · (DT −DC)
= |E| · (DT −DC)
= |E| · DT · FR.

(8)

The higher FR can be caused by decreased success-
ful transmission ratio, which indicates worse transmission
conditions. In this case, we should control resource usage
strictly. Conversely, when FR becomes lower, the condi-
tions are better. In this case, one can allocate more resources
for transmissions.

To restrict the resource usage between storage nodes
and processing nodes, two solutions are proposed in this
section. One is to set a time to live (TTL) TL indicator for
each interest. TL decreases by one after every hop relay,
and the interest disappears when TL becomes zero. The
other approach is to set a maximum effective time (TOE) TE
for each interest. TE increases by one for every successful
match until TOE equals to its upper limit.

In the first solution, the total amount of interest is fixed
even in the worst case, due to the existence of TL. In other
words, every interest disappears when it reaches TL. Under
this circumstance, (8) becomes

NI = TL · DT · FR. (9)

Since TL is always less than |E| (If TL ≥ |E|, a Depth-
First-Search [30] will be launched for every interest), the
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amount of interest has been optimized. However, due to
the existence of TL, layers lower than TL in Breadth-First-
Search [31] Tree will not be visited by any interest if a
Breadth-First-Search is launched from a processing node.

The second solution gives an interest a chance to visit
all the nodes. When interests are not matched, they will
never disappear, but broadcast continuously. However, TE
cannot be reached by every interest, which leads to infinite
broadcasting.

Our module takes the advantage of these two solutions.
Let us define a new parameter T ′E . For an interest, if TL
reaches its limit but effective time is less than T ′E , the
interestwill continue transmission until TOE is reached. On
the contrary, if T ′E has been reached, the interest disappears
with TL. Due to the adoption of T ′E , TL can be much smaller.
According to equation (9), unnecessary relay of interest can
be reduced.

Another functionality of T ′E is to avoid excessive resource
occupancy by adjusting parameters dynamically, according
to current condition. If the T ′E is a fixed value, the infinite
broadcasting problem is not solved. However, when we
vary it based on network condition, the number of broad-
casted interests can be controlled gradually. Specifically,
bandwidth between the storage nodes and the processing
nodes is denoted as C , and capacity occupied by original
transmission as C0. As C0 is relatively fixed, the remaining
resource Cl that can be allocated by the fault-tolerant mech-
anism is

Cl = C − C0. (10)

Meanwhile, based on (6),NPT (r) denotes the total num-
ber of packets in field n, i.e.,

NPT (r) =
R∑

r=rn+1

NPT (r)→ svr·π(rn + δr)2 − πr2n
πr2

. (11)

It can be calculated by accumulating the area proposition of
field n in an area where r ≥ rn.

Then, (10) can be rewritten as

Cl = NI +
R∑

rn=0

NPT (rn). (12)

Because FR exists in both NI and NPT (rn), the mech-
anism will take up more resources when FR is higher. In
this case, more interests are generated and more bandwidth
should be allocated to Cl, which may cause congestions. If
we try to address this issue by decreasing T ′E , we note that
more interests will disappear with TL. When the number
of interests is less, there are less nodes to response these
interests, namely, π(rn+δr)

2−πr2n
πR2 ·|V | in (6) becomes smaller.

As |V | is a static value, the former part will be smaller. In
(12), to keep Cl unchanged, we need to decrease NPT (rn),
which is possible because π(rn+δr)

2−πr2n
πR2 decreases. Accord-

ingly, when FR increases, T ′E needs to be reduced to keep
the transmission reliable. Intuitively, T ′E controls the num-
ber of interests broadcasted in network. It increases with
good network condition and more interests are relayed
while it decreases with poor condition, which reduces the

number of interests in network. The pseudo-code of the
self-adaptation module is presented in ALGORITHM 1.

ALGORITHM 1: Self-Adaptation Module
Inputs: Cl, FR
Output: T ′E
Procedure: Function T ′EDecider()
1 Begin
2 FR ← DT −DC

DT

3 while (FR > 0)
4 if (Cl < NI +

∑R
rn=0NPT (rn))

5 T ′E −−
6 else
7 T ′E ++

8 end if
9 end while

5.3 Level division
After checked by the filter, Data received by a processing
node forms solution space, denoted as S . The format of S
can be expressed as the following matrix

S =


x11 x12 x13 · · · x1n
x21 x22 x23 · · · x2n

...
...

...
. . .

...
xi1 xi2 xi3 · · · xin

 , (13)

where 1, 2, 3, ..., i and 1, 2, 3, ..., n represent data gathered
from i storage nodes with same timestamp, and data gath-
ered from one storage node at n different times, respectively.
Afterwards, based on the boundary provided by the rele-
vant data set, data in S will be set into a level structure
consisting of several levels. For each division, we deal with
a column of the solution space. In the column, we only
need to randomly choose a row to divide it into a level,
and then assign other data with same timestamp into the
level. Furthermore, because the whole solution space serves
as the input of RCA, the precision will remain the same even
though we select different rows of the solution space during
the division process. From a relevant data set, the processing
node can retrieve the valid maximal and minimal values
of hth row, denoted as x(h)max and x(h)min (h ∈ [1, i]),
respectively. Given a highest level L (max), the boundary
of each level L (a) (a ∈ [1,max]) can be calculated as

L (a)min = (a− 1) · x(h)max − x(h)min
max

+ 1

L (a)max = a · x(h)max − x(h)min
max

.

(14)

Finally, each column in S belongs to a corresponding
level, which will be called when constructing neighborhood-
s.

6 DATA-LOAD-REDUCTION PROCESSING

The expansion of healthcare IoT system will generate a large
amount of data. Also, further development in healthcare IoT
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systems will provide diversified services. Based on these
observations, an efficient and flexible interface is necessary
between fog devices and eHealth clients. In this section,
we introduce the risk assessor, and design a data-load-
reduce scheme to help eHealth clients leverage sensor data
computing services in a more friendly manner.

6.1 Risk Assessor

Risk assessor is a function returning a quantitative result
used to identify the elderly person’s level of danger under
certain environments and physiological status. In REDPF,
risk assessor is a utility function of RCA. RCA executes
the risk assessor based on the input data to return refined
results. The returned value is a threshold called risk factor,
denoted by R. Larger risk factors represent more dangerous
situations. To notify eHealth clients about any potential
dangers, an alarm will be sent if the factor exceeds a
predefined value. We use risk threshold RT H to represent
the predefined value. For example, if R varies between 0
and 100, and RT H is predefined as 80, eHealth clients can
believe that an elderly person is healthy if the output of the
risk assessment is less than 80. If the output is higher, an
informative alarm will be sent to the clients regarding the
individual’s alarming status.

As eHealth clients run quite different businesses, risk
assessors may vary a lot. Based on this consideration, fog
computing providers will not define a risk assessor, but
leave it as an interface to eHealth clients. With the interface,
each eHealth client can design their own risk assessor, and
retrieve what they need from the fog computing.

However, the freedom is at the price of efficiency. As
eHealth clients are health care providers, they will consider
less about the data amount, but more about the accuracy and
results. Additionally, fog computing providers can hardly
expect eHealth clients to design efficient algorithms with
lowest complexity. Based on the above considerations, a
suitable algorithm is indispensable when analyzing sensor
data. In this paper, we take the advantage of the ideas
of randomness and segmentations from RVNS, and design
an optimized scheme, RCA, to improve the efficiency and
accuracy.

6.2 RVNS-based Computing and Analyzing

When level division is ready, RCA first forms an initial
neighborhood structure based on the current global optimal
solution. At the beginning, RCA randomly generates an ini-
tial global optimal solution from S (a column of the matrix
in (13)), denoted as X , and regards it as the current global
optimal solution. Using the level of X , RCA forms a new
neighborhood structure, N(X). During the process, each
column in the matrix is assigned in a neighborhood. Assume
X ⊆ L (X) (X ∈ [1,max]), and another column belongs to
level L (cur) (cur ∈ [1,max]), the column will be assigned
into neighborhood Nk(X), where k = |L (cur)−L (X)|.

When neighborhood construction is done, the requested
data is in an RVNS queue. X enters the risk assessor, which
will return a corresponding risk factor. In the following
RVNS turns, RCA calls function Shake() to randomly select
a new local optimal solution X ′ from neighborhoods. The

process starts with the first neighborhood. If the newly gen-
erated risk factor of X ′ exceeds that of X , the local optimal
solutionX ′ will replaceX to become the new global optimal
solution, based on which, a new neighborhood structure
will be generated. If a risk factor exceeds the risk threshold,
an alarm will be sent to eHealth clients. Conversely, if the
original risk factor from current global optimal solutionX is
larger, RCA will switch to next neighborhood, and continue
the searching process. The pseudo-code of RCA scheme is
presented in ALGORITHM 2.

ALGORITHM 2: RCA
Inputs: S , RT H, max
Output: A Boolean variable for sending alarms
Procedure: Function RCA()

1 Begin
2 X ←RCAInitialize()

3 while (R < RT H)
4 NeighborhoodConstruct(X)

5 k = 1
6 while (k < (max− 1))
7 X ′ ←Shake(X, k)

8 if (f(X ′) > f(X))
9 X ← X ′

10 break
11 else
12 k ← k + 1

13 end if
14 end while
15 end while
16 report()

6.3 Detailed Design of RCA

During the implementation of RCA, the performance of the
scheme may be heavily influenced by two factors. The size
of the solution space becomes one of them. This is because
RCA picks data from RVNS queue randomly, the possibility
of finding the risk data is reducing when the solution space
becomes larger. Conversely, when the solution space is small
enough, RVNS queue can be approximated as a FIFO queue.
The other important factor influencing the performance is
the interval of neighborhood reconstruction. As a processing
node receives data continuously, latest data has to wait for
next RVNS turn if the current turn has begun. The larger
the interval is, the longer will be the waiting time. However,
the processing node may not have enough time to analyze
current solution space for short intervals. To include some
potential cross-impacts of these two factors, we perform
extensive simulations to find their optimal values.

Finally, we modify the terminal condition of RVNS to
better meet the requirements of healthcare IoT systems. O-
riginally, designers of RVNS algorithm proposed two termi-
nal conditions: neighborhood reconstructing times and CPU
time. For the first condition, RVNS stops once the time of
neighborhood reconstruction reaches the predefined value.
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TABLE 1: Configuration for the Reliability Experiment

Simulation Time (s) 6000
Scene System Scale (m2) 100 × 100

Original Routing,
Parameters Compare Algorithms Interests-based Routing,

Self-adaptation Routing
Number of Storage

Nodes /Trunk Nodes 100
Number of Failure Nodes 10, 20, 30, 40, 50

Parameters Number of 1
Processing Nodes

It is not suitable for our case, because when RCA stops, it
caches a relatively large risk factor. However, restarting of
the whole scheme means discarding the larger factor and
using a smaller one, which further increases the processing
time. The same problem will still appear if the second
condition is adopted. Under the circumstance, it is notable
that when the system sends an alarm to eHealth clients,
the risk factor at that time is larger than at any other time.
Afterwards, RCA will not stop for any other smaller factors,
even if they exceed the threshold. In this case, eHealth
clients may pay limited attention to some potential dangers.
Based on this consideration, we restart the whole scheme
when an alarm is sent.

7 NUMERICAL RESULTS

We execute simulation experiments to evaluate the pro-
posed framework in terms of reliability and processing
performance using C++. We try to simulate a fog computing
supported healthcare IoT system in a 100 × 100 m2 two-
dimensional space. In the simulation environment, we set
100 storage or trunk nodes, and to avoid synchronizing
issues, we deploy only one processing node. We simulate
packets delivery processes within the above environment
in order to observe different performance in the original
model, the interest-based model, and self-adaptation deliv-
ery models. In the second part, we compare the processing
speed between RCA and traditional FIFO. In this part,
the processing node runs the RCA and FIFO programs
automatically with input data, and the programs return the
processing situation and risks to eHealth clients.

7.1 Reliability Performance

We evaluate the performance of reliability under different
failure conditions. The parameters used for this section is
presented in Table 1. In the experiment, totally 101 nodes
(100 storage/trunk nodes and one processing node) are
deployed in a 100 × 100m2 area. The processing node
will send virtual requests towards different storage nodes
continuously. Once a storage node receives the request, it
executes corresponding models to respond it, which simu-
lates the process of packets delivery. Then, we observe the
change in the delivery ratio at the processing node, and the
overhead ratio during the transmission. To demonstrate the
fault tolerant ability, we set number of failure storage/trunk
nodes to be 10, 20, 30, 40 or 50. The simulation results are
shown in Fig. 5.

As shown in Fig. 5, the interest-based delivery can opti-
mize the performance to some extent, but due to its own

(a) Delivery Ratio

(b) Overhead Ratio

Fig. 5: (a): Delivery Ratio. (b): Overhead Ratio

TABLE 2: Configuration in Processing Performance Experi-
ment

Simulation Time (s) 50000
Number of Levels 4
Risk Factor Range [0,100]

Risk Factor Threshold 90
Scene 5000,7500,10000,

Parameters Risk Emerging Time (s) 12500,15000,17500,
20000,22500,25000

Risk Emerging Probability 0.05,0.1,0.15,0.2,0.25,
0.3, 0.35, 0.4, 0.45, 0.5

Data Receiving Interval (s) 5
Server Group of Data 100, 200, 300, 400, 500,

Parameters in Solution Space 600, 700, 800, 900, 1000
Interval of Neighbo- 100, 200, 300, 400, 500,

rhood Reconstruction 600, 700, 800, 900, 1000
Average Processing Time (s) 5, 6, 7, 8, 9, 10,

Data (for scenario 3) 11,12,13,14,15
Parameters Processing Time Range (s)

(for other scenarios) [5,12]

deficiency, the overhead ratio also increases dramatically,
which becomes a limitation. The self-adaptation delivery
solves the problem above. As shown in Fig. 5(b), under
the optimized scenario, the delivery ratio improves further
while keeping the overhead ratio lower than in the case of
interest-based delivery.

7.2 Data Processing Performance
RCA is evaluated through the second part of the simulation
in this section. The simulation can be divided into two
phases. The first phase finds the optimal parameters of RCA.
The second phase compares the running speed of RCA with
traditional FIFO queue.

The overall setting is demonstrated in Table 2. In our
simulation, a processing node to monitor heart rate abnor-
malities is set up. Arrhythmia Data Set from UCI Machine
Learning Repository [32] is served as the data source. In
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the simulation, each group of input enters the processing
node per five seconds, and the input is stored in a FIFO
queue and an RVNS queue constructed from four levels,
respectively. To return the risk factor, we adopt an black
box to encapsulate risk assessor for data processing. For
each group of input, the processing node takes some time
to analyze, ranging from 5 to 12s (integer). The maximum
risk factor is set as 100, and the risk threshold RT H is set as
90. The experiment lasts 50000s.

In the experiment, we first observe the time needed
to return risk data when the size of the solution space is
changing with the interval of neighborhood reconstruction.
The results are presented in Fig. 6, where values of both
factors are 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000.
By doing the grid search, we are aiming to seek a pair of
optimal parameters for RCA.

Afterwards, we take the optimal parameters, and ob-
serve the change of maximal recorded risk factors with
time for both RCA and FIFO. The input data stream for
both methods is exactly the same. As described earlier, both
RCA and FIFO are going to run through the risk assessor,
and keep the max risk factor. The purpose of this setup is
essentially to plot a memory variable for RCA and FIFO.
A higher risk factor at the same moment represents the
corresponding method has the ability to find larger risk
factor more rapidly. The results are presented in Fig. 7.

In the end, we set the following scenes, and observe the
waiting time of RCA and FIFO. (1) Risk data appears after
5000, 7500, 10000, 12500, 15000, 17500, 20000, 22500, 25000
seconds; (2) Possibilities of risk appearance are 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5; (3) Average processing
time of each group of data are 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15 s. As described earlier, RCA will run through the risk
assessor and find and keep the max risk factor. Since last
comparison illustrates the ability of finding larger risk factor
in a specific situation, we try to expand to more situations.
Accordingly, we set above three groups of experiment to
compare the performance of RCA and FIFO more exten-
sively. Because we are going to set risk appearing time (s)
as one of the parameters, we decide to use waiting time (s)
after the risk appearing as our performance metric, which
will be more intuitive. The results are presented in Fig. 8.

To eliminate cross impact, we change both parameters
in Fig. 6 together. As shown in the results, the optimum of
both parameters are 100, so the value will be adopted for
rest of the evaluation.

As shown in Fig. 7 and Fig. 8, once the data arriving
ratio is larger than the processing ratio, RCA provides a
quicker response in all cases because RVNS queue changes
data processing sequence. The demonstrated processing ef-
ficiency reveals that the potential risk can be detected and
reported earlier.

7.3 Discussions

To summarize the simulation, we can conclude that the
fault-tolerant mechanism and self-adaptation module opti-
mize the transmission process in fog computing supported
healthcare IoT system. It provides insurance for the later
processing. Then, we find that RCA is highly efficient for
big data analysis when the capability of the processor is

Fig. 6: RCA Process Time (Risks emerge after 5000s; the
probability of risk is 0.1).

Fig. 7: Highest founded risk factor changing with time
(Risks emerge after 5000s; the probability of risk is 0.1).

limited. In addition, the framework reduces the data load
transmitted to eHealth clients significantly.

8 CONCLUSION

We have proposed a framework for fog computing sup-
ported healthcare IoT system. In the framework, we have
proposed a fault-tolerant mechanism by combining the ad-
vantages of Directed Diffusion and Limited Flooding to
enhance the reliability of data transmission. In addition,
a self-adaptation Module has been designed to allocate
resources inside the system to avoid overuse. Finally, we
have proposed an RVNS queue to process filtered data.
In the Queue, the processor has the chance to access the
latest received data quickly to enhance processing speed.
According to the simulation, we have first proved that the
fault-tolerant mechanism and the self-adaptation module
can improve the successfully delivered ratio as well as
optimize the resource allocation. Then, by comparing the
performance of RVNS queue and FIFO queue in different
scenarios, we claim that RCA is a competitive scheme for
big data processing in fog computing supported healthcare
IoT system.
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