
Clustering Analysis for Malicious Network Traffic

Jie Wang⇤, Lili Yang⇤, Jie Wu† and Jemal H. Abawajy‡
⇤School of Information Science and Engineering, Central South University, Changsha, China 410083

Email: jwang, liliyang@csu.edu.cn
†Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, USA

Email: jiewu@temple.edu
‡School of Information Technology, Deakin University, Burwood 3125, Australia

Email: jemal@deakin.edu.au

Abstract—With the volume and variety of network attacks
increasing, efficient approaches to detect and stop network
attacks before they damage the system or steal data is paramount
to users and network administrators. Although many different
detection mechanisms have been proposed, exiting detection
methods generally tend to successfully detect attacks only after
the attacks have finished and caused damage to the system. As
recent attacks employ polymorphism technology and complicated
attack techniques, it has become even more difficult for these
approaches to detect attacks in a timely manner. In this paper,
we propose an efficient network attack detection algorithm called
seed expanding (SE) that detects attacks before they damage
the system. SE employs the Two-Seed-Expanding network traffic
clustering scheme, which clusters attack traffic into different
attack phases. First we pre-process the networks traffic, includ-
ing constructing the network flow, changing continuous-valued
attributes into nominal attributes by adopting the discretization
method, and further turning into binary features. Then based
on these features, SE computes a weight for each flow and
iteratively selects seeds to expand until all flows are divided into
clusters. To investigate the effectiveness of the proposed approach,
we undertook extensive experimental analyses. The results of
the experiment show that the pre-procession greatly improves
clustering performance, and the Two-Seed-Expanding Algorithm
is better than K-Means and other kinds of Seed-Expanding in
attack-flow clustering. These cluster results can be further used
in attack detection.

Index Terms—malicious network traffic, attack detection, at-
tack phase, network flow clustering.

I. INTRODUCTION

Most malicious network traffic is generated by different
types of network attacks. Attackers deploy malware to com-
promise a computer system by exploiting security vulnerabili-
ties. In recent years, there has been a significant research focus
on detecting network anomaly traffic and identifying attack
types [1], [2]. However, with the development of advanced
attack methodologies, attack scenarios have become more and
more complicated. There are many features of an attack, such
as imperceptibility, polymorphism and so on, which makes
network attacks very difficult to detect. Nonetheless, detecting
attacks earlier is very important in preventing the attacks from
damaging the system.

In order to detect attacks earlier, it is important to identify
what phase the attack is in as early as possible. To detect
the attack phase, the first mission is to use some methods

to distinguish different attack phases. Clustering analysis is a
good technology for classifying network traffic into different
attack phases, although it cannot mark the current attack phase.
Results from clustering can further be used to analyze the
features of the attack phase.

Traditional clustering algorithm schemes include hierar-
chical clustering, centroid-based clustering, distribution-based
clustering, density-based clustering, and so on [3]. Hierarchical
clustering decomposes a given dataset until some conditions
are satisfied. Centroid-based clustering first selects a repre-
sentative object for each cluster, and the rest of the objects
are allocated to the nearest cluster. The typical centroid-based
clustering algorithm is K-Means. Distribution-based clustering
utilizes the distribution information of a dataset to find the
cluster. Density-based clustering finds the high density areas
that are separated by low density areas. However, because
we cannot control the similarity level of data points in the
clustering process, these cluster algorithms are not appropriate
for detecting malicious network flows. In other words, the
network administrator cannot control the similarity level in
the process of the clustering attack phase according to network
policy. For instance, the networks of banks and governments
acquire a higher level of security, and personal networks can
allow more traffics inpour with a lower security level.

Motivated by this, we design an efficient clustering algo-
rithm which divides one attack into multiple phases, where
every attack phase is considered as one type of attack behavior,
including discovering a vulnerable host, getting root access
privileges or gaining access to a vulnerable host, and gathering
sensitive information from the Internet. Specially, although one
attack may have one or multiple steps, we consider it as a
multi-step attack with default steps. The clustering results will
be used to further detect malicious network traffic. The main
contributions of this paper are summarized as follows.

1) We propose an unsupervised malicious network traffic
clustering scheme which uses statistical flow-level fea-
tures to cluster malicious network traffic into different
attack phases.

2) We present a clustering algorithm SE which adopts two
seed expanding methods to improve clustering perfor-
mance, and we can control the different security levels
in the clustering process.

3) We further expand SE to other kinds of Seed Expanding,
and discuss how many chosen seeds are appropriate in
Seed Expanding.

The rest of the paper is organized as follows. Section 2
presents an unsupervised malicious network traffic clustering
scheme. Section 3 presents a seed-expanding clustering algo-
rithm. The experimental results are shown in section 4. Finally,
section 5 concludes the paper.

II. RELATED WORK

Known research about malicious network traffic is con-
centrated in malware detection, including signature-based and
anomaly-based detection methods [4].

Signature-based detection matches network traffic against
a set of predefined signatures to determine whether they
are malicious. Recently, most signatures are generated from
packet payloads. Because of the emergence of metamorphic
and polymorphic technologies, it is different to employ these
signatures to detect malicious network traffic. Moreover, su-
pervised classification is a related approach to signature-based
detection. Some instances based on signatures are used to
build a classification model. Therefore, supervised classifica-
tion approaches show the same limitations as signature-based
detection.

For example, Stevanovic et al. [5] used supervised machine
learning to detect a flow-based botnet. They made a conclusion
that the C4.5 Decision Tree, Random Tree and Random Forest
were the most efficient in detecting a botnet. Nogueira et al.
[6] also designed a flow based system in which a Neural
Network was employed to detect a botnet. Similarly, Hsiao
et al. [7] used a flow-based method to detect malicious behav-
ior. They created four sets of attributes: NetFlow variables,
Tmeporal Variables, Spatial Variables and a combination of
Temporal and Spatial variables. They applied Naive Bayes,
Decision Tree and SVM algorithms in the experiments. The
results showed that a combination of temporal and spatial
attributes worked well. Moreover, Saad et al. [8] implemented
an approach based on some classification algorithms to detect
malicious botnet behavior by using flow based attributes and
host-based attributes. Haddadi et al. [1] proposed a framework
on flow-based network traffic to detect a botnet, which em-
ployed machine learning algorithms C4.5 and Native Bayes.
Tellenbach [9] et al. proposed a comprehensive anomaly
detection and classification system based on traffic feature
distribution. Coluccia [2] proposed to apply an empirical and
estimated feature probability distribution for anomaly detec-
tion. Gamer T. [10] introduces a newly developed collaborative
attack detection that facilitates collaboration beyond domain
boundaries without requiring close trust relationships.

On the other hand, traditional anomaly-based detection
profiles the statistical features of normal traffic. Any deviation
from the profile will be considered as malicious. However,
it faces some risk of generating a high false positive rate,
which means a great number of normal network traffic will be
wrongly classified as malicious.

In recent years, some unsupervised learning techniques have
been designed for malicious network traffic detection and
analysis [11], which can be used to identify unknown malware
[12]. However, with the development of attack technology,
malicious network traffic generated by malware gradually has
similar traffic statistical features to that of normal traffic.
Therefore, when this kind of features are used by some
detection approaches to identify malicious, which will suffer.

III. MALICIOUS NETWORK TRAFFIC CLUSTERING
SCHEME

This section first introduces the basic concepts in malicious
network traffic clustering and the flow-level features we adopt.
Then, we describe the feature pre-processing. Finally, we
present the unsupervised learning scheme.

A. Basic Concepts and Feature

IP flow is the basic unit in malicious network traffic
clustering. Wang et. al. [13] define IP flow as a sequence
of IP packets exchanged between a pair of endpoints for the
purpose of inter-process communication across the Internet.
We also define an IP flow by a 5-tuple: the srcIp, srcPort,
dstIp, dstPort, and Protocol.

An IP flow is described by an n-dimension feature vector
X = {x1, x2, . . . , xn}, where n is the number of features.
xi is a statistical feature extracted from a single IP flow and
we do not consider the direction of the IP flows. Andrew
M. Moore et. al. [14] proposed 248 sophisticated features
in their study, which can be used in flow-based classification
and clustering. The study is very useful for researching flow-
based classification. However, if a great number of features
are used in flow-based classification, it will generate a high
computational overhead. Previous studies have shown that
simple features have a sufficient discriminating power [12],
[13], [15]. Similarly, we also select simple features.

Feature selection and transformation play an important role
in machine learning. In this paper, our goal is to cluster
malicious flows into different phases, which will be beneficial
for further detecting and analyzing malwares. Towards this
end, we use the layer-3 and layer-4 network traffic features
such as the sizes of the packets (see Table1). This is motivated
by the previous works [13] and [4]. In [13], it was suggested
that ports and sizes of TCP and UDP can be applied to classify
online traffic. In [4], it was observed that threats often exhibit
specific behavior in terms of their layer-3/layer-4 statistical
flow-level features and these features retain their properties
even when the payload is encrypted. The flow statistic features
we used are illustrated in Table I.

B. Feature Preprocessing

We first preprocess our dataset. A continuous-valued at-
tribute is discretized by partitioning its range into multiple
intervals. A threshold value T is a continuous-value attribute.
A is a cut point if A  T is assigned to the left branch while
A > T is assigned to the right branch. As our approach is

TABLE I: Flow-level features

Name Feature Discription
pkts total number of packets
pkt-noPayload total number of packets without payload
bytes total number of bytes transferred
pay-bytes total number bytes from all payloads
duration flow duration
maxsz maximum packet size
minsz minimum packet size
avgsz average packet size
stdsz standard deviation of packet size
maxpy maximum payload size
minpy minimum payload size
avgpy average payload size
stdpy standard deviation of payload size
Flag flags (acks, fins, resets, pushs, etc)

based on the Entropy-based discretization method [17], the
following definitions are derived from there as well.

Definition 1: Let T partition the set S of examples into the
subsets S1 and S2. Let there be k classes C1, . . . , Ck and let
P (Ci, S) be the proportion of examples in S that have class
Ci. The class entropy of a subset S is defined as:

Ent(S) = �
kX

i=1

P (Ci, S)log(P (Ci, S))

Definition 2: For an example set (S), an attribute (A), and
a cut value (T): Let S1 ⇢ S be the subset of examples in S

with A�values  T and S2 = S�S1. The class information
entropy of the partition induced by T, E(A, T ;S) is defined
as

E(A, T ;S) =

S1

S

Ent(S1) +
S2

S

Ent(S2) (1)

Definition 3: MDLPC Criterion: The partition induced by a
cut point (T) for a set (S) of N examples is accepted if

Gain(A, T ;S) >

log2(N � 1)

N

+

�(A, T ;S)

N

where

�(A, T ;S) = log2(3
k�2)�[kEnt(S)�k1Ent(S1)�k2End(S2)]

(2)
Gain(A, T ;S) is the information gain of a cut point, and

is defined as:

Gain(A, T ;S) = Ent(S)� E(A, T ;S)

= Ent(S)� S1

N

Ent(S1) +
S2

N

Ent(S2)
(3)

The number N = |S| in Eq. (3), and the parameters k, k1,
and k2 are constant as discussed in [17]. Specifically, for each
feature we divide the range of observed values into a series of
intervals based on the accepted cut point, and then, map each
interval to a discrete nominal symbol.

A nominal attribute can take on two or more states. For
example, pkts in Table I becomes a nominal attribute by
discretizing, including five states: (1.5�2.5],(2.5�3.5],(3.5�

25.5],(25.5�28],(28�inf). Nominal attributes can be encoded
using asymmetric binary attributes by creating a new binary
attribute for each of the M states. For an object with a given
state value, the binary attribute representing that state is set to
1, while the remaining binary attributes are set to 0.

C. Unsupervised Malicious Network Traffic Clustering

The process of malicious network traffic clustering from
identifying flows includes flow identification, feature extrac-
tion, feature preprocessing, unsupervised learning and cluster-
ing. The traffic is in the form of IP packets. The flows are
first constructed by aggregating traffic based on the 5-tuple
flow identifiers. Then, features can be extracted from the flows.
We preprocess the features by using the discretization method,
and the features are transformed into nominal attributes. Then
these nominal attributes are encoded using asymmetric binary
attributes. Finally, these binary attributes can be handled by
clustering algorithms, which generate different partitions on
the input data. The result we need is to construct pure clusters
where the input may include a little noise. That is to say, our
goal is for the flows in each cluster to be from the same attack
phase.

In previous studies [12], [16], the core algorithm was
designed to classify malicious traffic from normal traffic,
however, some malicious traffic is the same as normal traffic
when they are considered individually. Especially, like DDOS,
it has different attack phases in the entire attack process:
scanning, installing Trojan horse malware, launching DDoS,
and so on. Therefore, it is necessary to cluster malicious
network traffic into different phases. Based on this, it will
be easier to classify malicious traffic.

IV. CLUSTERING ALGORITHM BASED ON
SEEDING-EXPANDING

In this section, we describe the process of similarity com-
puting between different flows, and present a novel clustering
algorithm based on seed-expanding.

A. Similarity Computing

For asymmetric binary attributes, the two states are not
equally important. Given two asymmetric binary attributes, the
agreement of two 1s (a positive match) is then considered more
significant than that of two 0s (a negative match). Therefore,
such binary attributes are often considered ”monary” (having
one state). The number of negative matches is considered
unimportant and is thus ignored. The asymmetric binary
similarity between the objects i and j can be computed as

sim(i, j) =

q

q + r + s

. (4)

In Eq. (4), q is the number of positive matches that equal 1
for both objects i and j, r is the number of attributes that equal
1 for object i but equal 0 for object j, and s is the number of
attributes that equal 0 for object i but equal 1 for object j. The
coefficient sim(i, j) of Eq. (4) is called the Jaccard coefficient
[3] .

B. The Process of Clustering Algorithm

Given a set D, D = {d1, d2, .., dn}, we propose that the SE
algorithm divide set D into some clusters. The SE algorithm
contains the following steps.
(1) Weight Computing. The first step is to compute the weight

for each data point where a data point means a flow.
Firstly, for each data point, the weight is computed, where
the weight of one data point is the sum of the similarity
between this data point and all other data points. It is
denoted as:

Weightdi =

nX

j=1

sim(di, dj). (5)

(2) Seed Selection. Firstly, all data points are sorted based
on their Weights by decreasing and constructing a can-
didate queue Q = {q1, q2, . . . , qn}. Next, we discuss
how to choose two seeds. When selecting seeds, we must
make sure the two seeds belong to different clusters with
high probabilities. Based on Eq. (5), the Weights of the
data points in the same cluster are similar. Therefore,
we compute the different value of the weights between
adjacent data points of the candidate queue, then choose
the adjacent two data points with highest difference value
as seeds. The first seed, s1, is selected as follows:

s1 = argmax

qi
|Weightqi �Weightqi+1 |

The second seed, s2, is next to s1 in the queue Q.
(3) Seed Expanding. We expand one cluster based on every

seed, individually. One data point q in the candidate queue
is added to a cluster only if it has the maximal similarity
value to seed s. The data point q is as follows:

q = argmax

qj
(sim(qj , s))

Then data point d is deleted from Q. When similarity
values between seed point s and the rest of the data points
in the candidate queue are less than threshold r, which is
denoted as:

max

q2Q
(sim(q, s)) < r

the expanding process is stopped. The selection of two
new seeds and the expanding cluster are run iteratively
until the queue becomes null.

(4) Noise removal. As a dataset may include a noise flow
that does not belong to the attack flow, clusters with sizes
smaller than 3 are considered noise data. The algorithm is
illustrated in Figure 1.

In Figure 1, the input D is the set of data points
{d1, d2, ...dn}. Threshold r is a pre-value. We can control
the similarity level in the clustering process by adjusting the
number of thresholds. When the similarity between the seed
and the data points of a candidate set is less than the threshold,
the process of expanding the current cluster will be stopped.

Algorithm Two-Seed-Expanding
Input: D = {d1, d2, . . . , dn}, r;
Output: CLUSTER = {cluster1, cluster2, ...};
Begin

Weight Computing: Calculating weight for each data point
in D, where

Weighti =
Pn

j=1 sim(di, dj);
Sorting all data points and constructing candidate queue Q =

{q1, q2, . . . , qn} by decreasing;
do

Seed selection:Selecting two data points s1, s2 as seeds
from Q, where

(s1, s2) = argmax(qi,qi+1) |Weightqi�Weightqi+1 |;
Seed expanding: Generating a new cluster, clusterk based

on seed s1 by adding new data point q from Q, where
q = argmaxqj sim(qj , s1),
clusterk q;
Deleting q from queue Q; until

max(sim(qj , s1)) < r;
Generating a new cluster clusterk+1 based on seed s2 by adding
new data point q from Q, where

q = argmaxqj sim(qj , s2),
clusterk+1 q;
Deleting q from queue Q; until

max(sim(qj , s2)) < r;
Until Q = �;
Noise removal;
return CLUSTER;

End
Fig. 1: The Two-Seed Expanding Algorithm

V. EVALUATION

A. Data

SE is evaluated by adopting a DDoS sample that comes from
the classical intrusion detection dataset Darpa2000 scenario 1
[18]. This attack scenario includes multiple networks and audit
sessions. Specially, the process of attack in the Darpa2000
dataset is divided into five stages: 1) IP-sweep of the AFB
from a remote site; 2) Probe of the live IPs to look for the
sadmind daemon running on Solaris hosts; 3) Breakings via
the sadmind vulnerability, both successful and unsuccessful
on those hosts; 4) Installation of the trojan mstream DDoS
software on three hosts at the AFB; 5) Launching the DDoS.

B. Result and Discussion

There are three common indexes to evaluate the clustering
results (purity, RI, F-Measure) [19]. We run a series of clus-
tering experiments on test datasets using a range of thresholds,
r, from 0 to 1. The results are illustrated in Figure 2, Figure 3
and Figure 4. In these figures, the horizontal axis stands for a
threshold, r, adopted by the SE algorithm. With the increase
of r, cluster purity, the Rand Index and F-measures will
increase. Especially, when r is larger than 0.5, they will obtain
better results. In addition, in Fig. 2, there are three curves,
which denote the clustering results obtained by using the
discretization method and asymmetric binary attributes, only
using the discretization method and using directly continuous-
valued attributes. From these figures, it can be seen that feature
discretization and the use of asymmetric binary attributes both
improve flow clustering performance.

Fig. 2: Purity (SE) Fig. 3: Rand Index (SE)

Fig. 4: F-measure (SE) Fig. 5: Purity (K-Means)

Fig. 5 illustrates the cluster purity of K-Means. As K-Means
needs to set the number of clusters, we give purity values with
different clustering numbers. From Fig. 5, it can be shown that
the clustering performance has obviously improved because of
the feature discretization and asymmetric binary attributes. Fig.
6 and Fig. 7 separately show the Rand Index and F-measures
of K-Means clustering, which have similar results with Fig. 5.

Moreover, we compare the SE algorithm with K-Means,
where we choose threshold r = 0.9. The results are shown in
Table II. According to Table II, the SE algorithm can achieve
a higher clustering performance than that of K-Means with
any input cluster number. In fact, it is hard for K-Means to
choose the most suitable clustering number.

C. Algorithm Analysis

In the section, we discuss some questions about the al-
gorithm and experiments. Firstly, we present the clustering
process without using discretion or asymmetric binary at-
tributes. Next, we give the reason why we choose two seeds
for each iteration rather than one seed, three seeds, and so on.
Furthermore, we compare the clustering results with different
seed numbers in the process of iteration.

Fig. 6: Rand (K-Means) Fig. 7: F-measure (K-
Means)

TABLE II: The result comparing between SE and K-Means

input
cluster
number

Purity Rand In-
dex

F-
measure

SE-discrete 0.9552 0.9651 0.980306
K-Means-discrete 1 0.923751 0.854832 0.921735
K-Means-discrete 2 0.925504 0.920917 0.953059
K-Means-discrete 3 0.903593 0.92204 0.953408
K-Means-discrete 4 0.909728 0.923537 0.954257
K-Means-discrete 5 0.923751 0.925695 0.955486
K-Means-discrete 6 0.928133 0.926251 0.955806
K-Means-discrete 7 0.928133 0.94195 0.964883
K-Means-discrete 8 0.935145 0.942144 0.964992
K-Means-discrete 9 0.935145 0.941913 0.964848
K-Means-discrete 10 0.923751 0.94149 0.964584
K-Means-discrete 11 0.921998 0.941469 0.96457
K-Means-discrete 12 0.921998 0.941404 0.96453
K-Means-discrete 13 0.923751 0.94145 0.964556

Fig. 8: Purity (SE) with
different seed numbers

Fig. 9: Rand (SE) with
different seed numbers

When the process of clustering does not use discretion, we
adopt the RBF(Radial Basis Function) to calculate similarity.
The similarity between objects i and j can be computed as

sim(i, j) = exp(�ki� jk2

2�

2
) (6)

In Eq. (6), ki�jk2 is the Euclidean distance between objects
i and j, and �

2
=

1
2 . When the two objects are very similar,

the value of sim(i, j) is close to 1. On the contrary, when the
distance between i and j is greater, the value of sim(i, j) is
close to 0.

If the process of clustering does not use asymmetric binary
attributes, the similarity between objects i and j can be
computed based on the ratio of matches:

sim(i, j) =

m

p

(7)

where m is the number of matches (i.e., the number of
attributes for which i and j are in the same state), and p is
the total number of attributes describing the objects.

Moreover, in the SE algorithm, we choose two seeds for
each iteration. In the next experiments, we choose one seed,
two seeds, three seeds, four seeds, five seeds and six seeds
in the process of seed selecting, and the clustering results are
illustrated in Fig.8, Fig.9, and Fig.10. Specifically, we choose
a data point that has a max weight of as one seed. While
choosing three seeds, first, we get four data points from the
first largest difference weight and the second largest difference

Fig. 10: F-measure (SE)
with different seed num-
bers

Fig. 11: The number of
iterations required with
different seed numbers

weight, then we select three data points as seeds with the top
three maximum weights. In a similar fashion, we get four
seeds, five seeds, and six seeds.

Figure 8 illustrates the purity value with a different number
of clustering seeds. It is easy to find that clustering can obtain
good results no matter how many seeds are selected for each
iteration when threshold r is larger than 0.5. From Figure 9
and Figure 10, a similar conclusion can be drawn.

We compare the number of iterations required with different
seed numbers. The results of the comparison are illustrated in
Figure 11.

According to Figure 11, when the number of seeds in-
creases, the number of iterations decreases gradually. Specif-
ically, when two seeds are selected, the number of iterations
reduces significantly. However, when the number of seeds
further increases, the iteration number remains the same. That
is to say, the number of iterations does not always decrease
with the increase of the number of seeds selected. In addition,
when datasets include only two or three kinds of objects,
selecting more seeds will cause some small clusters. To the
extreme extent, these small clusters may be considered as
noise. Therefore, we choose two seeds for each iteration.

At the same time, we compare the running time. The
running time of one seed is about 40s when clustering the
datasets, while the running time of two seeds is about 30s.
Furthermore, the running time of three seeds, four seeds,
five seeds and six seeds is around 28s. This is because the
seed selection process will take some time. Therefore, it is
reasonable to select two seeds for each iteration.

VI. CONCLUSION

In this paper, we propose a clustering algorithm and a clus-
tering scheme based on Two-Seed-Expanding, which clusters
attack flows into different phases. We also discuss the clus-
tering’s effectiveness when different seed numbers are used in
the Seed-Expanding algorithm. Experimental results show that
SE adopts the discretization method and asymmetric binary
attributes to process attacks flows, which greatly improves
clustering performance. Moreover, Two-Seed-Expanding is
better than K-Means and other kinds of Seed-Expanding that
use different seed numbers in attack flow clustering. Next, we

will further research how to identify attack flows from normal
flows based on the clustering results.

ACKNOWLEDGMENT

This work was supported by NSF of China under Grant No.
61573379, No. 61202495, and in part by NSF grants CNS
1629746, CNS 1564128, CNS 1449860, CNS 1461932, CNS
1460971, CNS 1439672, CNS 1301774, and ECCS 1231461.

REFERENCES

[1] F. Haddadi, J. Morgan, E.G. Filho, A.N. Zincir-Heywood. Botnet be-
haviour analysis using IP flows: with HTTP filters using classifiers. 2014
28th International Conference on Advanced Information Networking and
Applications Workshops, pp. 7-12.

[2] A. Coluccia, A. Dalconzo, F. Ricciato. Distribution-based anomaly de-
tection via generalized likelihood ratio test: A general maximum entropy
approach, Computer Networks 2013; 57(17): 3446C3462.

[3] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Tchiques, Third
Edition, 2011.

[4] P. M. Comar, L. Liu and S. Saha et.al., Combining Supervised and Un-
supervised Learning for Zero-Day Malware Detection, IEEE INFOCOM
2013, pp.2022-2030.

[5] M. Stevanovic, J.M. Pedersen. An efficient flow-based botnet detection
using supervised machine learning. In: 2014 International Conference on
Computing, Networking and Communications (ICNC), pp. 797-801.

[6] A. Nogueira, P. Salvador, F. Blessa. A botnet detection system based
on neural networks. In: 2010 Fifth International Conference on Digital
Telecommunications, pp. 57-62.

[7] H. Hsiao, D. Chen, T. Ju Wu. Detecting hiding malicious website network
traffic mining approach. 2010 2nd International Conference on Education
Technology Computer (ICETC), vol. 5, pp. 276-280.

[8] S. Saad, I. Traore, A. Ghorbani, B. Sayed, D. Zhao, W. Lu, J. Felix,
P. Hakimian. Detecting P2P botnets through network behavior analysis
and machine learning. Proceedings of 9th Annual Conference on Privacy,
Security and Trust.

[9] B. Tellenbach, M. Burkhart, D. Schatzmann, D. Gugelmann, D. Sornette.
Accurate network anomaly classification with generalized entropy met-
rics, Computer Networks 2011; 55(15): 3485-3502.

[10] T. Gamer. Collaborative anomaly-based detection of large-scale internet
attacks, Computer Networks 2012, 56(1): 169?85.

[11] J. Mazel, P. Casas, Y. Labit and P. Owezarski. Sub-space clustering,
inter-clustering results association and anomaly correlation for unsuper-
vised network anomaly detection. In Proceedings of the 7th International
Conference on Network and Service Management, Paris, France, 2011:
1-8.

[12] P. Casas, J. Mazel, and P. Owezarski. Unsupervised Network Intrusion
Detection Systems: Detecting the Unknown without Knowledge. Com-
puter Communications, April 2012, 35(7): 772-783.

[13] Y. Wang, Y. Xiang and Jun Zhang et.al., Internet Traffic Classifica-
tion Using Constrained Clustering, IEEE transactions on parallel and
distributed systems, 25(11):2932-2943, 2014.

[14] A.W. Moore, D. Zuev, M.L. Crogan. Discriminators for use in flow-
based classification. Technical Report, RR-05-13 [R]. UK: Queen Mary
University of London, 2005.

[15] Y. Wang, Y. Xiang, J. Zhang, W.L. Zhou, B.L. Xie. Internet Traffic clus-
tering with side information. Journal of Computer and System Science,
2014, 80: 1021-1036.

[16] L.L Yang, J. Wang, P. Zhong. Combining Supervised and Unsu-pervised
Learning for automatic attack signature generation system. Proceedings of
the International Conference on Algorithms and Architectures for Parallel
Processing. Dalian: Springer Verlag, 2014: 607-618.

[17] U.M. Fayyad and K. B. Irani, Multi-interval discretization of continuous-
valued attributes for clasification learning, In Proceedings of the Interna-
tionaloint Conference on Uncertainty in Articial Intelligence, 1993.

[18] Lincoln Laboratory. 2000 DARPA Intrusion Detection Scenario Specific
Data Sets.www.ll.mit.edu/mission/communications/cyber/CSTcorpora/
ideval/data/2000data.html, 2000.

[19] C.D. Manning, P. Raghavan and H. Schutze, Introduction to Information
Retrieval. Cambridge University Press. 2008.

