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Abstract

Motivated by applications to wireless sensor, peer-to-peer, and social networks, the canonical average

consensus problem is considered in random and regular graphs in this paper. A local average information

exchange (LAIE) algorithm is developed to compute the global consensus of the initial measurements

of the nodes at every node in the network. In the proposed algorithm, each node interacts with all of its

neighboring nodes in each round of the diffusion process to compute and exchange the local average

value, such that all nodes can asymptotically reach a global consensus in a distributed manner very

quickly. This is in contrast to the conventional random gossip scheme, where each node only interacts

with one of its neighboring nodes, leading to very long convergence time. Results show that in a random

graph with n nodes, the convergence time of the LAIE algorithm is bounded below by ⌦
⇣

(n�1)logn
�

⌘1
,

where the parameter � denotes the largest degree of the graphs. When a network has n nodes represented

by d-regular topology graphs (d > 2), where each node has the same number of neighbors d, the

convergence time of the LAIE algorithm is bounded below by ⇥
⇣

n(d+1)logn
(2+d+2

p
d�1)(d�2

p
d�1)

⌘
. This shows

that the proposed algorithms can achieve quicker convergence to the global consensus than other schemes

based on the classic random gossip algorithm. Finally, we assess and compare the communication cost

of the local average algorithm to achieve consensus through numerical results.

Given two functions f(n) > 0, and g(n) > 0: f(n) = o(g(n)) means limn!1 f(n)/g(n) = 0; f(n) = O(g(n))

means limn!1 sup(f(n)/g(n)) < 1; f(n) = !(g(n)) is equivalent to g(n) = o(f(n)); f(n) = ⌦(g(n)) is equivalent to

g(n) = O(f(n)); f(n) = ⇥(g(n)) means f(n) = O(g(n)) and g(n) = O(f(n)).
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Index Terms

Broadcasting, Consensus, Local Average, d-regular Graph, Random Graph.

I. INTRODUCTION

Consider that a distributed system or network consists of a set of nodes where each node

has an initial value that can share information with neighboring components via the connected

edges, thus forming a general interconnection graph. The objective of a consensus problem is to

have all nodes agree upon a certain quantity of interest, which is typically a function of some

values that the nodes initially possess. When the nodes asymptotically reach an agreement on

the same value, we say that the distributed system asymptotically reaches consensus. A special

case of consensus is the case of average consensus, where the additional challenge is for the

nodes to converge to the exact average of their initial values [1]. Consensus problems have

attracted a considerable amount of interest in various fields including distributed detection [2],

communication [3], control theory [4], distributed data fusion in sensor network [5], and biology

[6]. The survey [7] provides the basic concepts and methods for consensus algorithms.

The essence of distributed consensus algorithms or gossip algorithms is that, in each round,

one or more nodes can communicate with its immediate neighbors, following which each node

updates its estimate with a quantity of interest, sometimes called its state, by combining the

estimate with those of its neighbors. In this manner, every node bootstraps another until all of

them agree on a common value. A common feature of a consensus problem is that agents can

exchange information only locally, and there is no fusion center in the network. Distributed

average consensus algorithms, which involve computations based only on local information, are

advantageous because they obviate the need for global communication and complicated routing,

and are robust against node and link failures.

In this paper, we propose a novel and simple distributed local average and information

exchange algorithm. The proposed algorithm uses broadcast operation to exchange local in-

formation involving all neighboring nodes of each node at each computation to quickly obtain

local agreement and achieve global consensus through an iterative process.
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A. Related Work

A pioneering study on asynchronous distributed computation is [8], where the convergence

of a gossip-based asynchronous distributed algorithm was investigated. Distributed consensus

algorithms can be categorized in a few ways, one of which is on the basis of their deterministic

or randomized operating protocol [9]. For deterministic consensus algorithms, the evolution

matrix is largely fixed. Thus, in each round, almost every node exchanges information with its

neighbors and updates its own state value. Yuan et al. propose distributed average consensus via

gossip algorithm with real-valued and quantized data, and also prove the bounds with respect

to the mixing parameter on the convergence rate [10]. Algorithms of this type include those

described in [7], [11]. By contrast, the evolution matrix of randomized consensus algorithms

changes randomly at every step of the iteration. Examples of this type of algorithm can be

found in [9] and [12], [17].

Boyd et al. first proved that the bound of convergence time for a randomized gossip algorithm

is ⇥(

logn

1��2[EW ]

) in [12]. Convergence time is closely related to the second-largest eigenvalue

�

2

[EW ] of the average weight matrix EW , depending on the design of the algorithm. It was

shown that this algorithm converges to a consensus if the graph is strongly connected on average.

Because the transmitting node must send a packet to the chosen neighbor and then wait for the

neighbor’s packet, this scheme is vulnerable to packet collisions, and yields a communication

complexity of the order of ⇥ (n

2

) over random geometric graphs, where n is the number of nodes.

Moreover, the randomized gossip algorithm confines information iteratively among neighbors,

and the choices of neighbors are random and repeated, which can lead to a considerable amount

of wasted energy.

Dimakis et al. proposed the geographic gossip algorithm, which combined gossip with geo-

graphic routing, and showed that convergence time is O(n

1.5

p
log n) [13] . By using geographic

information, such as coordinates, the geographic gossip algorithm enabled any node to commu-

nicate with nodes far from it in the network, made computationally concentrated areas sparse,

and hence remarkably enhanced convergence speed. However, the geographic gossip algorithm

cannot be adapt to dynamic circumstances due to routing maintenance, and forwarding back the

data renders packet loss inevitable, which increases complexity and reduces reliability.

On the contrary, enabling more computation is a useful approach to improving efficiency. Li
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et al. proposed a cluster-based gossip algorithm that reduced convergence time by a factor of

O(log n) compared to the randomized gossip algorithm, but required considering the difficulty

of cluster maintenance and the complexity of the theoretical mechanism [14].

Keren et al. studied the synchronized information dissemination problem and provided a

relationship between the gossip model and the local model. However, in many realistic settings,

synchronous algorithms require that the nodes agree on time, since the algorithm starts running

and adds physical constraints for practical system design [15]. Furthermore, a deterministic gossip

algorithm was proposed in [16], which only solved the k-local broadcast information-spreading

problem using the local model in a synchronized manner.

Broadcasting is a simple and efficient network communication protocol to disseminate infor-

mation to all nodes within a neighborhood, and can effectively adapt to unknown and dynamic

network environments. Broadcast gossip algorithms are especially attractive for use in wireless

networks [17]. In broadcast gossip algorithms, however, nodes asynchronously broadcast a

message, and the contents of the message are immediately processed by all neighbors receiving it.

Two broadcast gossip averaging algorithms are provided for distributed computation of averages

in large Abelian Cayley networks in [18]. The results show that the robustness of broadcast

gossip algorithms to interferences. The tight bounds on the largest perturbation parameter for

which the system is provided, which is still guaranteed to converge to a consensus, and derived

the value of the perturbation parameter that led to the fastest asymptotic rate of convergence on

strongly connected digraphs [19]. The convergence of pairwise and broadcast gossip algorithms

for consensus with intermittent links and mobile nodes are analyzed in wireless sensor networks

in [20]. Reference [21] studies the problem of distributed parameter estimation in unreliable

sensor networks by broadcast gossip algorithms.

B. Summary of Main Contributions

The main contributions of this paper are summarized as follows:

I. We propose a novel distributed local average and information exchange (LAIE) algorithm

to accelerate the convergence of the global consensus. Each node still acts based only on local

information, without a centralized controller. The proposed algorithm has very good scalability,

and adapts well to a dynamic network environment, where the addition or deletion of nodes and

links has no influence on performance.
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II. The average weight matrix EW , according to the design of the algorithm, plays an important

role in analyzing the convergence of the global consensus [12]. We first analyze an expectation

matrix under random graphs, and then derive the convergence time ⌦

⇣
(n�1) logn

�

⌘
and expected

communication cost ⌦
⇣
(�+2)(n�1) logn

�

⌘
of the LAIE algorithm.

III. Motivated by the properties of the algebraic connectivity of the Laplacian matrix, we use

the mathematical tool of spectra of the Laplacian matrix to prove the convergence of the proposed

algorithm, and provide a new bound of the convergence time under d-regular topology. A lower

bound of the convergence time of the LAIE algorithm ⇥

⇣
n(d+1)logn

(2+d+2

p
d�1)(d�2

p
d�1)

⌘
is developed,

which is tighter than the bound derived by the randomized gossip algorithm ⇥ (n

2

log n) and

the geographic gossip algorithms ⇥ (n log n).

IV. The simulation results for different degrees d of the regular graph and the random graph are

provided in this paper, and all results verify the efficiency of the LAIE algorithm. For different

values of d, the proposed algorithm always outperformed the randomized gossip algorithm and

geographic algorithms. For example, the LAIE algorithm was better than the randomized gossip

algorithm and the geographic gossip algorithm by a factor of 0.986 n and 0.986 n

0.5 in a grid

topology, respectively. The results show that both convergence time and expected communication

cost decrease as the value of d increases, which means that our algorithm adapts well to graphs

with large degrees.

C. Paper Organization

The rest of this paper is organized as follows: Section I-A contains a brief review of existing

work. Section II id devoted to a description of the system model, the problem formulation, and

the performance criterion. The LAIE algorithm and its convergence properties are presented in

Section III. Section IV contains a discussion of the simulation results of the proposed algorithm

and the convergence time property comparisons for different algorithms. The simulation results

show that the proposed algorithm converges much more quickly than the randomized gossip

algorithm, the geographic gossip algorithm, and the broadcast gossip algorithm. Section V

contains our conclusions.
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II. SYSTEM MODEL

A. Network Model

A network is represented by a graph G(V,E), where V = {1, 2, . . . , n} is the set of nodes

and E ✓ V ⇥ V is the set of edges. (i, j) 2 E if nodes i, j can communicate with each other.

Note that we do not allow self-loops in the graph. We assume that communication between any

two nodes is perfect. The neighbors of node i are denoted by N(i) := {j 2 V : (i, j) 2 E)}.

The cardinality N(i), denoted by d

i

= |N(i)|, is called the degree of node i. Let � and � denote

the biggest and smallest degrees of graph G, respectively. Let � be the n⇥ n adjacency matrix

of G, where for i 6= j, �
ij

= 1 if (i, j) 2 E and �

ij

= 0 otherwise. The d-regular graph is a

graph where each node has the same degree d. Here, we assume d > 2. For a d-regular graph

G, we define an n ⇥ n diagonal matrix D where each diagonal entry is given by D

ii

= d.

The Laplacian matrix of graph G is defined as L = D � �, and is positive semi-definite and

singular [25]. Let �L

1

,�

L

2

, . . . ,�

L

n

be the eigenvalues of Laplacian matrix L. Here, without loss

of generalization, we suppose �

L

1

 �

L

2

 · · ·  �

L

n

. It is well known that the second smallest

eigenvalue of the Laplacian matrix is called the algebraic connectivity of a graph. In general,

graphs that are more strongly connected have a larger �L

2

[25].

B. Problem Formulation

We consider an n-dimensional vector X(0) = [x

1

(0), . . . , x

n

(0)]

T , representing the initial

states at n nodes, which are deterministic, at time slot t = 0. Let x
ave

=

1

n

P
n

i=1

x

i

(0), and let

X(t) = [x

1

(t), . . . , x

n

(t)]

T be the vector of state values at the end of the t-th time slot. Suppose

that the clock of node i ticks at the beginning of the (t+1)-th time slot. Node i then broadcasts

its state value to all its neighboring nodes. The node states will be updated according to the

following equations:

x

j

(t+ 1) =(x

j

(t) + x

i

(t))/2 j 2 N(i)

x

j

(t+ 1) =x

j

(t) j /2 N(i) (1)

In average consensus protocols, nodes communicate with each other in communication steps

called rounds, and the amount of information exchanged in each round between two commu-

nicating nodes is limited. In this paper, we employ an asynchronous time model to choose the
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initiator node of information exchange [12], which is a good match with the distributed nature.

Time is discretized, and the time interval [Z

k

, Z

k+1

) corresponds to the k-th round. In each

round, we divide the time into slots (TSs). Every node is scheduled to transmit its message to

one of its neighboring nodes in a TS. Our interest is in determining the time it takes for X(t)

to converge to the global average, i.e., x

ave

· 1, where vector 1 represents the column vector

containing only 1s.

C. Performance Criterion

Definition 1 [12]: For any 0 < " < 1, the "-averaging time T

ave

(n, ", ⌘) of an algorithm is

defined as:

T

ave

(n, ") = sup

X(0)

inf

(

t : Pr

 
||X(t)� x

ave

· 1||
||X(0)|| � "

!

 "

)

(2)

where ||v|| denotes the l

2

norm of the vector v. Thus T

ave

(n, ") is the smallest time it takes for

X(t) to get within " of x
ave

· 1 with high probability, regardless of the initial value X(0).

Definition 2: For any 0 < " < 1, the total communication cost, denoted by C(n, "), is defined

as:

C(n, ") =

Tave(n,")X

t=1

R(t) (3)

where R(t) denotes the transmission time required for a given node to communicate with other

nodes at time slot t. Then, the expected communication cost is defined as

EC(n, ") = E(R(t)) · T
ave

(n, ", ⌘) (4)

where E(R(t)) denotes the expectation of random variable R(t).

III. MAIN WORK

A. Proposed Algorithm

In this section, we first propose a Local Average and Information Exchange algorithm for

asymptotically achieving the global average consensus, which is shown in Table I. Suppose

that, at time slot t, node i as an initiator broadcasts its state to all neighboring nodes. All

its neighboring nodes compute and update their states according to Equation (1), and send the

updated states to node i. Node i receives all states, computes its new average state, and broadcasts

it to all its neighboring nodes once again. All neighboring nodes compute and update their states.
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Node i and its neighbors then agree on the local consensus. This round of information exchange

concludes. Obviously, the LAIE algorithm utilizes the broadcast feature operation twice, which

will be shown to improve the convergence time of the proposed algorithm.

Algorithm 1 LAIE Algorithm.
1: Initialization: Let G = (V,E), n, X(0) = [x

1

(0), . . . , x

n

(0)]

2: at time slot t, node i is chosen as the initiator node, its state is x

i

(t)

3: node i broadcasts its state x

i

(t) to all neighboring nodes, which are denoted by the set N(i)

4: if 8j 2 N(i) then

5: node j receives x

i

(t), and computes and updates its state x

j

(t+ 1) =

xj(t)+xi(t)

2

6: all nodes in set N(i) send their updated states back to node i one by one

7: once node i receives all neighboring nodes’ updated states, it computes the average of

received states x

i

(t+ 1) =

xi(t)+
P

j2N(i)
xj(t)

|N(i)|+1

, and updates its state

8: node i sends its newest state x

i

(t+ 1) to its neighboring nodes again

9: all neighboring nodes j 2 N(i) update their states according to Step 5

10: else

11: 8k /2 N(i), only updates their states as follows: x
j

(t+ 1) = x

j

(t)

12: end if

13: repeat this process from Step 2

B. Analysis of Convergence Time Under Random Graph

In this paper, we consider two kinds of graphs: regular and random. Regular graphs have

good topological properties that can provide fundamental insights into the proposed algorithm.

Random graphs, where nodes are randomly deployed and have varying degrees, are very useful.

For clear analysis, at each time slot t, the LAIE algorithm can also be formulated by a matrix

W (t) given by:

X(t) = W (t)X(t� 1) (5)

Matrix W (t) represents a different algorithm that must satisfy the following necessary and

sufficient conditions to correctly ensure asymptotic average consensus [12]:

W (t)1 = 1, 1

T

W (t) = 1

T

, ⇢(W (t)� J) < 1. (6)
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where J =

1·1T
n

and ⇢(·) denotes the spectral radius of the matrix, which is given by:

⇢(M) = max{
����M

i

��� : i = 1, 2, . . . , n} (7)

where �

M

i

denotes the eigenvalues of matrix M . We then analyze the properties of transfer

matrix W (t) of the LAIE algorithm.

Lemma 1: Given graph G = (V,E), 8i 2 V , at time slot t � 1, the degree of node i is d

i

,

i = 1, 2, · · · , n. All weight matrices of the LAIE algorithm are given by {W (i)

(t) : 8i 2 V }.

Then, vector 1 is both left and right eigenvector, i.e.,

W

(i)

(t)1 = 1, 1

T

W

(i)

(t) = 1

T (8)

where the transfer matrix W

(i)

(t) is given by:

W

(i)

jk

(t) =

8
>>>>>>>><

>>>>>>>>:

1, j /2 L(i), k = j

1

di+1

j, k 2 N(i)

1

di+1

k = j = i

0 elsewhere

(9)

where W

(i)

jk

(t) is the (j, k)-th entry of transfer matrix W

(i)

(t).

Proof: Based on the LAIE algorithm, the transfer matrix W

(i)

(t) is obvious. We then prove

that vector 1 is the left eigenvector. According to (9), it is easy to prove that all rows of all

matrices W (i)

(t), i = 1, 2, · · · , n satisfy W

(i)

(t)1 =

⇣P
n

k=1

W

(i)

1k

(t), · · · ,W (i)

jk

(t), · · · ,W (i)

nk

(t)

⌘
T

,

where (·)T denotes the transpose of a matrix. Without loss of generality, for any subscript

j, j = 1, 2, · · · , n, we analyze the sum
P

n

k=1

W

(i)

jk

(t) as follows:

Case I: when j /2 L(i), based on (9), if k = j, W (i)

jj

(t) = 1; otherwise k 6= j, W (i)

jj

(t) = 0.

Then, 1{j /2 L(i)} = 1, and 1{j 2 L(i)} 1

di+1

= 0:
nX

k=1

W

(i)

jk

(t) = 1{j /2 L(i)}+ 1{j 2 L(i)} 1

d

i

+ 1

= 1, j = 1, 2, · · · , n

where 1{·} is the indicator function, i.e.,

1{j /2 L(i)} =

8
><

>:

1, ifj /2 L(i)succeed

0, elsewhere

Case II: when j 2 L(i), based on (9), 1{j 2 L(i)} · 1

di+1

= (d

i

+ 1) · 1

di+1

= 1, and

1{j /2 L(i)} = 0, then
nX

j=1

W

(i)

jk

(t) = 1{j /2 L(i)}+ 1{j 2 L(i)} 1

d

i

+ 1

= 1, j = 1, 2, · · · , n
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In summary, W (i)

(t)1 = 1. The right equation can be proved similarly, i.e., 1

T

W

(i)

(t) = 1

T .

According to Lemma 1, we analyze convergence time T

ave

(n, "), which is defined in (2), of

the LAIE algorithm under random graphs. In order to obtain the lower bound on the convergence

time of the LAIE algorithm, we first derive the average weight matrix as follows:

Lemma 2: Given graph G = (V,E), 8i 2 V , at time slot t � 1, the degree of node i is d

i

,

i = 1, 2, · · · , n. All weight matrices are {W (i)

(t) : i = 1, 2, · · · , n} of the LAIE algorithm; the

expectation matrix E(W (t)) is given by:

EW

jk

(t) =

8
>>>>>>>><

>>>>>>>>:

1

n

⇣
n� d

i

� 1 +

P
l2L(i)

1

dl+1

⌘
, ifj = k

1

n

⇣
1

dj+1

+

1

dk+1

⌘
, if(j, k) 2 E

1

n

⇣P
1

dr+1

⌘
, ifr 2 V, (r, j) 2 E, (r, k) 2 E, (j, k) 6= E

0 elsewhere

(10)

where E(W

jk

(t)) is the (j, k)-th entry of matrix E(W (t)), and L(i) = {i}SN(i).

Proof: Without loss of the generality, we only consider the (j, k)-th entry E(W

jk

(t)) of

expectation matrix E(W (t)). 8j 2 V , not only does it start a computation itself, but it is also

be chosen by other nodes in its neighborhood to partake in computation. The total computation

time is equal to d

j

+1. Otherwise, its value remains unchanged, and the diagonal entry is given

by:

E(W

jj

(t)) =

1

n

0

@
n� d

j

� 1 +

X

l2L(i)

1

d

l

+ 1

1

A
= 1� d

j

+ 1

n

+

1

n

X

l2L(i)

1

d

l

+ 1

j = 1, 2, · · · , n

(11)

Node j and k are a pair of neighbor nodes, i.e., (j, k) 2 E. If either j or k is chosen as the

initiator node of information exchange in the LAIE algorithm, another node must be involved

in its computation. Then, the (j, k)-th entry of expectation matrix E(W (t)) is given by:

E(W

jk

(t)) =

1

n

 
1

d

j

+ 1

+

1

d

k

+ 1

!

8r 2 V , assume that both node j and node k are neighbors of node r, but j 6= r, k 6= r, and

(j, k) /2 E; then the two nodes j and k participate in computation with respect to node r. Thus,

the (j, k)-th entry of expectation matrix E(W (t)) is given by:

E(W

jk

(t)) =

1

n

0

@
X

r2V,(r,j)2E,(r,k)2E,(j,k) 6=E

1

d

r

+ 1

1

A
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Lemma 2 gives the average weight matrix E(W (t)) of the LAIE algorithm under random

graphs. Reference [12] showed that the convergence time of the random gossip algorithm

depends on the second-largest eigenvalue of the average weight matrix. Therefore, we analyze

the convergence time of the LAIE algorithm by the second-largest eigenvalue of the average

weight matrix associated with the random graphs as follows.

Theorem 1: Given graph G = (V,E), assume that the nodes are placed in a random and

independent way. At any time slot t � 1, assume that to 8i 2 V , its degree is d

i

and its weight

matrices {W (i)

(t) : i = 1, 2, · · · , n}. The expectation matrices E(W (t)) of the LAIE algorithm

are defined as (9) and (10), respectively. Then, the convergence time of the LAIE algorithm is

given by:

T

ave

= ⌦

 
(n� 1) log n

�

!

. (12)

Proof: Based on the definition of the trace of a matrix in [27], the following equation is

given by:
nX

i=1

�

EW

i

=

nX

i=1

E(W

ii

(t)) = tr(E(W (t)). (13)

where tr(E(W (t))) is the trace of the average weight matrix. According to (11),

nX

i=1

E(W

ii

(t)) =

nX

i=1

1

n

0

@
n� d

i

� 1 +

X

l2L(i)

1

d

l

+ 1

1

A
=

nX

i=1

0

@
1� 1

n

� d

i

n

+

1

n

X

l2L(i)

1

d

l

+ 1

1

A

= (n� 1)�
nX

i=1

d

i

n

+

1

n

nX

i=1

X

l2L(i)

1

d

l

+ 1

= (n� 1)�
nX

i=1

d

i

n

+ 1 = n�
nX

i=1

d

i

n

.

(14)

Then, the sum of diagonal entries of the average weight matrix can be bounded as follows:

nX

i=1

E(W

ii

(t)) � n�
nX

i=1

�

n

= n�� (15)

Let {�
n

,�

n�1

, . . . ,�

1

} denote the set of all the eigenvalues of the average weight matrix

E(W (t)) in increasing order, and the largest eigenvalue �

1

equals 1. Then, the lower bound of

the second-largest eigenvalue �

2

is given by:

�

2

� 1

n� 1

 
nX

i=1

�

i

� 1

!

=

1

n� 1

 
nX

i=1

E(W

ii

(t))� 1

!

� n��� 1

n� 1

= 1� �

n� 1
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based on the results in [12] , we have

T

ave

= ⇥

 
log n

1� �

EW

2

!

� log n

1� (1� �

n�1

)

=

log n

�

n�1

=

(n� 1) log n

�

.

which denotes T

ave

= ⌦(

(n�1) logn

�

).

We now analyze the expected communication cost of the LAIE algorithm required under the

random graph.

Corollary 1: The expected communication cost, which is defined as (4), required by the LAIE

algorithm under the random graph is bounded as:

EC(n, ") = ⌦

 
(� + 2)(n� 1) log n

�

!

(16)

Proof: Based on equation (4), we must compute E(R(t)) and T

ave

respectively. The pa-

rameter R(t), which is defined in Definition 2, denotes the amount of transmission required

for a given node to communicate with some other node at time slot t. In the LAIE algorithm,

each round of transmission includes, at least, the broadcast operation twice, and � instances of

one-by-one transmission. Then we have E(R(t)) � (� + 2). Based on Theorem 2, the total

transmission cost is given by:

EC(n, ") = E(R(t))T

ave

(n, ", ⌘) = ⌦

 
(� + 2)(n� 1) log n

�

!

C. Analysis of Convergence Time under d-regular Graph

In this section, we will study the convergence time of the LAIE algorithm under d-regular

graph G(V,E). Based on the special connectivity of the d-regular graph, we first develop a

novel analysis approach to evaluate the convergence time of the LAIE algorithm. Let � and

D denote the adjacency matrix and diagonal matrix of the d-regular graph, respectively. Then

we analyze the average weight matrix EW for the LAIE algorithm under the d-regular graph

G(V,E), which is depicted as follows:

Lemma 3: The average weight matrix EW of the LAIE algorithm under the d-regular graph

G(V,E) is given by:

EW =

n� d� 1

n

I +

(L� (d+ 1)I)

2

n

. (17)
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and the average weight matrix EW satisfies the following equations:

EW1 = 1, 1

T

EW = 1

T

, ⇢(EW � J) < 1. (18)

Proof: Based on Corollary 1, the average weight matrix is given by:

EW =

n� d

n

· I + 1

n(d+ 1)

⇣
�

2

+ 2��D

⌘

As the Laplacian matrix of a graph is L = D � �, then � = D � L. The average weight

matrix EW can be formulated as:

EW =

n� d

n

I +

1

n(d+ 1)

(�

2

+ 2��D)

=

1

n(d+ 1)

h
�

2 � dI + 2�+ (d+ 1)(n� d)I

i

=

1

n(d+ 1)

h
(D � L)

2

+ 2(D � L) + (nd+ n� d

2 � 2d)I

i

=

1

n(d+ 1)

h
L

2 � 2(d+ 1)L

i
+ I

=

n� d� 1

n

I +

[L� (d+ 1)I]

2

n

As all the weight matrices {W (i)

: i = 1, 2, . . . , n} are double stochastic matrices, the vector 1

is both a left and right eigenvector of the average weight matrix. With this in mind, the spectral

radius of the weight matrix is less than one.

According to the above analysis, we can conclude that the convergence time of the LAIE

algorithm under the d-regular graph G(V,E) is as follows.

Theorem 2 Consider a d-regular graph G = (V,E), where d > 2. Assume that the nodes are

placed in a random and independent way. Then the convergence time of the LAIE algorithm is

given by:

T

ave

= ⇥

 
n(d+ 1) log n

(2 + d+ 2

p
d� 1)(d� 2

p
d� 1)

!

. (19)

Proof: The convergence time of the distributed averaging algorithm depends on the second

largest eigenvalue �

2

[12] . Thus, we hope to find the second largest eigenvalue of average

weight matrix EW, and minimize it to derive a tight bound of convergence time. According to

(17), we have:

�

EW

=

n� d� 1

n

+

(�

L � d� 1)

2

n(d+ 1)
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where �L is the eigenvalue of Laplacian matrix L. For the d-regular graph, the smallest eigenvalue

and the second smallest eigenvalue of Laplacian matrix are 0 and d � 2

q
(d� 1), (d > 2),

respectively [25]. Let �

L

n�1

be the second smallest eigenvalue of Laplacian matrix, which is

given by:

�

EW

2

=

n� d� 1

n

+

(2

p
d� 1 + 1)

2

n(d+ 1)

= 1� d+ 1

n

+

(2

p
d� 1 + 1)

2

n(d+ 1)

.

based on the results of the reference [12], we conclude that

T

ave

= ⇥

 
log n

1� �

EW

2

!

= ⇥

0

B@
log n

d+1

n

� (2

p
d�1+1)

2

n(d+1)

1

CA = ⇥

 
n(d+ 1) log n

(d+ 1)

2 � (2

p
d� 1 + 1)

2

!

= ⇥

 
n(d+ 1) log n

(2 + d+ 2

p
d� 1)(d� 2

p
d� 1)

!

Corollary 2: The expected communication cost required for the LAIE algorithm under the

d-regular graph is given by:

EC(n, ") = ⇥

 
n(d+ 1)(d+ 2) log n

(2 + d+ 2

p
d� 1)(d� 2

p
d� 1)

!

. (20)

Proof: Based on (4), the expected communication cost required for the LAIE algorithm

under the d-regular graph is given by:

EC(n, ") = E(R(t))T

ave

(n, ", ⌘) = (d+ 2) · T
ave

(n, ", ⌘)

= ⇥

 
n(d+ 1)(d+ 2) log n

(2 + d+ 2

p
d� 1)(d� 2

p
d� 1)

!

Finally, we conclude that the averaging time and the expected communication cost are all

decreasing functions as the degree of graph increases, which is proved as follows:

Theorem 3: Given a regular graph G = (V,E) with degree d, where d > 2, assume that the

nodes are placed in a random and independent way. For a large n, the averaging time decreases

as the degree of graph increases, as well as the expected communication cost.

Proof: According to Theorem 2, we have

T

ave

(n, ", ⌘) = ⇥

 
n(d+ 1) log n

(2 + d+ 2

p
d� 1)(d� 2

p
d� 1)

!

= ⇥

0

@ n log n

(1 +

1+2

p
d�1

d+1

)(d� 2

p
d� 1)

1

A

As the parameter d > 2, we have 1 < 1+

1+2

p
d�1

d+1

< 2, and 1

d�2

p
d�1

is a decreasing function as

d increasing. Consequently, T
ave

(n, d) is a decreasing function about d for large n. The proving
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process regarding the expected communication cost required for convergence is similar, which

is omitted here.

Theorem 3 shows that the larger the degree of a graph is, the better the performance of the

LAIE algorithm, which will be further verified by the extensive numerical simulation in the next

section.

IV. NUMERICAL EXAMPLES

In this section, we compare the performance of the LAIE algorithm with the randomized gossip

algorithm [12], geographical gossip algorithm [13], and broadcast gossip algorithm [19] under

d-regular graphs and random graphs through numerical simulation. The simulation parameters

are listed as follows. The initial value(state) support of each node is [0,1]. The number of the

nodes is from 0 to 200. The maximum number of rounds is 2000, and ✏ = 0.01. In these four

algorithms, we mainly compare the relationship between the required time achieve the global

convergence as the number of nodes increases. We first plot the convergence time curves of

different node degrees under k-regular graphs.

Fig.1 shows the convergence time versus the number of nodes under a 3-regular graph. LAIE

algorithm results in the quickest convergence time compared to other algorithms. The gaps

among these algorithms are enlarged as the number of nodes increases. This shows that the LAIE

algorithm is more suited to a large number of nodes. The curves between the LAIE algorithm

and the broadcast gossip algorithm are very similar with increasing number of nodes. It may be

because a broadcast operator is used in these algorithms. The geographic gossip algorithm was

worse than the broadcast algorithm and the LAIE algorithm because its long route experienced

too many intermediate nodes, which led to wasted time.

Fig.2 shows the convergence time versus the number of nodes under 6-regular graph. As the

number of nodes increases, the convergence time of the randomized gossip algorithm varies

sharply. However, the convergence time of the LAIE algorithm increases slowly. Although

the gap between the LAIE algorithm and the broadcast gossip algorithm is obviously thinning

compared to the curves shown in Fig.1, they still outperform the random gossip algorithm and

the geographic gossip algorithm.

Fig.3 shows the convergence time versus the number of nodes under 9-regular graph. The

performance of the random gossip algorithm is still worse than that of other algorithms, especially

June 13, 2017 DRAFT
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Fig. 1. The convergence time versus the number of nodes under 3-regular graph

with the number of nodes increasing. As shown from Fig.1 to Fig.3, the convergence time

required for the LAIE algorithm is always smaller than that of the other three existing algorithms

in the different d-regular graphs. However, as the degree of the graph increased, the gap in

convergence time between the LAIE algorithm and the broadcast gossip algorithm varied little

as the number of nodes increased. This implies that the broadcast operator plays an important

role in these two algorithms.

Relaxing the constraint of the degree of node, the convergence time curves of the four

algorithms under random graph are shown in Fig. 4. With the number of nodes increasing,

the convergence time of the LAIE algorithm is quicker than other algorithms. The broadcast

gossip algorithm has almost the same performance as the LAIE algorithm, which further verifies

the variation trend shown from Fig.1 to Fig.3 once again. Although the random gossip algorithm

is worse than other algorithms, it plays an irreplaceable role in the simplicity and scalability,

especially in the dynamic scenarios.
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Fig. 2. The convergence time versus the number of nodes under 6-regular graph

V. CONCLUSION

In this paper, we proposed a novel local average broadcasting algorithm to accelerate global

consensus on random and d-regular networks. In the proposed algorithm, each node interacts with

all its neighboring nodes in each round of the diffusion process, such that all nodes can reach

a global consensus in a distributed manner very quickly. This is in contrast to the conventional

random gossip scheme, where each node only interacts with one of its neighbors, leading to a

very long convergence time. By exploring the nature of broadcasts, each node acts based on only

local information, without a centralized controller. It was shown that in a random network with

n nodes, the convergence time of the LAIE algorithm is lower bounded by ⌦

⇣
(n�1)logn

�

⌘
1

, where

the parameter � denotes the graph with the largest degree. For n nodes in d-regular topology

graphs (d > 2), where each node has the same number of neighbors d, based on a novel

mathematical tool—the spectrum of the Laplacian matrix—the lower bound of the convergence

time of the LAIE algorithm ⇥

⇣
n(d+1)logn

(2+d+2

p
d�1)(d�2

p
d�1)

⌘
was developed. This was tighter than

the bound derived by the randomized gossip algorithm ⇥ (n

2

log n) and the geographic gossip
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Fig. 3. The convergence time versus the number of nodes under 9-regular graph

algorithms ⇥ (n log n), etc.. The results showed that this algorithm can significantly speed up the

distributed average consensus process and reduce the amount of transmission in the consensus

process in comparison with existing gossip algorithms. The effects on performance of the failures

of nodes and links will be the focus of our future work.
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