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AbstrAct

Critical infrastructure monitoring is one of the 
most important applications of a smart city. The 
objective is to monitor the integrity of the struc-
tures (e.g., buildings, bridges) and detect and 
pinpoint the locations of possible events (e.g., 
damages, cracks).  Regarding today’s complex 
structures, collecting data using wireless sen-
sor data over extensive vertical lengths creates 
enormous challenges. With a direct BS deploy-
ment, a big amount of data will accumulate to be 
relayed to the BS. As a result, traditional models 
and schemes developed for health monitoring 
are largely challenged by low-cost, quality-guaran-
teed, and real-time event monitoring. In this arti-
cle, we propose BigReduce, a cloud based health 
monitoring application with an IoT framework 
that could cover most of the key infrastructures of 
a smart city under an umbrella and provide event 
monitoring. To reduce the burden of big data 
processing at the BS and enhance the quality of 
event detection, we integrate real-time data pro-
cessing and intelligent decision making capabili-
ties with BigReduce. Particularly, we provide two 
innovative schemes for health event monitoring 
so that an IoT sensor can use them locally; one is 
a big data reduction scheme, and the other is a 
decision making scheme. We believe that BigRe-
duce will result in a remarkable performance in 
terms of data reduction, energy cost reduction, 
and the quality of monitoring.

IntroductIon
The idea of the smart city is widely favored, as it 
enhances the safety and quality of life of urban 
citizens. The smart city covers several applica-
tions, including smart transportation, smart health-
care, smart structural health monitoring (including 
industrial applications), and many more. Among 
them, critical infrastructure health monitoring is 
one of the most important applications, and many 
methods have been used in reconstructing the 
signal with high probability [1]. Critical infrastruc-
tures are those that are necessary for living. Exam-
ples include high-rise buildings and long-span 
bridges, smart grids, power plants, water supply 
networks, and so on. We narrow down our focus 
to civil, industrial, and mechanical infrastructures, 
mainly including buildings, bridges, and heritage 
monuments. The objective of structural health 

monitoring (SHM) is to monitor the integrity of 
structures, and detect and pinpoint the locations 
of possible damage, cracks, and so on. The integ-
rity is very important in maintaining the safety of 
everyone in and around such structures [2–5].

SHM is a multidisciplinary application that 
is usually conducted by the civil, structural, and 
mechanical engineering communities. Wired net-
work systems have been dominating SHM tasks 
since the late 1980s, as they are assumed to be 
reliable. Sufficient work has been done by the 
engineering communities, which are typically cen-
tralized/global-based. Nevertheless, the computer 
science and engineering (CSE) communities often 
find that many system assumptions are made with 
a lack of integration of the CSE aspects [2]. In 
turn, both the engineering and computer science 
communities have started research toward devel-
oping Internet of Things (IoT) networks, wireless 
sensor networks (WSNs), as alternatives to wired 
systems since the 2000s. In the 2010s, using the 
emerging IoT for SHM has been receiving atten-
tion at an increasing rate. The reasons for this 
include advantages such as its low cost, flexibility, 
and autonomous decision making capabilities.

Regarding today’s complex structures (e.g., 
high-rise buildings and long-span bridges), col-
lecting data using IoT wireless sensors over exten-
sive vertical lengths creates enormous challenges. 
For example, two data collection methods are 
given for transporting big data over IoT networks, 
namely short-range (hop-by-hop routing) and 
long-range (single-hop transmission). When given 
a large-scale structure for monitoring, for exam-
ple, the Canton tower that peaks at 600 m above 
ground or a bridge/tunnel that is longer than sev-
eral kilometers, even given only a substructure 
(e.g., a part of a structure), manipulating such 
systems with the big data for event monitoring is 
cumbersome [6]. A lot of wireless data packets 
get lost during transmission over the structures. 
Recovering the lost data from IoT networks is 
quite impossible. As a result, traditional models 
and schemes developed for health event monitor-
ing are largely challenged by low-data-loss, quali-
ty-guaranteed, and real-time event monitoring.

In particular, based on our experiences with 
civil engineering collaborators, we discovered that 
centralized SHM schemes are employed to obtain 
the structural raw response data (i.e., vibration, 
strain) at a high frequency (e.g., 560 Hz or more) 
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for a “long enough” period of time. The acquired 
data are big data (high volume, velocity, veracity, 
and resolution) [7]. We also find that some pop-
ular existing SHM schemes normally work in a 
round-by-round manner. Each IoT sensor shares 
the response data with multiple sensors, and then 
transmits to a base station (BS) [8]. The data from 
each IoT sensor involved is no longer a single 
value, but a sequence of data generally having 
more than thousands of data points at each of 
the rounds. Although those SHM schemes solve 
practical engineering problems, applying them 
directly within an IoT sensor network is quite dif-
ficult. Regarding the situation above, the entirety 
of the data cannot be either stored or transferred, 
but must be mined/processed immediately. Some 
closely related work includes different types of 
in-network processing techniques in IoT networks 
such as data compression and hop-by-hop aggre-
gation. However, they still require complicated 
signal processing techniques and system identifi-
cation for health monitoring through the big data 
analysis.

In this article, we propose BigReduce, a 
cloud-based health monitoring IoT framework 
that could cover most of the key infrastructures 
in a smart city under an umbrella and provide 
health event monitoring. To reduce the burden 
of big data processing (regarding volume, verac-
ity, velocity) at a control center, we provide two 
innovative schemes for health event monitoring 
that IoT sensor devices can use locally: one is a 
big data reduction scheme, and the other is a big 
data decision making scheme. Through the reduc-
tion scheme, there is a big amount of data at the 
time of data acquisition; hence, all of the data 
can be reduced if there is no health event so that 
all of the data does not need to be transmitted 
across the network. It functions on the analysis of 
the frequency content of the signals as they are 
acquired and efficiently adapts the frequency rate 
based on its sensitivity to a respective event, such 
as a damage event. Instead of transmitting the 
entire set of acquired data, BigReduce transmits 
only the signals that have high event sensitivity.

In the decision making scheme, we propose 
a comprehensive decision making scheme for 
health event detection in the IoT. We think of 
the idea of generic event detection (e.g., target/
object) schemes and enable each IoT sensor to 

sense and make a simplified local decision (0/1) 
on the complex events. We then think of the for-
mation of the engineering structures and find that 
a large physical structure consists of a number 
of substructures. We enable deployed IoT sen-
sors to be organized into groups in such a way 
that a group-wise final decision (e.g., 0/1) can be 
provided for each substructure independently so 
that the existence of an event (if there is one) in a 
specific substructure can be identified by the IoT 
sensor network.

This article is organized as follows. First, the 
design of the BigReduce framework is given. Sec-
ond, the big data reduction scheme is provided. 
Third, we present a decision making scheme. 
Finally, we conclude the article.

bIgreduce: An Iot FrAmework For 
bIg dAtA reductIon

In the structural environments of a smart city, dif-
ferent kinds of events happen, including structural 
damages, cracks, corrosion, fires, unauthorized 
mobile events, carbon dioxide, and so on. Numer-
ous IoT sensor units can be involved to detect 
these events. We particularly focus on structural 
health events. This event detection involves big 
data when collected at a high frequency rate 
where data is generated [9]. Technology for 
cloud data storage services has evolved rapidly 
in the last several years, providing inexpensive, 
robust, and secure data storage and processing 
[10]. With the development of cloud computing, 
lots of work can be done on the cloud platform. 
For example, Yan proposed a decentralized belief 
propagation-based method for multi-agent task 
allocation in open and dynamic cloud environ-
ments [11]. It can be interesting if error-less and 
reduced data could be uploaded from the sensor 
to the cloud and be accessed from a remote cen-
ter for monitoring.

Figure 1 shows the BigReduce framework. The 
basic concept of the technical data cloud (TDC) 
as a cloud-based service is to provide an off-the-
shelf and reliable solution for all the structures 
around a smart city. It is normal that a restricted 
region or a smart city has a set of high-rise build-
ings and a set of long-span bridges among other 
large-scale structures. All buildings, bridges, and 
industrial plants can be covered and monitored by 

Figure 1. BigReduce: Integration of the sensor data sensed from multiple structural systems using the technical Data Cloud.
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IoT sensors. The IoT sensors should be connected 
to the cloud and should upload the reduced data 
or all of the data (when necessary) to the cloud. 
Similarly, all of the buildings, bridges, and indus-
trial plants in the region/city can be monitored 
from a remote center using the cloud. In this way, 
some of the IoT sensor constraints, such as ener-
gy and communication, can be greatly improved, 
and the monitoring tasks can be carried out in 
real time.

Next, we narrow our focus to the data reduc-
tion and decision making in the health event 
detection of specific structures, for example, 
buildings. To reduce big data locally in BigRe-
duce, we need a computation model that com-
bines cyber aspects (networking) and physical 
system aspects (structural components/elements), 
as shown in Fig. 2 (right panel). Designing such a 
computation model poses some challenges from 
the perspective of the requirements of both the 
engineering and computer science communities 
[12, 13]. Figure 2 is a cyber-physical orientated 
computation model, which is illustrated with refer-
ence to Fig. 1. Figure 2 shows a building structure 
(the Canton tower), which is part of Fig. 1 (part of 
BigReduce). As shown in Fig. 2, we consider shift-
ing from analyzing the networking performance 
and the structural event monitoring application 
performance separately.

For the computational model, a physical struc-
ture (e.g., the Canton tower) and an IoT network 
topology are taken for monitoring, as depicted 
in Fig. 2. The structure consists of a number of 
substructures, represented by Subs1, Subs1, …, 
SubsQ [6], where Q is the maximum number of 
substructures. Given a set of homogeneous IoT 
sensors with limited energy, we need to form an 
IoT network to cover that structure. We integrate 
the computation model that efficiently maps the 
structural event identification and the region (or 
substructure) of the event occurrence into a dis-
tributed IoT network. The model consists of four 
parts:
• The underlying physical structural system 

consists of the “physical” elements, which 
are governed by laws in physics as specified 
by nature, forced excitation, and the event 
occurrence.

•  There are many computing platforms (IoT 
sensors) that are capable of sensing, comput-
ing, and transmitting, as well as controlling 
the structural system. The sensors are con-
nected by a network (via wireless links). The 
sensors and the communication network 
form the “cyber” part of the IoT, which has 
to be designed carefully, such that the inte-
grated SHM achieves certain specified func-
tionalities.

• There are equations used in capturing struc-
tural dynamics that are given to the sensors, 
which use the equation to collect structural 
element-state information.

• The sensors are given a computation model 
to make decisions regarding an event on the 
structure.
An individual sensor can be given this equa-

tion. Using the equation, the IoT sensor can 
obtain the status information of all physical ele-
ments within its vicinity. Using this computation 
model, a data reduction scheme, and a deci-
sion-making scheme, the IoT sensor can decide 
whether there is any structural event. This infor-
mation can be shared within a group of sensors 
covering a structure in a distributed manner. 
Thus, a large amount of data does not need to 
be shared and transmitted to the BS. If a change 
appears in the elements, these sensors are able 
to detect it when compared with a threshold, a 
reference dataset, or its neighboring sensors. This 
implies that if there is a change, the IoT network 
needs extra communication and computation. 
Otherwise, the communication, computation, and 
data collection can be controlled.

bIg dAtA reductIon At dAtA AcquIsItIon
Detection of a health event (e.g., damage) 
through structural response analyses involves a 
lot of data acquisition [14]. To reduce the data 
acquisition with the quality of data, event-sensitive 
data acquisition is adopted, that is, when there is 
no structural health event, sensors reduce their 
collection rate so that they can minimize a set of 
data. Basically, a structural event is a rare event. 
Event-sensitive data acquisition (or event-insensi-
tive data reduction) can reduce a large amount of 
data. We illustrate BigReduce in Fig. 3. At a given 

Figure 2. Equation-based cyber-physical oriented computation model.
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time interval, a device begins a “short burst” of 
samplings at a high frequency and examines the 
acquired data (signals) to analyze the content. 
The sampling duration of each burst in a high-fre-
quency sampling is followed by low-frequency 
samplings.

Whenever a sensor device begins sampling, 
it is at a high frequency rate. If the frequency 
content is detected to be sensitive to an event 
(i.e., the changes in this frequency content are 
large), the sampling duration can be longer. Thus, 
the frequency content is important for calculat-
ing event indications (as shown in Fig. 3). This 
frequency rate is kept until an analysis is made 
and finds that the frequency content has become 
insensitive. Once the frequency content is insen-
sitive, the sampling situation becomes relaxed. A 
sensor device is automatically switched between 
low- and high-frequency samplings depending 
on the frequency content, which is due to the 
absence/presence of an event. Using this tech-
nique in event indication, an analysis of the fre-
quency content is preserved in each discrete 
interval, and subsequently, a better frequency 
rate is selected. BigReduce contains a data reduc-
tion control, which is executed by every sensor 
device autonomously. As shown in Fig. 3, through 
the control, BigReduce minimizes the amount of 
data in two phases: at the time of acquisition and 
before transmission.

The process of the event-insensitive frequency 
content for data reduction is carried out at the 
time of data acquisition. This needs a frequency 
rate adaptation. The adaptation includes a few 
steps. In the first step, a sensor device begins 
acquiring signals at a high frequency rate and 
buffers them into a database (Fig. 3). Every sen-
sor device acquires data in a given time interval. 
An interval comprises two types of sub-intervals: 
high-frequency intervals and low-frequency inter-
vals. In a high-frequency interval, a device begins 
with a short investigative frequency rate; in a 
low-frequency interval, the frequency rate is 
adapted to a lower frequency rate based on the 
frequency content analysis, which can be influ-
enced by the presence of an event. Thus, the 
adapted rate for a lower frequency interval is 
adopted based on the required frequency rate.

In the second step, a frequency content anal-

ysis is carried out on the data points acquired 
during the high frequency interval to calculate the 
highest-frequency content. If the sensor device 
discovers that a frequency’s content is sensitive, 
as shown in Fig. 3, the minimum frequency rate is 
the high frequency rate. It is determined by Shan-
non’s sampling theorem [15].

The high frequency rate is normally unknown 
before data acquisition, signal activity, or the 
absence/presence of an event. To know this, 
the third step is carried out obtaining the current 
frequency rate. At this step, a decision is made 
whether or not the current frequency rate needs 
to be continued or adapted. If a high frequency 
rate is still sensitive due to the presence of a possi-
ble event, the sensor device continues data acqui-
sition at the current rate; otherwise, the sensor 
device adapts the frequency rate to a lower fre-
quency rate. After going to the lower frequency 
rate, the sensor device continues data acquisition 
at this frequency rate.

dAtA reductIon through A 
decIsIon mAkIng scheme

We use the idea of generic event detection (e.g., 
target/object) schemes and enable each IoT sen-
sor to acquire data and work as a local decision 
maker that makes a simplified local decision (0/1) 
on structural health events. We then think of the 
formation of engineering structures, and find that 
a large physical structure consists of a number 
of substructures, as shown in Fig. 3. We enable 
deployed sensors to be organized into groups 
in such a way that each group of local decision 
makers can cover a substructure independently. 
A group-wise final decision (e.g., 0/1) is made at 
a decentralized decision maker sensor by simply 
fusing all decisions from the group of local deci-
sion makers so that the existence of an event (1 
if there is any) in a specific substructure can be 
identified by IoT networks.

The crucial aspect is that the final decision 0 
(zero) made by a decentralized decision maker 
is only transmitted to the BS if there is no event. 
As a result, the total energy and bandwidth cost 
required for wireless data transmission is drasti-
cally reduced. This scheme is fully distributed in 
nature, and promises to have a monitoring qual-

Figure 3. Big data reduction scheme embedded to IoT sensor devices that help with the event-insensitive data reduction and event-sen-
sitive data transmission.
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ity similar to the original wired-based schemes. It 
makes sensing and 0/1 decisions with an equa-
tion-based computation model that has the inte-
gration of computation in the IoT network and 
dynamics in the physical process.

Looking into traditional event detection mod-
els, there are many available. We adopt the most 
widely accepted equation-based model, ARX 
(exogenous inputs) [15], as shown in Fig. 2. The 
estimation of the ARX model is the most effi-
cient of the polynomial estimation methods. The 
model is given in Fig. 2. Like many other models 
from engineering communities, the ARX equation 
model cannot be applied directly to an IoT net-
work. In a wired system, the final results through 
the ARX equation are computed globally at the 
BS, which has no energy limitations. We assume 
that, manually, an SHM system end user has no 
access to input data about a physical structural 
system to create a model for it. The IoT sensor 
acquires measurements as the structural system’s 
input. To solve this problem, we combine two 
techniques as follows:
• When an IoT sensor acquires measurements 

of the structural system, we try to narrow 
the set of possible inputs obtained by using 
ambient vibrations on the structure as an 
input for the sensor. The common input used 
to perform event detection is a step forward, 
as it is easily repeatable and creatable. This 
means that we have two sets of measure-
ments, one used as input and the other as 
output, so the knowledge of the actual input 
of the whole system is not always needed. It 
may not be impossible (but it will be difficult) 
to measure the exact input and output for 
the global system; however, it is much easier 
in the local system.

• Instead of considering the actual inputs for 
a whole given period of time (like the ARX 
model for measurement), we consider part 
of the measured outputs as inputs. This 
approach is derived from the representation 
of single-input multiple-output (SIMO) sys-
tems using transfer function matrices.
We describe the decision making procedures 

at each local decision maker, as shown in Figs. 2 
and 4. As shown in Fig. 4, the monitoring of the 
structure can be broken down into two steps. First, 
the residual is generated, which estimates how 

far the actual behavior is from the expected one. 
Second, a decision must be made regarding the 
structural health event status via the residual. In 
the case of continuous monitoring, the achieved 
residual signal is compared to a threshold (fixed 
or dynamic) to detect a change in the system’s 
behavior. When a local decision maker monitors 
the system in its vicinity intermittently with a noisy 
measurement, another detection scheme should 
be used as the sensor noise, which can be mod-
eled as Gaussian noise.

To provide a perfect structural model embedded 
in an IoT sensor with low or no measurement noise, 
damage events in the system would be detected if 
the residual is non-zero. However, in a real deploy-
ment, some modeling errors and other perturbations 
may occur, which may yield a non-zero residual for 
the undamaged system. Therefore, the residual is 
compared to the threshold.

The decisions made by local decision makers 
of a group are fused at a decentralized decision 
maker to create a final decision so as to know 
whether or not there is a damage event in a sub-
structure. One of the simplest fusion techniques is 
the use of the voting scheme presented in other 
IoT network applications. Other methods, for 
example, distance-based fusion or maximum pos-
terior decision fusions, may also be used.

experImentAl testbeds
We implement an experimental testbed using the 
TinyOS on Imote2 sensor platforms. We specif-
ically design a test infrastructure and deploy 10 
Imote2s on it, as shown in Fig. 5. An additional 
Imote2 (the BS node) is employed 30 m away. 
A PC is used as a command center for the BS 
and data visualization. We consider 4096 data 
points to meet fire event detection requirements. 
A successful “emergency” event detection and 
response requires the presence of an accurate 
physical event (e.g., damage), which can be ini-
tially analyzed by calculating an event indication. 
We verify the schemes under physical structural 
damage injection. Based on the preliminary result 
analysis, we find that both data reduction schemes 
in BigReduce reduce up to 82 percent of the data 
volume and up to 78 percent of the energy con-
sumed by Imote2 sensors. This reduction is due 
to the two schemes that decrease hardware activ-
ities. This translates to a reduction in energy cost 
from 22.6 mAh to 17.5 mAh. The event indication 
identified through the decision making enables 
another net data reduction of 44.6 percent, trans-
lating to 41.38 percent energy saving.

conclusIons
We have proposed BigReduce, cloud-based 
infrastructure health monitoring within the IoT 
framework. It attempts to cover most of the key 
infrastructures of smart cities and provide struc-
tural health event monitoring. To reduce the bur-
den of big data processing at the BS, we integrate 
real-time data processing and intelligent decision 
making capabilities. We provide two innovative 
schemes for health event monitoring that IoT sen-
sor devices can use locally. These are big data 
reduction schemes and decision making schemes. 
Instead of transmitting hundreds of megabytes of 
data over the IoT network for offline data analysis 
at the BS server, BigReduce  focuses on reducing 

Figure 4. The work flow of the decision-making 
schemes for SHM applications. 
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the energy cost though big data reduction at the 
sensor devices, hence saving energy throughout 
the entire IoT network system. A lab-based test-
bed system is designed to validate the benefits 
of BigReduce. We believe that the BigReduce 
framework, while still in its infancy, will result in 
game-changing performance for structural health 
event detection in terms of data reduction, energy 
cost reduction (or saving energy), and guarantee-
ing the quality of the monitoring.
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Figure 5. IoT sensor integrated by Imote2 deployed over a 12-story test struc-
ture.
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